首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phylogeny of protostome worms derived from 18S rRNA sequences   总被引:13,自引:3,他引:10  
The phylogenetic relationships of protostome worms were studied by comparing new complete 18S rRNA sequences of Vestimentifera, Pogonophora, Sipuncula, Echiura, Nemertea, and Annelida with existing 18S rRNA sequences of Mollusca, Arthropoda, Chordata, and Platyhelminthes. Phylogenetic trees were inferred via neighbor-joining and maximum parsimony analyses. These suggest that (1) Sipuncula and Echiura are not sister groups; (2) Nemertea are protostomes; (3) Vestimentifera and Pogonophora are protostomes that have a common ancestor with Echiura; and (4) Vestimentifera and Pogonophora are a monophyletic clade.   相似文献   

2.
The phylogenetic position of Sipuncula, a group of unsegmented marine worms, has been controversial for several decades: Especially based on morphological data, closer relationships to Mollusca or Annelida were among the most favoured hypotheses. Increasing amounts of molecular data in recent years have consistently placed Sipuncula either in close affinity to or even within Annelida, the segmented worms, and rejected a close relationship to Mollusca. Yet, it remained uncertain whether Sipuncula is the sister group of Annelida or an annelid subtaxon. Therefore, herein we gathered data for five nuclear genes, which have been rarely used regarding Annelida and Sipuncula, and combined these with data for six previously used genes to further elucidate the phylogenetic position of Sipuncula. We also compiled a data set for 78 ribosomal proteins from publicly available genomic data sets. These are the two largest data sets for annelids with more than 10 taxa to date. All analyses placed Sipuncula within Annelida. For the first time, topology tests significantly rejected the possibility that Sipuncula is sister to Annelida. Thus, our analyses revealed that Sipuncula had secondarily lost segmentation. Given that unsegmented Echiura is also an annelid subtaxon, segmentation, a key character of Annelida, is much more variable than previously thought. Yet, this conclusion does not support the hypothesis that the last common ancestor of Annelida, Arthropoda and Chordata was segmented, assuming several losses along the branches leading to them. As yet no traces of segmentation could be shown in taxa exhibiting serially organized organ systems such as certain Mollusca, while in Sipuncula and Echiura such traces could be demonstrated. An independent origin of segmentation in Annelida, Arthropoda and Chordata thus appears to be more plausible and parsimonious.  相似文献   

3.
Fourteen species of Sipuncula belonging to 9 genera have been reported from Costa Rican waters, mostly from the Pacific coast. Three of these species are new records for Costa Rica (Phascolion strombus (Montagu 1804), Aspidosiphon (Aspidosiphon) muelleri Diesing 1851, and Aspidosiphon (Aspidosiphon) gracilis schnehageni (W. Fisher 1946)). One species of Echiura, Thalassema steinbecki Fisher 1946, in the order Echiuroinea, has been reported from the Pacific coast of Costa Rica.  相似文献   

4.
Recent molecular analyses consistently resolve the “spoon worms” (Echiura) as a subgroup of the Annelida, but their closest relatives among annelids still remain unclear. Since the adult morphology of echiurans yields limited insight into their ancestry, we focused on characters of their larval anatomy to contribute to this discussion. Electron microscopical studies of the larval protonephridia (so-called head kidneys) of the echiuran species Thalassema thalassemum revealed distinct correspondences to character states in serpulid polychaetes, although a close relationship between Echiura and Serpulidae is not supported by any phylogenetic analysis. The larval head kidneys of T. thalassemum consist of only two cells, a terminal cell and a duct cell. The terminal cell forms a tuft of six cilia projecting into the lumen of the terminal cell. The cilia are devoid of circumciliary microvilli. A filter structure is formed by two to three layers of elongate microvilli that surround the lumen of the terminal cell in a tubular manner. A thin layer of extracellular matrix (ECM) encloses the outer microvilli of the tubular structure. The tips of the microvilli project into the lumen of the adjacent duct cell but are not directly connected to it. However, mechanic coupling is facilitated by the surrounding ECM and abundant hemidesmosomes. The distal end of the multiciliary duct cell forms the external opening of the nephridium; a specialized nephropore cell is absent. Apart from the multiciliarity of the duct cell, details of the head kidneys in T. thalassemum reveal no support for the current assumption that Echiura is closely related to Capitellida and/or Terebelliformia. Available data for other echiuran species, however, suggest that the head kidneys of T. thalassemum show a derived state within Echiura.  相似文献   

5.
Echiura is traditionally regarded as a small phylum of unsegmented spiralian worms. Molecular analyses, however, provide unquestionable evidence that Echiura are derived annelids that lost segmentation. Like annelids, echiurans possess chaetae, a single ventral pair in all species and one or two additional caudal hemi-circles of chaetae in two subgroups, but their evolutionary origin and affiliation to annelid chaetae are unresolved. Since annelids possess segmental pairs of dorsal (notopodial) and ventral (neuropodial) chaetae that are arranged in a row, the ventral chaetae in Echiura either represent a single or a paired neuropodial group of chaetae, while the caudal circle may represent fused rows of chaetae. In annelids, chaetogenesis is generally restricted to the ventral part of the notopodial chaetal sac and to the dorsal part of the neuropodial chaetal sac. We used the exact position of the chaetal formation site in the echiuran species, Thalassema thalassemum (Pallas, 1766) and Echiurus echiurus (Pallas, 1767), to test different hypotheses of the evolution of echiurid chaetae. As in annelids, a single chaetoblast is responsible for chaetogenesis in both species. Each chaeta of the ventral pair arises from its own chaetal sac and possesses a lateral formation site, evidencing that the pair of ventral chaetae in Echiura is homologous to a pair of neuropodia that fused on the ventral side, while the notopodia were reduced. Both caudal hemi-circles of chaetae in Echiurus echiurus are composed of several individual chaetal sacs, each with its own formative site. This finding argues against a homology of these hemi-circles of chaetae and annelids’ rows of chaetae and leads to the hypothesis that the caudal chaetal rings evolved once within the Echiura by multiplication of ventral chaetae.  相似文献   

6.
The Echiura, or spoon worms, are a group of marine worms, most of which live in burrows in soft sediments. This annelid-like animal group was once considered as a separate phylum because of the absence of segmentation, although recent molecular analyses have placed it within the annelids. In this study, we elucidate the interfamily relationships of echiuran worms and their evolutionary pattern of feeding mode and sexual dimorphism, by performing molecular phylogenetic analyses using four genes (18S, 28S, H3, and COI) of representatives of all extant echiuran families. Our results suggest that Echiura is monophyletic and comprises two unexpected groups: [Echiuridae+Urechidae+Thalassematidae] and [Bonelliidae+Ikedidae]. This grouping agrees with the presence/absence of marked sexual dimorphism involving dwarf males and the paired/non-paired configuration of the gonoducts (genital sacs). Furthermore, the data supports the sister group relationship of Echiuridae and Urechidae. These two families share the character of having anal chaetae rings around the posterior trunk as a synapomorphy. The analyses also suggest that deposit feeding is a basal feeding mode in echiurans and that filter feeding originated once in the common ancestor of Urechidae. Overall, our results contradict the currently accepted order-level classification, especially in that Echiuroinea is polyphyletic, and provide novel insights into the evolution of echiuran worms.  相似文献   

7.
Hausen  Harald 《Hydrobiologia》2005,543(1):25-35
The polychaete epidermis generally consists of a single layer of supportive cells, gland cells and sensory cells. Except for the latter, this paper reviews the recent literature on the annelid epidermis, focussing on the mentioned cell types and the cuticle. The annelid epidermis is compared to that of Sipuncula, Echiura and Myzostomida. Supportive cells predominate in the polychaete epidermis. They show a high structural diversity even within single specimens. Ciliated cells are usually multiciliary and only two cases of monociliary epidermis cells are known. Unambigous epithilio-muscle cells are only described in feeding palps of a Magelona species. Secretory cells release a large number of gland products and some of them are essential for tube secretion. Rather pecularities of the cells and its arrangement within glands than the ultrastructure of the secretions is useful for phylogenetic considerations. One of the main components of the cuticle is collagen. Recent studies indicate that annelid cuticular collagen differs in several aspects from collagen of the connective tissue and might be of interest for systematics.  相似文献   

8.
珠江口伶仃洋海域小型底栖生物丰度和生物量   总被引:1,自引:1,他引:0  
Zhang JH  Gao Y  Fang HD 《应用生态学报》2011,22(10):2741-2748
分别于2006年7-8月(夏)、2007年4月(春)和10月(秋)对珠江口伶仃洋附近海域小型底栖生物丰度和生物量进行调查.3个航次共鉴定小型底栖生物类群15类,包括线虫、桡足类、多毛类、介形类、动吻动物、端足类、颚咽动物、涟虫、纽虫、腹足类、双壳类、星虫、螠虫、原足类和其他未鉴定种类;春、夏、秋3个航次小型底栖生物丰度分别为(272.1+281.9)、(165.1±147.1)和(246.4±369.3) ind·10 cm-2,线虫为主要优势类群,分别占小型底栖生物总丰度的86.8%、83.5%和93.4%.小型底栖生物丰度垂直分布不均匀,分布于沉积物0~2 cm、2~5 cm、5~10 cm的数量比例分别为54.1%、35.2%和10.8%,线虫分布于沉积物0~5 cm数量比例为87.4%;春、夏、秋3个航次小型底栖生物生物量分别为(374.6±346.9)、(274.1±352.2)和(270.8±396.0) μg·10 cm-2,多毛类平均生物量最高,分别占小型底栖生物总生物量的30.1%、46.7%和46.0%,其次为线虫(25.2%、20.1%和34.0%)和介形类(20.6%、15.3%和14.8%).伶仃洋小型底栖生物丰度平面分布呈现从北向南升高、东部高于西部的趋势.伶仃洋小型底栖生物丰度、生物量分布与水深呈显著正相关.  相似文献   

9.
10.
The first unequivocal fossil echiuran, Coprinoscolex ellogimus gen. et sp.n., is described from the Middle Pennsylvanian Francis Creek Shale of the Mazon Creek area of northeastern Illinois. Specimens are whole-body impressions within siderite concretions. They show anterior proboscides, cigar-shaped trunks, convoluted alimentary canals, and cylindrical pellets. Lack of setae suggests classification in the Family Bonelliidae. Coprinoscolex was most likely a marine deposit-feeder, either crawling over the sediment surface or burrowing to shallow depths while ingesting sediment. While this occurrence does not confirm or deny an annelidan ancestry for the Echiura, it indicates that by the Pennsylvanian, echiurans were unsegmented and essentially modern in form.  相似文献   

11.

Background  

Annelida comprises an ancient and ecologically important animal phylum with over 16,500 described species and members are the dominant macrofauna of the deep sea. Traditionally, two major groups are distinguished: Clitellata (including earthworms, leeches) and "Polychaeta" (mostly marine worms). Recent analyses of molecular data suggest that Annelida may include other taxa once considered separate phyla (i.e., Echiura, and Sipuncula) and that Clitellata are derived annelids, thus rendering "Polychaeta" paraphyletic; however, this contradicts classification schemes of annelids developed from recent analyses of morphological characters. Given that deep-level evolutionary relationships of Annelida are poorly understood, we have analyzed comprehensive datasets based on nuclear and mitochondrial genes, and have applied rigorous testing of alternative hypotheses so that we can move towards the robust reconstruction of annelid history needed to interpret animal body plan evolution.  相似文献   

12.
Sipuncula is a small taxon of worm-like marine organisms of still uncertain phylogenetic position. Sipunculans are characterized by an unsegmented body composed of a trunk into which the anterior part, the introvert, can be withdrawn. The group has been placed at various positions within Metazoa; currently, it is either seen as sister group of a clade comprising Mollusca and Annelida or as sister to each of these. An in-group position in either Mollusca or Annelida has usually been precluded till now due to the lack of so-called annelid or molluscan “key-characters” such as segmentation and chaetae or the radula. In the development of certain taxa the trochophore stage is followed by a planktonic larva, the pelagosphera, which might exhibit phylogenetically important structures. Among these is the buccal organ, which has been considered homologous either to the ventral pharyngeal organ present in many sedentary polychaetes or to the radular apparatus of molluscs. In the present paper, the ventral pharynx of the pelagosphera larva of Phascolosoma agassizii is investigated by transmission electron microscopy. The pharynx comprises dorsolateral ciliary folds, a muscle bulb formed by transverse muscle fibres with large intercellular spaces, and an investing muscle. A tongue-like organ is lacking. These results show great structural correspondences to the ventral pharynx of polychaetes, especially to that of the flabelligerid Diplocirrus longisetosus. In contrast, there are no signs of structural similarities to the corresponding structures of molluscs. Thus evidence increases that Sipuncula are closely related to annelids; moreover, an in-group position of Sipuncula within Annelida, as suggested by recent molecular studies, is not precluded by the present data. Instead these studies find additional support. Hence the lack of segmentation and chitinous chaetae in Sipuncula would be a secondary rather than a primary situation, as has recently been shown for Echiura and Pogonophora.  相似文献   

13.
为了解互花米草(Spartina alterniflora)入侵红树林的生态影响, 作者对位于北海市西村港的红树林湿地以及周边互花米草盐沼的大型底栖动物群落多样性和群落结构进行了研究。2012年10月至2013年9月连续4次取样, 按照取样时间研究大型底栖动物的种类、物种组成、生物量和生物多样性等群落特征的差异, 探讨互花米草入侵红树林湿地对大型底栖动物的影响。本研究共采集底栖动物16种, 隶属于5门7纲15科, 其中互花米草群落10种, 红树林湿地12种。研究发现互花米草入侵后中国绿螂(Glauconome chinensis)个体数量剧增, 导致不同采样时间互花米草盐沼的大型底栖动物生物量均显著高于红树林湿地; 除个别月份外, 红树林湿地大型底栖动物的Margalef丰富度指数、Shannon-Wiener多样性指数、Simpson多样性指数和Pielou均匀度指数均显著高于互花米草群落。基于生境-采样时间的双因素方差分析结果表明, Shannon-Wiener多样性指数和Simpson指数在两种生境间差异显著; 两种生境的Margalef丰富度和Pielou均匀度指数在不同采样时间差异显著; 大型底栖动物生物量和物种数量在两种生境间和不同采样时间差异均显著。基于多元回归分析的研究结果表明, 互花米草密度是影响大型底栖动物生物量的关键因子, 而互花米草株高可以解释物种个体数量、Shannon-Wiener多样性指数和Simpson指数在两种生境的变化。对不同采样时间大型底栖动物群落结构的非度量多维度(non-metric multidimensional scaling, NMDS)分析结果表明, 红树林与互花米草群落的大型底栖动物群落相似性很低。总而言之, 在西村港地区, 互花米草入侵虽然增加了大型底栖动物的生物量, 但由于优势物种的凸显, 显著降低了大型底栖动物群落的多样性, 且种类组成与群落结构与红树林群落相比已有差异。由此可见, 互花米草入侵红树林对当地的大型底栖动物群落多样性造成影响。  相似文献   

14.
T Kumazaki  H Hori    S Osawa 《Nucleic acids research》1983,11(10):3347-3350
The nucleotide sequences of 5S rRNAs from two Annelida species, Perinereis brevicirris and Sabellastarte japonica, and an Echiura species, Urechis unicinctus have been determined. Their sequences are all 120 nucleotides long. The sequence similarity percents are 88% (Perinereis/Sabellastarte), 90% (Sabellastarte/Urechis) and 92% (Perinereis/Urechis), indicating that the Echiura is indistinguishable from the Annelida by their 5S rRNAs. The 5S rRNA sequences from the Annelida/Echiura are most related to those from the Nemertinea (87%), the Mollusca (87%) and the Rotifera (88%).  相似文献   

15.
目前对藏鼩鼱(Sorex thibetanus)和甘肃鼩鼱(Sorex catnsulus)的分布范围和生物学资料了解较少.2017年,在云南省西北部的高山区域采集了 48号鼩鼱属(Sorex)动物标本.用形态学和基于Cyt b基因的分子系统学对采集标本进行了物种鉴定.结果显示来自4个地点的27号标本形态上与藏鼩鼱相符...  相似文献   

16.
中国热带粒毛盘菌属的物种多样性研究   总被引:6,自引:0,他引:6  
本文在对我国盘菌资源调查的基础上,分析研究了热带地区粒毛盘菌属真菌的物种多样性。本研究共分析451份标本,属于35个分类单位,其中Lachnum abnorme var. abnorme, L. brasiliense, L. flavidulum, L. pteridophyllum, L. sclerotiiL. virgineum 6个种的个体数量均在总数的6 %以上,占已观察标本总数的73.4 %,是我国热带地区的常见种。物种多样性分析表明,海南的物种丰富度(S=22)和多样性指数(H′=2.6696)最高,云南与广西的物种丰富度相似。采用群落系数(coefficient of community,cc)比较了不同地区的物种分布相似性。本文还试图探讨物种分布与海拔高度、生境、基物间的关系。粒毛盘菌属真菌在海拔60~2700 m的地带均有分布,由于调查和取样的局限性,物种随海拔高度变化的规律不明显;地理分布上大致可分为世界性分布、间断性分布和地方特有三种分布型。  相似文献   

17.
Species of Colletotrichum cause diseases on a wide range of hosts, frequently infecting plants in the Agavaceae (monocotyledons: Liliales). Three species of Colletotrichum restricted to the Agavaceae were detected through morphological studies of specimens and molecular sequence analyses of the LSU of the nu-rDNA and the ITS region of the nu-rDNA from cultures. Colletotrichum agaves on Agave is fully described and illustrated. Colletotrichum dracaenophilum is described as a new species for isolates having long conidia and occurring on Dracaena sanderiana from China. Colletotrichum phormii and Glomerella phormii are determined to be the correct scientific names for the asexual and sexual states, respectively, of a species commonly referred to as C. rhodocyclum and G. phacidiomorpha occurring mainly on Phormium. In addition, C. gloeosporioides and C. boninense were isolated from plants in the Agavaceae. All species of Colletotrichum described on Agavaceae were evaluated based on type specimens. A key to the five species of Colletotrichum on Agavaceae is included. This paper includes one new species, Colletotrichum dracaenophilum, and three new combinations, Colletotrichum phormii, Glomerella phormii, and Phaeosphaeriopsis phacidiomorpha.  相似文献   

18.
Abstract. Sipunculans are a phylum of non-segmented, marine worms. Although they are well characterized morphologically, relationships within the phylum and the relationship of Sipuncula to other spiralian phyla have been strongly debated. I analyzed representatives of 13 of 17 described genera using a 654-bp fragment of the mitochondrial gene, cytochrome c oxidase subunit I, to construct the first intraphylum phylogenetic hypothesis for sipunculans based on molecular sequence data. Within the phylum, tree topologies are loosely congruent with a previously published morphological analysis, except that the monotypic genus Phascolopsis occurred within the Golfingiaformes as a sister group to, or nested within, the Themistidae. Phylogenetic analyses, including 30 sequences from additional invertebrate taxa, suggest that sipunculans are most closely related to the Annelida (including Echiura). A previously proposed sipunculan-molluscan relationship is not supported. While not universally accepted, this hypothesis is consistent with other recent and past data on phylum-level relationships.  相似文献   

19.
Annelid relationships are controversial, and molecular and morphological analyses provide incongruent estimates. Character loss is identified as a major confounding factor for phylogenetic analyses based on morphological data. A direct approach and an indirect approach for the identification of character loss are discussed. Character loss can frequently be found within annelids and examples of the loss of typical annelid characters, like chaetae, nuchal organs, coelomic cavities and other features, are given. A loss of segmentation is suggested for Sipuncula and Echiura; both are supported as annelid ingroups in molecular phylogenetic analyses. Moreover, character loss can be caused by some modes of heterochronic evolution (paedomorphosis) and, as shown for orbiniid and arenicolid polychaetes, paedomorphic taxa might be misplaced in phylogenies derived from morphology. Different approaches for dealing with character loss in cladistic analyses are discussed. Application of asymmetrical character state transformation costs or usage of a dynamic homology framework represents promising approaches. Identifying character loss prior to a phylogenetic analysis will help to refine morphological data matrices and improve phylogenetic analyses of annelid relationships.  相似文献   

20.
Lophotrochozoa has been consistently recovered in molecular phylogenetic analyses using different markers. Current knowledge of lophotrochozoan relationships is reviewed and the place that parasites occupy in this phylogeny is discussed. Two major taxa are identified within Lophotrochozoa: Platyzoa and Trochozoa. Monophyly of both taxa is still under debate. Relationships within Trochozoa remain largely unclear, however, there is strong evidence that the so called "minor phyla" Sipuncula, Echiura, and Myzostomida are all nested within annelids. Monophyly of the former "Lophophorata" is rejected, and a close relationship between phoronids and brachiopods, as well as between bryozoans and kamptozoans is suggested instead. The movement of the field of systematics into the genomic era will greatly improve our knowledge in the near future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号