首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Mutation Research Letters》1983,119(3-4):387-392
1-Nitropyrene (1-NP), 1,3-dinitropyrene (1,3-DNP), 1,6-dinitropyrene (1,6-DNP), 1,8-dinitropyrene (1,8-DNP) and 1,3,6-trinitropyrene (1,3,6-TNP) were tested for mutagenicity in cultured Chinese hamster ovary (CHO) cells. Mutation at the hypoxanthine-guanine phosphoribosyl transferase gene locus was quantified. While 1-NP and 1,3-DNP had only marginal direct-acting mutagenicity, 1,6-DNP, 1,8-DNP and 1,3,6-TNP showed definite mutagenicity, with specific mutagenic activities of 8.1, 21 and 54 mutants/106 survivors/μg·ml−1 respectively. The mutagenicity of 1-NP increased with increasing concentrations of Aroclor-1254 induced liver homogenate (S9) in the treatment medium. However, S9 at all concentrations tested decreased the mutagenicity of 1,6-DNP and 1,8-DNP. S9 at low concentrations enhanced the mutagenicity of 1,3-DNP and 1,3,6-TNP and that at high concentrations decreased their mutagenicity. The positive mutagenic response of the nitropyrenes suggests that they are potentially carcinogenic, and that further research into their possible human health risk should be performed.  相似文献   

2.
Bisphenol A is used as a monomer in the production of polycarbonate plastic products. The widespread use of bisphenol A has raised concerns about its effects in humans. Since there is little information on the mutagenic potential of the chemical, the mutagenicity of bisphenol A was tested using human RSa cells, which has been utilized for identification of novel mutagens. In genomic DNA from cells treated with bisphenol A at concentrations ranging from 1×10−7 to 1×10−5 M, base substitution mutations at K-ras codon 12 were detected using PCR and differential dot-blot hybridization with mutant probes. Mutations were also detected using the method of peptide nucleic acid (PNA)-mediated PCR clamping. The latter method enabled us to detect the mutation in bisphenol A-treated cells at a dose (1×10−8 M) equivalent to that typically found in the environment. Induction of ouabain-resistant (OuaR) phenotypic mutation was also found in cells treated with 1×10−7 and 1×10−5 M of bisphenol A. The induction of K-ras codon 12 mutations and OuaR mutations was suppressed by pretreating RSa cells with human interferon (HuIFN)-α prior to bisphenol A treatment. The cells treated with bisphenol A at the concentration of 1×10−6 M elicited unscheduled DNA synthesis (UDS). These findings suggested that bisphenol A has mutagenicity in RSa cells as well as mutagens that have been tested in these cells, and furthermore, that a combination of the PNA-mediated PCR clamping method with the human RSa cell line may be used as an assay system for screening the mutagenic chemicals at very low doses.  相似文献   

3.
The effects of various pretreatments in vivo (3MC, PB, 2 and 4FAA) and of various inhibitors in vitro (7,8 BF, SKF525A and MN R) on the activity of rat liver microsomal BP hydroxylase were analyzed and correlated with the S-9 mediated mutagenicity of BP. 3MC is the only treatment which both induces and modifies the hydroxylase activity; it also specifically increases the enzyme mediated mutagenicity. Miconazole R which inhibits all the tested microsomal preparations, also reduces the mutagenicity mediated by all the S-9 preparations whereas the inhibitory effects of 7,8 BF and SKF525A are limited respectively to enzyme preparations from 3MC induced and control or PB treated rats.  相似文献   

4.
The mutagenicity of dimethylnitrosamine (DMN) for bacteria was investigated by means of the metabolic activation process of the compound with rat liver microsomes.Three strains of streptomycin (SM)-dependent Escherichia coli having tetracycline (TC)-resistance factor (Sd-E. coli(TC)) were derived for this study. The reverse mutation in these strains from SM dependence to non-dependence was used as the marker for mutagenicity. The drug resistance factor (R factor) which was transferred to these strains was used in order to get around the bacterial contamination throughout the experiments. The study of the mutagenicity of DMN metabolites has been made by incubating DMN with rat liver microsomes and cofactor system in the presence of indicator bacterial cells.The reverse mutation was markedly induced for all of three strains in the complete incubation mixture but it was not observed when the cofactor system was omitted or the liver microsomal suspension was replaced by the kidney cell sap. When the indicator bacterial cells were added to the mixture in which DMN was previously incubated with the microsomes and cofactor system, the mutagenicity was extremely decreased.  相似文献   

5.
The potential mutagenicity of the carcinogen lead chromate was tested by the following battery of microbial tests: the Escherichia coli PolA+/PolA survival test; the Salmonella/microsome His+ reversion assay; the E. coli Trp+ reversion test as a plate assay; the E. coli Gal+ forward mutation test; and the Saccharomyces cerevisiae assay for mitotic recombination. Lead chromate is mutagenic in Salmonella and in Saccharomyces and is thus identified as a microbial mutagen by this battery. Metabolic activation by rat liver homogenate (S9) is not required for the mutagenic activity of lead chromate. The most statistically significant, positive result is found with a supplementary assay, the E. coli fluctuation test. To determine whether the lead ion and/or the chromate ion were responsible for the mutagenicity observed, lead chloride and chromium trioxide (chromic acid) were also tested. In E. coli fluctuation tests, the ranges of maximal mutagenicity for chromium trioxide and lead chromate overlap at the concentration 10−5 M, whereas lead chloride shows no mutagenicity and little lethality at concentrations up to 10−3 M. Thus, it appears that the chromate ion is responsible for the mutagenicity of lead chromate.  相似文献   

6.
A ‘toxicity’ test protocol is described here to be used for determining the bactericidal effect of the chemicals which are tested for their mutagenic activity by the Ames method. Two sets of strains, isogenic with the Ames tester strains except for their his character, are constructed.One set is the his+ derivatives of the tester strains which are used for measuring the survival of the inocolum cells after exposure to the chemical. The other set is the stable his derivatives of the tester strains which are used for simulating the background growth in the Ames mutagenicity plate test. The per cent survival of the his+ cells in the incculum in the presence of the ‘filler cells’ is used as a measure of the toxic effect of the chemical.  相似文献   

7.
The mutagenicity of the base analogue, 2-amino-N6-hydroxyadenine (AHA), was tested in Salmonella typhimurium TA100 and TA98 and in Chinese hamster lung (CHL) cells. AHA showed very potent mutagenicity in TA100 without S9 mix, inducing 25,000 revertants/micrograms. The mutagenicity increased about 2-fold upon addition of S9 mix containing 10 microliters S9. AHA was found to be one of the strongest mutagens for TA100. Addition of S9 mix containing 100 microliters S9 induced no significant increase of revertants with AHA at amounts up to 50 ng per plate. AHA was also mutagenic for the frameshift mutant, TA98, without S9 mix, the mutagenicity for TA98 being about 1/1000 of that for TA100. When the mutagenicity of AHA was tested in CHL cells, with diphtheria toxin resistance (DTr) as a selective marker in the absence of S9 mix with a 3-h treatment of cells, DTr mutants increased dose-dependently at concentrations of 2.5-15 micrograms/ml. When cells were incubated with AHA for 24 h, a 200-fold increase in the number of DTr mutants was observed; the mutagenicity was 500-fold higher than that of ethyl methanesulfonate. This marked increase of mutagenicity by prolonged incubation may indicate that AHA induces mutations mainly after incorporation into DNA. The addition of a small amount of S9 increased the mutagenicity obtained with a 3-h treatment 2-fold, but a larger amount of S9 decreased the mutagenicity as was found with S. typhimurium TA100.  相似文献   

8.
A study was performed to determine the effectiveness of using biofiltration for the removal of a complex mixture of volatile organic compounds (VOCs) air-stripped from petroleum hydrocarbons. A biofilter was constructed which contained 264 cm3 of packing material (Celite? R-635). The unit was inoculated with a mixed culture containing a hydrocarbon-degrading Pseudomonas sp and an Alcaligenes sp. Several of the major compounds in the VOC mixture were monitored individually, along with the total VOCs, using gas chromatography. The average influent concentration of the VOC mixture was 320 ppmv and the average total VOC removal rate was over 56%, with the average removal rate of the monitored individual compounds ranging from 49–90%. After 30 days of operation the average overall removal rate was 69% and the removal of the major compounds averaged 92%. The toxicity and mutagenicity of the air stream was monitored using the Microtox and Ames assays, respectively. These data show marked decreases in toxicity and mutagenicity of the air stream as a result of the biofiltration treatment. The biofiltration system, therefore, was not only effective in removing VOCs from the air stream over an extended time-period, but was also effective in greatly reducing the toxicity and mutagenicity associated with the remaining VOCs. Received 03 July 1997/ Accepted in revised form 25 November 1997  相似文献   

9.
The number of biomaterials used in biomedical applications has rapidly increased in the past two decades. Fluorapatite (FA) is one of the inorganic constituents of bone or teeth used for hard-tissue repairs and replacements. Fluor-hydroxyapatite (FHA) is a new synthetically prepared composite that in its structure contains the same molecular concentration of OH groups and F ions. The aim of this experimental investigation was to evaluate cytotoxic, genotoxic and mutagenic effects of FHA and FA eluates on Chinese hamster V79 cells and to compare them with the effects of hydroxyapatite (HA) eluate. Cytotoxicity of the biomaterials tested was evaluated by use of the cell colony-formation assay and by direct counting of the cells in each colony. Genotoxicity was assessed by single-cell gel electrophoresis (comet assay) and mutagenicity was evaluated by the Hprt gene-mutation assay and in bacterial mutagenicity tests using Salmonella typhimurium TA100. The results show that the highest test concentrations of the biomaterials (100% and 75% eluates) induced very weak inhibition of colony growth (about 10%). On the other hand, the reduction of cell number per colony induced by these concentrations was in the range from 43% to 31%. The comet assay showed that biomaterials induced DNA breaks, which increased with increasing test concentrations in the order HA < FHA < FA. None of the biomaterials induced mutagenic effects compared with the positive control (N-methyl-N′-nitro-N-nitrosoguanidine), and DNA breakage was probably the reason for the inhibition of cell division in V79 cell colonies.  相似文献   

10.
The frequency ofhis + revertants induced by N-methyl-N-nitrosourea (MNU) and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) in the strain TA100 ofSalmonella typhimurium was decreased by gallic and tannic acid. In weak buffer solutions, the inhibition effects of gallic acid towards MNU and MNNG mutagenicity was caused primarily by a decrease of pH in the incubation mixtures. At adjusted pH (pH 5.0 and 6.5), the antimutagenic effects are largely the result of an interaction between MNU or MNNG with phenolic acids outside the cells.  相似文献   

11.
Individual S9 microsomal fractions prepared from normal livers of 8 rodent species or strains and from 1 rat strain pretreated with Aroclor 1254, were used to metabolize the promutagens N-acetyl-2-aminofluorene, 1,2--benzanthracene, to metabolize the promutagens N-acetyl-2-aminofluorene, 1,2-benzanthracene, benzo[a]pyrene, and 3-methylcholanthrene to active forms during 3-h co-incubation in the presence of L5178Y/TK+/− cells. The 8 compatible S9 preparations all converted each of the 4 chemical carcinogens into active mutagens with varied efficiencies except for the Aroclor-induced rat S9/benzanthracene combination which produced only weak activity. Aroclor induction did not notably enhance the mutagenicity of benzo[a]pyrene or 3-methylcholanthrene beyond that activity mediated by the other non-induced preparations. Syrian hamster S9 and, to a lesser degree, C57BL/6J mouse S9 were exceptionally active in converting N-acetyl-2-aminofluorene to toxic and mutagenic metabolites. One source of Swiss mouse liver (Blu : Ha ICR) provided the most active S9 when tested with the 3 polycyclic aromatic hydrocarbons.In general, mutagenicity and cytotoxicity were roughly correlated within S9 + promutagen combinations. Almost all of the methylcholanthrene metabolizing activity was lost by the 12th week when Aroclor-induced rat S9 was held at −20°C, yet this activity remained constant when similar S9 was stored at −80°C for 14 weeks. Surprisingly, some S9 sources including the induced rat-liver preparation converted anthracene to a weak or border-line mutagen. The activation of both 1,2-benzanthracene and anthracene may be linked within each species or strain although Aroclor induction enhanced anthracene mutagenicity yet attenuated the mutagenicity of 1,2-benzanthracene. Collectively, these data underscore the current inchoate state of development for S9 coupled somatic cell mutation assays.  相似文献   

12.
Amino azobenzenes are important dyes in the food and textile industry but their application is limited due to their mutagenicity. Computational modeling techniques were used to help understand the factors responsible for mutagenicity, and several quantitative structure toxicity relationship (QSTR) models have been derived. HQSTR (hologram QSTR) analyses indicated that different substituents at sites on both rings contribute to mutagenicity. Fragment parameters such as bond (B) and connectivity(C), as well as donor-acceptor (DA)-based model provide significant results (q2 = 0.59, r2 = 0.92, ) explaining these harmful effect. HQSTR results indicated that a bulky group at ring “Y” and small group at ring “X” might help to decrease mutagenicity. 3D-QSTR based on comparative molecular field analyses (CoMFA) and comparative molecular similarity index analyses (CoMSIA) are also in agreement with HQSTR. The 3D QSTR studies reveal that steric and electrostatic field effects have a strong relationship with mutagenicity (for CoMFA: q2 = 0.51, r2 = 0.95, and for CoMSIA: q2 = 0.51, r2 = 0.93 and ). In summary, negative groups and steric bulk at ring “Y” and small groups at carbon-3 of ring “X” might be helpful in reducing the mutagenicity of azo dyes.  相似文献   

13.
Assessing urine mutagenicity with the Salmonella mutagenicity test is often limited by the volumes of the samples. Optimization of the assay was performed with factorial and Doehlert designs. Two fractional factorial designs 23-1 (3 factors, 4 experiments) were used to estimate the main effects of the percent S9 in the mix, the time of liquid incubation, the inoculum size and the growth conditions. A Doehlert design (3 factors, 13 experiments) was used to study the main effects and the interactions of the NADP, G6P and S9 in the mix. The positive markers were benzo[a]pyrene (BaP, 0.3 μg/plate) and a pool of smokers' urine (SU, 1.25 ml equivalent/plate). The response was limited to the induction factor (IF, number of induced revertants/number of spontaneous revertants) with Salmonella typhimurium TA98. The optimal conditions for BaP were: a 60 min period of liquid incubation and a volume of 0.1 ml (approx. 108 cells/plate) of an overnight culture grown in 50 ml of Nutrient Broth No. 2 from a 250 ml flask. The S9 mix (0.1 ml, final volume) included 1.5% of S9, 1.0 mM NADP and 4.4 mM G6P. The maximal IF was 15.79. The optimal conditions for SU were: a 60 min period of liquid incubation and a volume of 0.1 ml (approx. 108 cells/plate) of an overnight culture grown in 7 ml of Nutrient Broth No. 2 from a 20 × 180 mm tube. The S9 mix (0.1 ml, final volume) included: 4% S9, 4.2 mM NADP and 5.2 mM G6P. The maximal I7F was 10.95. These optimal conditions did not modify the spontaneous frequencies of the tester strains: TA97a, TA98, TA100 and TA102. The dose-response curves of mutagenic urine samples were found to be non-linear. This micromethod required 8-fold less urine sample and 12.5-fold less liver homogenate as compared to the standard plate incorporation assay and was from 6.2- to 11.8-fold more sensitive to evaluate urine mutagenicity. The sensitivity of this technique was found to be limited to individuals smoking more than approx. 5 cigarettes/day by the standard extraction-concentration procedure.  相似文献   

14.
3 oil-shale ash samples were extracted with solvents and analyzed for mutagenicity with a number of test systems. In Salmonella typhimurium, the ash extracts were highly mutagenic with the Ames his reversion and the ara-resistant systems. Mutation induction by the ash in Salmonella was independent of metabolic activation and was of the frameshift type. These ash extracts showed a substantial killing effect, but failed to induce ad-3 reversion in Neurospora crassa, gene conversion and mitotic crossing-over in Saccharomyces cerevisiae and TGr mutation in cultured CHO cells.  相似文献   

15.
Tobacco smoke is a complex chemical mixture including pyridine alkaloids and N-nitrosamines, with the concentration of the former several orders of magnitude higher than that of the N-nitrosamines. The major biologically important N-nitrosamines present in tobacco smoke are N-nitrosodimethylamine (NDMA), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), and N-nitrosonornicotine (NNN). These nitrosamines require metabolic activation by cytochrome P-450s for the expression of mutagenicity. Although nicotine, the major pyridine alkaloid in tobacco, has been shown to inhibit the metabolic activation of NNK, its effect on the mutagenicity of NNK and other N-nitrosamines has not been reported. In the present study, the ability of three pyridine alkaloids (nicotine, cotinine, nornicotine) and aqueous cigarette smoke condensate extract (ACE) to inhibit the mutagenicity of tobacco-related N-nitrosamines was tested on Salmonella typhimurium strain TA1535 in the presence of a metabolic activation system (S9). All three of the pyridine alkaloids tested, as well as ACE, inhibited the mutagenicity of NDMA and NNK, but not NNN, in a concentration-dependent manner. The induction of SCEs in mammalian cells (CHO) by NNK in the presence of metabolic activation was also significantly reduced by nicotine and cotinine. None of the observed reductions in mutagenicity could be explained by cytotoxicity. These results demonstrate that tobacco smoke contains chemicals, pyridine alkaloids and other unidentified constituent(s), which inhibit the mutagenicity of N-nitrosamines.  相似文献   

16.
N Suzuki  H Suzuki 《Mutation research》1988,202(1):179-183
Effects of human interferon (HuIFN)-alpha on UV mutagenicity were examined in a human cell strain, RSa, and xeroderma pigmentosum (XP)-derived fibroblasts (XP1KY). The frequency of ouabain-resistance mutation in UV-irradiated RSa cells was unusually high (Suzuki et al., 1985), but that in cells pretreated with HuIFN-alpha before irradiation was reduced. 6-Thioguanine-resistance mutation was also depressed in XP1KY cells treated with HuIFN-alpha before irradiation. However, the depression of UV mutagenicity by HuIFN-alpha was lessened by treatment with cycloheximide immediately after UV irradiation. The relationship between HuIFN-depressed UV mutagenicity and HuIFN-affected DNA-repair and repair-related functions is discussed.  相似文献   

17.
Indoor air pollution has now been recognized as a potentially important problem for public health, since people spend most of their day in closed environments. Incense burning is possibly associated with elevated risks of leukemia and brain tumor in children from the epidemiological studies. Thus, evaluation of the genotoxicity of smoke condensates from incense burning is needed. We examined the genotoxicity of incense smoke condensates (ISC) using the Ames test in S. typhimurium strains with different mutagenic specificity and level of metabolic enzyme, the SOS chromotest in E. coli PQ37, and sister chromatid exchange assay in Chinese hamster ovary cells (SCE/CHO). The genotoxicity of environmental tobacco smoke condensates (TSC) was also evaluated by the three assays to compare with the genotoxicity of ISC, ISC showed a positive response in TA98, but not in TA100. It suggested that ISC only contained frame shift mutagens. The mutagenicity of ISC in both strains of TA98NR with deficient nitroreductase and TA98/1,8-DNP6 with deficient O-acetyl-transferase was markedly decreased compared to that in TA98 strain. However, the mutagenicity was enhanced in YG1024 with overexpression of O-acetyltransferase activity. Thus, nitroarenes seemed to be responsible in part for the mutagenicity of ISC. Interestingly, all of the four ISC and two TSC samples showed a dose-dependent genotoxic response in the SOS chromotest with E. coli PQ37 but a low SCE induction of those samples were observed in CHO cells. When the genotoxicity was analyzed based on the condensates per one gram of original samples, the genotoxicity of two TSC condensates in prokaryotic cells was higher than that of four ISC samples except for the genotoxicity of TSC-2 in TA98 strain. However, the genotoxicity of certain ISC in eukaryotic cells based on the SCE/CHO assay was higher than that of TSC. To compare the covalent binding of DNA reactive intermediates of ISC and TSC to S. typhimurium TA98, the DNA adducts were evaluated by the 32P-postlabeling method with butanol extraction version. Similar diagonal radioactive zone (DRZ) was observed between ISC and CSC. However, DNA adduct levels induced by TSC were much greater than that of ISC.  相似文献   

18.
19.
The pro-mutagenicity of chemically-induced methylation of DNA at the O6 position of dexoyguanosine was studied in cultured adult rat liver epithelial cells. To modify the level of O6-methyldeoxyguanosine (O6-medGuo) resulting from exposure to an alkylating agent, partial depletion of the O6-alkylguanine-DNA alkyltransferase (AGT) repair system was produced by pretreatment of ARL 18 cells with a non-toxic dose of exogenous O6-methylguanine (O6-meG). Exposure of cells to 0.6 mM O6-meG for 4 h depleted AGT activity by about 40%. Intact and pretreated cells were exposed to a range of doses of N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), and mutagenesis at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus was quantified by measurement of 6-thioguanine-resistant mutants. The mutagenicity of MNNG was dose dependent and was greater in O6-meG pretreated cultures than in intact cultures. Immunoslot blot measurement of O6-medGuo employing a mouse monoclonal antibody demonstrated that MNNG produced O[su6-medGuo and that the intact liver cells were efficient in eliminating this lesion from their DNA. Since depletion of AGT would be expected to affect the rate of elimination of only O6-medGuo, it is concluded that this lesion is highly pro-mutagenic.  相似文献   

20.
1,2-Epoxyhexahydrocannabinol is a metabolite of Δ1-tetrahydrocannabinol. Because many epoxides are mutagens, we investigated 1,2-epoxyhexahydrocannabinol as well as Δ1-tetrahydrocannabinol for mutagenicity with Salmonella typhimurium TA1535, TA1537, TA98 and TA100 in the presence and in the absence of S9 mix from liver homogenate of rats treated with Aroclor 1254. Additionally, an epoxide hydratase inhibitor was used in some experiments. Whereas several other epoxides and further positive controls, not requiring activation or activated under the same conditions, respectively, showed strong mutagenicity, no indications of a mutagenic hazard by 1,2-epoxyhexahydrocannabinol or by Δ1-tetrahydrocannabinol were found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号