首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Recent reports describe the ability of factors to modulate the position of the dose–response curve of receptor–agonist complexes, and the amount of partial agonist activity of receptor–antagonist complexes, of androgen, glucocorticoid (GRs), and progesterone receptors (PRs). We now ask whether this modulation extends to the two remaining steroid receptors: mineralocorticoid (MRs) and estrogen receptors (ERs). These studies of MR were facilitated by our discovery that the antiglucocorticoid dexamethasone 21-mesylate (Dex-Mes) is a new antimineralocorticoid with significant amounts of partial agonist activity. Elevated levels of MR, the co-activators TIF2 and SRC-1, and the co-repressor SMRT do modulate the dose–response curve and partial agonist activity of MR complexes. Interestingly, the precise responses are indistinguishable from those seen with GRs in the same cells. Thus, the unequal transactivation of common genes by MRs versus GRs probably cannot be explained by differential responses to changing cellular concentrations of homologous receptor, co-activators, or co-repressors. We also find that the dose–response curve of ER–estradiol complexes is left-shifted to lower steroid concentrations by higher amounts of exogenous ER. Therefore, the modulation of either the dose–response curve of agonists or the partial agonist activity of antisteroid, and in many cases the modulation of both properties, is a common phenomenon for all of the classical steroid receptors.  相似文献   

6.
7.
8.
9.
10.
11.
Zhang S  Jonklaas J  Danielsen M 《Steroids》2007,72(6-7):600-608
Mifepristone is an antagonist of the glucocorticoid receptor (GR) that also has significant agonist activity in some cell types. We examined the partial agonist activity of mifepristone in COS-7 cells transfected with increasing amounts of a glucocorticoid receptor expression vector pmGR. As pmGR levels increased, the response of the reporter, pMTVCAT to dexamethasone increased, consistent with increasing levels of receptor expression; the response to mifepristone also increased but at a higher rate, resulting in increasing mifepristone agonist and decreasing antagonist activity. In contrast, increasing pMTVCAT levels increased CAT activity induced by both dexamethasone and mifepristone, but did not change the relative agonist activity of mifepristone. We also examined the relationship between agonist activity and receptor level in a series of clones of the E8.2.A3 cell line expressing various levels of GR. Again, the relative agonist activity of mifepristone increased as GR increased. This increase was not due to changes in the dose response curves to these two ligands since their EC50 values were independent of receptor levels. These results indicate that the degree of glucocorticoid agonist activity exhibited by mifepristone is dependent on the concentration of GR in the cell. Similar results were obtained with another partial agonist of the GR, progesterone, whereas the complete antagonist ZK98.299 had no agonist activity under any condition. Taken together, these results suggest that the phenomenon of receptor concentration-dependence is a property of partial GR agonists in general.  相似文献   

12.
13.
The TPR proteins FKBP52, FKBP51, Cyp40, and PP5 are found in steroid receptor (SR) complexes, but their receptor-specific preferences and roles remain unresolved. We have undertaken a systematic approach to this problem by examining the contribution of all four TPRs to the localization properties of glucocorticoid (GR) and progesterone (PR) receptors. The GR of L929 cells was found in the cytoplasm in a complex containing PP5 and FKBP51, while the GR of WCL2 cells was nuclear and contained PP5 and FKBP52. Cyp40 did not interact with the GR in either cell line. To test whether FKBP interaction determined localization, we overexpressed Flag-tagged FKBP51 in WCL2 cells and Flag-FKBP52 in L929 cells. In WCL2 cells, the GR exhibited a shift to greater cytoplasmic localization that correlated with recruitment of Flag-FKBP51. In contrast, Flag-FKBP52 was not recruited to the GR of L929 cells, and no change in localization was observed, suggesting that both cell-type-specific mechanisms and TPR abundance contribute to the SR-TPR interaction. As a further test, GR-GFP and PR-GFP constructs were expressed in COS cells. The GR-GFP construct localized to the cytoplasm, while the PR-GFP construct was predominantly nuclear. Similar to L929 cells, the GR in COS interacted with PP5 and FKBP51, while PR interacted with FKBP52. Analysis of GR-PR chimeric constructs revealed that the ligand-binding domain of each receptor determines both TPR specificity and localization. Lastly, we analyzed GR and PR localization in cells completely lacking TPR. PR in FKBP52 KO cells showed a complete shift to the cytoplasm, while GR in FKBP51 KO and PP5 KO cells showed a moderate shift to the nucleus, indicating that both TPRs contribute to GR localization. Our results demonstrate that SRs have distinct preferences for TPR proteins, a property that resides in the LBD and which can now explain long-standing differences in receptor subcellular localization.  相似文献   

14.
15.
16.
17.
Alisma orientalis, a well-known traditional medicine, exerts numerous pharmacological effects including anti-diabetes, anti-hepatitis, and anti-diuretics but its bioactivity is not fully clear. Androgen receptor (AR), progesterone receptor (PR), and glucocorticoid receptor (GR) are three members of nuclear receptor superfamily that has been widely targeted for developing treatments for essential diseases including prostate cancer and breast cancer. In this study, two triterpenes, alisol M 23-acetate and alisol A 23-acetate from Alisma orientalis were determined whether they may act as androgen receptor (AR), progesterone receptor (PR), or glucocorticoid receptor (GR) modulators. Indeed, in the transient transfection reporter assays, alisol M 23-acetate and alisol A 23-acetate transactivated AR in dose-dependent manner, while they transrepressed the transactivation effects exerted by agonist-activated PR and GR. Through molecular modeling docking studies, they were shown to respectively interact with AR, PR, or GR ligand binding pocket fairly well. All these results indicate that alisol M 23-acetate and alisol A 23-acetate from Alisma orientalis might possess therapeutic effects through their modulation of AR, PR, and GR pathways.  相似文献   

18.
A class of arylsulfonamide glucocorticoid receptor agonists that contains a substituted phenyl group as a steroid A-ring mimetic is reported. The structural design and SAR that provide the functional switching of a GR antagonist to an agonist is described. A combination of specific hydrogen bonding and lipophilic elements on the A-ring moiety is required to achieve potent GR agonist activity. This study culminated in the identification of compound 23 as a potent GR agonist with selectivity over the PR and MR nuclear hormone receptors.  相似文献   

19.
The interaction between helix 3 and helix 5 in the human mineralocorticoid receptor [MR], progesterone receptor [PR] and glucocorticoid receptor [GR] influences their response to steroids. For the human PR, mutations at Gly-722 on helix 3 and Met-759 on helix 5 alter responses to progesterone. We analyzed the evolution of these two sites and the rest of a 59 residue segment containing helices 3, 4 and 5 in vertebrate PRs and found that a glycine corresponding to Gly-722 on helix 3 in human PR first appears in platypus, a monotreme. In lamprey, skates, fish, amphibians and birds, cysteine is found at this position in helix 3. This suggests that the cysteine to glycine replacement in helix 3 in the PR was important in the evolution of mammals. Interestingly, our analysis of the rest of the 59 residue segment finds 100% sequence conservation in almost all mammal PRs, substantial conservation in reptile and amphibian PRs and divergence of land vertebrate PR sequences from the fish PR sequences. The differences between fish and land vertebrate PRs may be important in the evolution of different biological progestins in fish and mammalian PR, as well as differences in susceptibility to environmental chemicals that disrupt PR-mediated physiology.  相似文献   

20.
Nitric oxide (NO) has been shown to play an important role in both the neuroendocrine reproductive and stress axes, which are closely linked. Because progesterone (P4) receptors (PRs) and glucocorticoid receptors (GRs) are not found in GnRH neurons and the NOergic system has been implicated in the control of GnRH secretion, this study aimed to ascertain whether steroids altered the NOergic system. Our first objective was to map the distribution of NO synthase (NOS) cells in the ovine preoptic area (POA) and hypothalamus and to determine whether NOS activity is enhanced by estradiol (E2) treatment. Using NADPH diaphorase (NADPHd) histochemistry, we found that NADPHd-positive neurons were spread throughout the ovine POA and hypothalamus, and that all NADPHd cells were immunoreactive for NOS. In response to estradiol, a significant increase in the number of NADPHd cells was noted only in the ventrolateral region of the ventromedial nucleus (VMNvl), with no significant difference in the POA or arcuate nucleus. Progesterone and glucocorticoid receptors were colocalized with NADPHd reactive neurons in the POA, arcuate nucleus, and VMNvl of ewes in both treatment groups. In ewes receiving estradiol, the number of NADPHd-positive cells containing steroid receptors in the POA (PR, 81%; GR, 79%) and arcuate nucleus (PR, 89%; GR, 84%) was similar, but in the VMNvl, fewer NADPHd-positive cells contained GR (PR, 88%, GR, 31%). These data show that estradiol up-regulates NOS activity in a site-specific manner and that the influence and possible interaction of progesterone and corticosteroids on NO producing cells may differ according to the neural location.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号