首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the possible induction of Crassulacean acid metabolism (CAM) by drought in Talinum paniculatum ([Jacq.] Gaertn.), a deciduous herb with succulent leaves and lignified stems, nocturnal acid accumulation and CO2-exchange were studied in watered and droughted greenhouse-grown plants. Watered plants had a typical C3 pattern of CO2-exchange. When plants were subjected to drought, nocturnal acid accumulation increased significantly from 0.9 to 13.4 μmol H+ cm?2 after 21 days. Water deficit provoked a rapid reduction of daytime CO2 assimilation of as much as 92% and a slower increase in night-time fixation. A maximum of 24% of the diel carbon gain was contributed by dark fixation in droughted plants. After 34 days of drought, only CO2 compensation and a small accumulation of acid (idling) was detected during the night. Relative recycling of respiratory CO2 was approximately 100% for most of the water deficit treatment, the amount of CO2 recycled showing a high positive correlation with nocturnal acid accumulation. A low rate of nocturnal loss of CO2 in watered plants did not explain the amount recycled nightly in droughted plants, implying that respiration increased with drought. Leaf lamina area was reduced by 49% during drought due to rolling. Leaf biomass remained unchanged during the water-deficit treatment. Neither apparent quantum yield nor light-saturated photosynthetic rate differed significantly between control and 14-day water-stressed plants rewatered for 20 h. Chlorophyll content did not change with drought. These results confirm that CAM is induced by drought in T. paniculatum; the carbon acquired through this pathway only contributes to maintain, but not to increase, leaf biomass; also, CAM is responsible for a high recycling of respiratory CO2 during the night. Recycling through CAM, plus the reduction of exposed leaf area during drought, may help explain the maintenance of chlorophyll, quantum yield and saturated photosynthetic rates in water-stressed plants of T. paniculatum.  相似文献   

2.
Clusia minor L. is a C3-CAM species in which Crassulacean acid Metabolism (CAM) is induced, among other factors, by water deficit. We propose that CAM induction by natural drought in C. minor shifts the sap flow pattern from daytime to a night-time one, and that the decreased osmotic potential due to increased malate content in droughted plants aids in the increase in nocturnal sap flow. In order to test these hypotheses, we followed for 2 years the seasonal changes in parameters of water relationships and sap flow velocity in one single, freestanding tree growing in Caracas. Leaf water and osmotic potential were measured psychrometrically, nocturnal proton accumulation by titration of aqueous leaf extracts and sap flow density with thermal dissipation probes. Leaf water, osmotic and turgor potential remained relatively high throughout the seasons. Nocturnal proton accumulation was nil under extreme drought or after frequent and heavy rains, and high after moderate rainfall. Estimated malate and citrate concentrations contributed up to 80 and 60%, respectively, of the value of osmotic potential. The shape of the daily courses of sap flow velocity varied seasonally, from mostly diurnal during the dry season to mostly nocturnal after a short dry spell during the rainy season, when nocturnal acid accumulation attained high values. There was a strong positive relationship between the proportion of the integrated sap flow courses corresponding to the night and dawn [H+] (r 2 = 0.88). Increased nocturnal sap flow in the CAM stage of the tree of C. minor may be explained by a lower osmotic potential due to an increased acid concentration, together with increased stomatal aperture, as suggested by increased nocturnal acid accumulation probably due to nocturnal CO2 fixation.  相似文献   

3.
Night-time citrate accumulation has been proposed as a response to stress in CAM plants. To address this hypothesis, gas exchange patterns and nocturnal acid accumulation in three species of Clusia were investigated under controlled conditions with regard to water stress and responses to low and high photosynthetic photon flux density (PPFD). Under high PPFD, leaves of Clusia nocturnally accumulated large amounts of both malic and citric acids. Under low PPFD and well-watered conditions, substantial night-time citrate accumulation persisted, whereas malate accumulation was close to zero. Malate accumulation and night-time CO2 uptake from the atmosphere declined in all three species during prolonged drought periods, whereas citrate accumulation remained similar or increased. Recycling of respiratory CO2 was substantial for both well-watered and water-stressed plants. The suggestion that citrate accumulation is energetically more favourable than malate accumulation is not supported if the source of CO2 for the formation of malate is respiratory CO2. However, the breakdown of citric acid to pyruvate in the light period releases three molecules of CO2, while the breakdown of malic acid releases only one CO2 per pyruvate formed. Thus, citric acid should be more effective than malic acid as a mechanism to increase CO2 concentration in the mesophyll and may help to prevent photoinhibition. Organic acid accumulation also affected the vacuolar pH, which reached values of 2·6–3·0 at dawn. At these pH values, the transport of 2H+/ATP is still feasible, suggesting that it is the divalent form of citrate which is being transported in the vacuoles. Since citrate is a well-known buffer, and Clusia spp. show the largest day-night changes in organic acid levels measured in any CAM plant, it is possible that citrate increases the buffer capacity of the vacuoles. Indeed, malate and titratable acidity levels are positively related to citrate levels. Moreover, Clusia species that show the highest nocturnal accumulation of organic acids are also the ones that show the greatest changes in citric acid levels.  相似文献   

4.
Features of Crassulacean acid metabolism (CAM) were studied in a variety of different succulents in response to climatic conditions between March 1977 and October 1983 in the southern Namib desert (Richtersveld). A screening in 1977 and 1978 revealed that nearly all investigated succulents performed a CAM, but overnight accumulation of malate declined gradually with decreasing soil water potential, tissue osmotic potential, and leaf water content. This was further substantiated by an extended period of insufficient rainfall in 1979 and 1980 which damaged the evergreen CAM succulents between 80 and 100%. In most of the species still living, neither CO2-gas exchange nor diurnal acid fluctuation, indicative of CAM, could be detected unless an abundant rainfall restored both CAM features. Plants persisted in a stage of latent life.Water supply is one necessary prerequisite for CAM in the Richtersveld. But even well-watered plants with CAM were sensitive to short-term water stress caused by high water-vapour partialpressure deficit (VPD) in the night, which reduced or prevented CO2 uptake and resulted in a linear relation between overnight accumulated malate and VPD. The results do not support the opinion that, for the Namib succulents, CAM is an adaptive mechanism to water stress since long-term and short-term water stress stopped nocturnal malate synthesis, but instead lead to the conclusion that nocuturnal CO2 fixation is only performed when the water status of the plant can be improved simultaneously.Abbreviations CAM Crassulacean acid metabolism - VPD water vapour pressure deficit Dedicated to Professor H. Ziegler on the occasion of his 60th birthday  相似文献   

5.
L. Pistelli  G. Marigo  E. Ball  U. Lüttge 《Planta》1987,172(4):479-486
The levels of phosphorylated compounds studied during the dark period of Crassulacean acid metabolism (CAM) in Kalanchoë leaves showed increases for ATP and pyrophosphate and decreases for ADP, AMP and phosphenolpyruvate; levels of inorganic phosphate remained constant. Changes in adenylate levels and the correlated nocturnal increase in adenylate-energycharge were closely related to changes in malate levels. The increase in ATP levels was much inhibited in CO2-free air and stimulated after induction of CAM in short-day-treated plants of K. blossfeldiana cv. Tom Thumb. Changes in levels of phosphoenolpyruvate and pyrophosphate were independent of the presence of CO2. The results show the operation of complex regulatory mechanisms in the energy metabolism of CAM plants during nocturnal malic-acid accumulation.Abbreviations CAM Crassulacean acid metabolism - FW fresh weight - OAA oxaloacetic acia - PEP phosphoenol pyruvate - PPi pyrophosphate  相似文献   

6.
After 23 days without water in a greenhouse, rates of nocturnal CO2 uptake in Tillandsia schiedeana decreased substantially and maximum rates occurred later in the dark period eventually coinciding with the onset of illumination. Nocturnal CO2 uptake accounted for less than half the total nighttime increase in acidity measured in well-watered plants. With increased tissue desiccation, only 11–12% of measured acid accumulation was attributable to atmospheric CO2 uptake. Plants desiccated for 30 days regained initial levels of nocturnal acid accumulation and CO2 uptake after rehydration for 10h. These results stress the importance of CO2 recycling via CAM in this epiphytic bromeliad, especially during droughts.Partially supported by Biomedical Sciences Support Grant RR07037.  相似文献   

7.
Among species that perform CAM photosynthesis, members of the genus Kalanchoë have been studied frequently to investigate the effect of environmental factors on the magnitude of CAM activity. In particular, different nitrogen sources have been shown to influence the rate of nocturnal CO2 fixation and organic‐acid accumulation in several species of Kalanchoë. However, there has been little investigation of the interrelationship between nitrogen source (nitrate versus ammonium), concentration and the activity of the vacuolar proton pumps responsible for driving nocturnal organic‐acid accumulation in these species. In the present study with Kalanchoë laxiflora and Kalanchoë delagoensis cultivated on different nitrogen sources, both species were found to show highest total nocturnal organic‐acid accumulation and highest rates of ATP‐ and PPi‐dependent vacuolar proton transport on 2.5 mM nitrate, whereas plants cultivated on 5.0 mM ammonium showed the lowest values. In both species malate was the principal organic‐acid accumulated during the night, but the second‐most accumulated organic‐acid was fumarate for K. laxiflora and citrate for K. delagoensis. Higher ATP‐ and PPi‐dependent vacuolar proton transport rates and greater nocturnal acid accumulation were observed in K. delagoensis compared with K. laxiflora. These results show that the effect of nitrogen source on CAM activity in Kalanchoë species is reflected in corresponding differences in activity of the tonoplast proton pumps responsible for driving sequestration of these acids in the vacuole of CAM‐performing cells.  相似文献   

8.
Aiming at understanding the odd case of CAM expression by a C4 plant, some properties of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31, orthophosphate: oxaloacetate carboxylyase, phosphorylating) were comparatively studied in leaves of CAM-expressing and non-expressing Portulaca oleracea L. plants. CAM expression was induced by growing plants under an 8-h photoperiod and under water-stress. CAM induction in leaves of these plants (designated as CAM) is indicated by the nocturnal acidification and by the clear diurnal oscillation pattern and amplitude of acidity, malic acid, and PEPC activity characteristic of CAM plants. Treatment of the other plant group (designated as C4) by growth under a 16-h photoperiod and well-watered conditions did not induce expression of the tested criteria of CAM in plants. In these C4 plants, the mentioned CAM criteria were undetectable. PEPC from CAM and C4 Portulaca responded differently to any of the studied assay conditions or effectors. For example, extent and timing of sensitivity of PEPC to pH change, inhibition by malate, activation by glucose-6-phosphate or inorganic phosphate, and the enzyme affinity to the substrate PEP were reversed with induction of CAM from the C4-P. oleracea. These contrasting responses indicate distinct kinetic and regulatory properties of PEPC of the two modes. Thus by shifting to CAM in the C4 Portulaca a new PEPC isoform may be synthesised to meet CAM requirements. Simultaneous occurrence of both C4 and CAM is suggested in P. oleracea when challenged with growth under stress. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
Guzmania monostachia is an epiphyte tank bromeliad capable of up-regulating crassulacean acid metabolism (CAM) in response to several environmental stimuli, including drought and light stress. In other plant species, abscisic acid (ABA) and nitric oxide (NO) seem to be involved in CAM induction. Because the leaves of tank bromeliads perform different functions along their length, this study attempted to investigate whether ABA and NO are involved in regulation of CAM expression in this species by quantifying these compounds in apical and basal portions of the leaf, and whether there would be differences in this event for each leaf portion. Detached leaves exposed to a 30% polyethylene glycol solution showed a significant upregulation of CAM on the seventh day of treatment only in the apical portion, as indicated by nocturnal acid accumulation and phosphoenolpyruvate carboxylase (PEPC) activity. On the three days prior to CAM induction, ABA, NO and H2O2 were quantified. The amounts of ABA were higher in PEG-exposed leaves, along their entire length. NO, however, was higher only in the apical portion, precisely where CAM was up-regulated. H2O2 was higher only in the basal portion of PEG-exposed leaves. Our results suggest that ABA might be a systemic signal to drought, occurring in the entire leaf. NO and H2O2, however, may be signals restricted only to the apical or basal portions, respectively.  相似文献   

10.
Plants of the crassulacean acid metabolism (CAM) species Plectranthus marrubioides (Lamiaceae) were subjected to short- and long-term changes in air humidity in controlled-environment experiments. Stomata of well-watered individuals of this all-cell leaf-succulent taxon responded directly, quickly and reversibly to variations of the water vapour gradient between leaf and air (Δw). Mean night-time leaf conductance to water vapour decreased curvilinearly with increasing Δw but linearly with lowered relative air humidity. Stomatal response was generally independent of the prevailing temperature and was not linked to CO2 uptake rates. Therefore, net night-time carbon gain, nocturnal malic acid accumulation and, thus, relative carbon recycling were not influenced by changes in air humidity in the temperature range tested. Mean nocturnal molar water use efficiency, however, decreased with decreasing air humidity because of the increased transpirational water loss. If watering was repeatedly withheld for several days during the experiments, employing a temperature regime of 35/30°C day and night, stomatal conductance became low enough to inhibit CO2 uptake, but only at the highest Δw. The results suggest that drought stress was necessary to increase responsiveness of plants to the point where CAM was also inhibited by decreases in air humidity.  相似文献   

11.
Physiological responses of Opuntia ficus-indica to growth temperature   总被引:2,自引:0,他引:2  
The influences of various day/night air temperatures on net CO2 uptake and nocturnal acid accumulation were determined for Opuntia ficus-indica, complementing previous studies on the water relations and responses to photosynthetically active radiation (PAR) for this widely cultivated cactus. As for other Crassulacean acid metabolism (CAM) plants, net nocturnal CO2 uptake had a relatively low optimal temperature, ranging from 11°C for plants grown at day/night air temperatures of 10°C/0°C to 23°C at 45°C/35°C. Stomatal opening, which occurred essentially only at night and was measured by changes in water vapor conductance, progressively decreased as the measurement temperature was raised. The CO2 residual conductance, which describes chlorenchyma properties, had a temperature optimum a few degrees higher than the optimum for net CO2 uptake at all growth temperatures. Nocturnal CO2 uptake and acid accumulation summed over the whole night were maximal for growth temperatures near 25°C/15°C, CO2 uptake decreasing more rapidly than acid accumulation as the growth temperature was raised. At day/night air temperatures that led to substantial nocturnal acid accumulation (25°C/15°C.). 90% saturation of acid accumulation required a higher total daily PAR than at non-optimal growth temperatures (10°C/0°C and 35°C/25°C). Also, the optimal temperature of net CO2 uptake shifted downward when the plants were under drought conditions at all three growth temperatures tested, possibly reflecting an increased fractional importance of respiration at the higher temperatures during drought. Thus, water status, ambient PAR, and growth temperatures must all be considered when predicting the temperature response of gas exchange for O. ficus-indica and presumably for other CAM plants.  相似文献   

12.
Crassulacean acid metabolism (CAM) was demonstrated in four small endemic Australian terrestrial succulents from the genus Calandrinia (Montiaceae) viz. C. creethiae, C. pentavalvis, C. quadrivalvis and C. reticulata. CAM was substantiated by measurements of CO2 gas-exchange and nocturnal acidification. In all species, the expression of CAM was overwhelmingly facultative in that nocturnal H+ accumulation was greatest in droughted plants and zero, or close to zero, in plants that were well-watered, including plants that had been droughted and were subsequently rewatered, i.e. the inducible component was proven to be reversible. Gas-exchange measurements complemented the determinations of acidity. In all species, net CO2 uptake was restricted to the light in well-watered plants, and cessation of watering was followed by a progressive reduction of CO2 uptake in the light and a reduction in nocturnal CO2 efflux. In C. creethiae, C. pentavalvis and C. reticulata net CO2 assimilation was eventually observed in the dark, whereas in C. quadrivalvis nocturnal CO2 exchange approached the compensation point but did not transition to net CO2 gain. Following rewatering, all species returned to their original well-watered CO2 exchange pattern of net CO2 uptake restricted solely to the light. In addition to facultative CAM, C. quadrivalvis and C. reticulata exhibited an extremely small constitutive CAM component as demonstrated by the nocturnal accumulation in well-watered plants of small amounts of acidity and by the curved pattern of the nocturnal course of CO2 efflux. It is suggested that low-level CAM and facultative CAM are more common within the Australian succulent flora, and perhaps the world succulent flora, than has been previously assumed.  相似文献   

13.
The occurrence of the Crassulacean acid metabolism (CAM) was studied in four epiphytic species of the Gesneriaceae: two neotropical species, Codonanthe crassifolia and Columnea linearis, and two paleotropical species, Aeschynanthus pulcher and Saintpaulia ionantha. Gas exchange parameters, enzymology, and leaf anatomy, including mesophyll succulence and relative percent of the mesophyll volume occupied by airspace, were studied for each species. Codonanthe crassifolia was the only species to show nocturnal CO2 uptake and a diurnal organic acid fluctuation. According to these results, Codonanthe crassifolia shows CAM-cycling under well-watered conditions and when subjected to drought, it switches to CAM-idling. Other characteristics, such as leaf anatomy, mesophyll succulence, and PEP carboxylase and NADP malic enzyme activity, indicate attributes of the CAM pathway. All other species tested showed C3 photosynthesis. The most C3-like species is Columnea linearis, according to the criteria tested in this investigation. The other two species show mesophyll succulence and relative percent of the leaf volume occupied by airspace within the CAM range, but no other characters of the CAM pathway. The leaf structure of certain genera of the Gesneriaceae and of the genus Peperomia in the Piperaceae are similar, both having an upper succulent, multiple epidermis, a medium palisade of one or a few cell layers, and a lower, succulent spongy parenchyma not too unlike CAM photosynthetic tissue. We report ecophysiological similarities between these two distantly related families. Thus, the occurrence of CAM-cycling may be more common among epiphytic species than is currently known.  相似文献   

14.
Spanish moss (Tillandsia usneoides L.) was collected in South Carolina, maintained in a greenhouse, then exposed to five levels of photosynthetic photon flux density (PPFD) for 3 weeks. Following this treatment, plants were sampled for chlorophyll concentrations, nocturnal acid accumulations, and photosynthetic responses to subsequent exposure at a range of PPFD. No acclimation to PPFD was observed; all plants exhibited similar patterns of nocturnal CO2 uptake and acid accumulation regardless of initial PPFD treatment. These patterns revealed that at a PPFD level of approximately 200 micromoles per square meter per second (daytime integrated PPFD of 10 moles per square meter per day), CAM saturated or, in low-PPFD plants, was optimal. The results of this study indicate that adaptation to high PPFD is not necessarily a requirement of CAM.  相似文献   

15.
Expression of crassulacean acid metabolism (CAM) in the obligate CAM-tree Clusia hilariana SCHLTDL. was studied in the restinga of Jurubatiba National Park, on the Atlantic coast of Rio de Janeiro state, Brazil, comparing plants at different developmental stages. Between young and mature plants there were trends of differences in six parameters, which are all related to CAM expression. From young to mature plants there were tendencies for a decrease of (1) the degree of succulence, (2) the degree of day/night changes of malic acid levels, (3) titratable acidity with nocturnal acid accumulation, (4) the degree of day/night changes of free hexoses with nocturnal break down, (5) effective quantum use efficiency of photosystem II at high photosynthetic photon flux density, and (6) protection from photoinhibition. These tendencies form a clear pattern which suggests that CAM was somewhat more pronounced in leaves of young plants than in leaves of mature plants. A developmental regulation may be involved. However, the observations are probably best explained by stress, since in the dry soils of the restinga young plants have no access to the ground water table while adult trees develop extensive root systems.  相似文献   

16.
Summary Gas exchange patterns, diurnal malic acid fluctuations, and stable carbon isotope ratios of five species of Sedum were investigated to assess the ecophysiological characteristics of three different photosynthetic pathways under well-watered and drought-stressed conditions. All five species have succulent leaves and stems and were examined under identical environmental conditions. When well-watered, Sedum integrifolium (Raf.) Nels. and S. ternatum Michx. displayed C3 photosynthesis, S. telephioides Michx. and S. nuttallianum Raf. exhibited CAM-cycling, and S. wrightii A. Gray showed CAM. When grown under a less frequent watering regime, S. integrifolium and S. ternatum exhibited CAM-cycling, whereas S. telephioides and S. nuttallianum displayed CAM-cycling simultaneously with low-level CAM. Sedum wrightii retained its CAM mode of photosynthesis. In general, leaf 13C values reflected these variations in photosynthetic pathways. While all values of water-use efficiency (WUE) were greater than those reported for most C3 and C4 species, no correlation of malic acid accumulation in the CAM and CAM-cycling (including low-level CAM) species with increased WUE was found. Sedum wrightii (CAM) had the highest WUE value at night, yet its 24-h WUE was not different from S. ternatum when the latter was in the C3 mode. Thus, relative water-use efficiencies of these species of Sedum were not predictable based on photosynthetic pathways alone.  相似文献   

17.
Harris FS  Martin CE 《Plant physiology》1991,96(4):1118-1124
Photosynthetic gas exchange and malic acid fluctuations were monitored in 69 well-watered plants from five morphologically similar species of Talinum in an investigation of the ecophysiological significance of the Crassulacean acid metabolism (CAM)-cycling mode of photosynthesis. Unlike CAM, atmospheric CO2 uptake in CAM-cycling occurs exclusively during the day; at night, the stomata are closed and respiratory CO2 is recaptured to form malic acid. All species showed similar patterns of day-night gas exchange and overnight malic acid accumulation, confirming the presence of CAM-cycling. Species averages for gas exchange parameters and malic acid fluctuation were significantly different such that the species with the highest daytime gas exchange had the lowest malic acid accumulation and vice versa. Also, daytime CO2 exchange and transpiration were negatively correlated with overnight malic acid fluctuation for all individuals examined together, as well as within one species. This suggests that malic acid may effect reductions in both atmospheric CO2 uptake and transpiration during the day. No significant correlation between malic acid fluctuation and water-use efficiency was found, although a nonsignificant trend of increasing water-use efficiency with increasing malic acid fluctuation was observed among species averages. This study provides evidence that CO2 recycling via malic acid is negatively correlated with daytime transpirational water losses in well-watered plants. Thus, CAM-cycling could be important for survival in the thin, frequently desiccated soils of rock outcrops on which these plants occur.  相似文献   

18.
Stem CAM with a peripheral chlorenchyma in stem succulents growing up to arborescent sizes and life forms appears to be a unique evolution as it requires delayed and reduced bark formation and stem stomata. However, stem succulence as a convergent morphotype and with it the stem CAM physiotype evolved polyphyletically in many divergent taxa of the dicotyledonous angiosperms. Controlling water budgets is the main ecophysiological benefit of stem succulence and CAM, where the cooperation of a peripheral photosysnthetically active chlorenchyma and a central water storing hydrenchyma is co-ordinately regulated. Thus, a major factor important for performance of stem CAM succulents at the community level is water or drought. Although this implies fitness under osmotic stress, CAM performing stem succulents are not adapted to salinity and are salt stress avoiders where they occur in saline habitats. Notwithstanding the low overall productivity of CAM plants in general, stem CAM plants can show very high productivity under certain circumstances and may also respond to elevated environmental atmospheric CO2 concentrations with increased growth.  相似文献   

19.
Crassulacean acid metabolism (CAM) is a photosynthetic pathway found in many plant species from arid and semiarid environments. Few studies aiming to characterise plant species as CAM or C3 account for inter‐population differences in photosynthetic pathway, often relying on samples taken from herbarium material and/or a single plant or population. This may be especially problematic for species growing under contrasting climate conditions, as is the case for species with a wide geographic range. We used Puya chilensis, a species previously reported as CAM and C3, to study among‐population variation in expression of the CAM pathway within its distribution range, which spans a significant climate gradient. We carried out a wide sampling scheme, including five populations and a combination of analytical methods (quantification of nocturnal acidification and stable isotope measurements). The study populations of P. chilensis encompass the entire latitudinal distribution range, from semi‐arid to temperate oceanic climates. Our results indicate that CAM decreased with latitude. However, even in the southern (wetter) populations, where δ13C values were indicative of C3 metabolism, we found some nocturnal acidification. We stress the value of using two methods along with the use of samples from different populations, as this allows more reliable conclusions on the photosynthetic pathway for ‘probable’ CAM species that face varying climate conditions within their distribution ranges.  相似文献   

20.
Monica A. Madore 《Planta》1992,187(4):537-541
Leaf discs obtained from mature leaves of Xerosicyos danguyi were found to contain appreciable levels of stachyose throughout an 8-h nocturnal period during which this plant performs Crassulacean acid metabolism (CAM). In contrast, in mesophyll tissues obtained from paradermal sections of these same leaf discs and which were devoid of vascular tissues, stachyose pools were rapidly depleted during the nocturnal phase. The pattern of this depletion followed closely the depletion pattern observed for starch, indicating that mesophyll stachyose was possibly involved in nocturnal CAM processes and was not necessarily being used for export. Pulse-labelling of intact X. danguyi leaves prior to excision of leaf discs and mesophyll samples also indicated that, while labelled stachyose had turned-over completely in the mesophyll tissues by the end of the nocturnal period, substantial levels of labelled stachyose were always recovered from the leaf discs from which these mesophyll samples were derived. The data indicate the existence of two separate pools of stachyose in the X. danguyi leaf, one a mesophyll pool which turns over rapidly at night and which may be involved to a small extent in nocturnal CAM processes, and the other a pool associated with and possibly synthesized by the vascular tissues and which presumably represents the phloem-transport pool.Abbreviation CAM Crassulacean acid metabolism This work was supported by National Science Foundation Grant DCB 8901785.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号