首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The leaves of chilling-sensitive pumpkin (Cucurbita pepo L.) showed symptoms reminiscent of photoinhibition when kept for 4 days at 5°C in moderate light. A decrease was observed in the variable part of chlorophyll α fluorescence, apparent quantum yield, and maximum rate of O2 evolution. Chloroplast whole-chain electron transport activity measured from chloroplast thylakoids had decreased to 51% of the control value. Photosystem II (PSII) activity decreased by only 9%, suggesting that photoinhibition was not responsible for the loss of electron transport activity. An increase in the proportion of PSIIβ (measured as a βmax value) was observed after the chilling treatment. Fractionation of thylakoid membranes showed a 42% increase in PSII activity in the nonappressed region while that in the appressed region decreased slightly. This was accompanied by a decrease in the ratio of the length of appressed to nonappressed thylakoid membranes. Leaf photosynthesis largely recovered within 24 hours of returning to the original growth conditions. We suggest that the increase in the proportion of PSIIβ during chilling in light plays a role in protecting PSII from photoinhibitory damage.  相似文献   

2.
We have recently shown that during in vivo photoinhibition the D1 protein is degraded via a modified form, designated D1*. Depending on light conditions, the amount of D1* varies in leaves between 0 and 50% of total D1 content. By isolating thylakoids from leaves acclimated to different light levels, and performing photoinhibition experiments on these thylakoids, the following results on D1 protein degradation were obtained: (i) the protease involved in D1 degradation requires activation by light; (ii) neither acceptor nor donor side photoinhibition of PSII induces formation of D1* in vitro; (iii) in isolated thylakoids, the transformation of D1 to D1* can be induced in low light in the presence of ATP, which suggests that D1* is a phosphorylated form of the D1 protein; (iv) D1*, induced either in vivo or in vitro, is much less susceptible to degradation during illumination of isolated thylakoids than the original D1 protein. We suggest that the modification to D1* is a means to prevent disassembly of photodamaged photosystem II complex in appressed membranes.  相似文献   

3.
The responses to photoinhibition of photosynthesis at low temperature and subsequent recovery were examined in Arabidopsis thaliana (ecotype Columbia) developed at 4°C cold-acclimating conditions, 23°C non-acclimating conditions and for non-acclimated plants shifted to 4°C (cold-shifted). These responses were determined in planta using Chl fluorescence imaging. We show that cold acclimation results in an increased tolerance to photoinhibition in comparison with non-acclimated plants and that growth and development at low temperature is essential for this to occur. Cold-shifted plants were not as tolerant as the cold-acclimated plants. In addition, we demonstrate this tolerance is as a result of growth under high PSII excitation pressure, that can be modulated by growth temperature or growth irradiance. Cold-acclimated and cold-shifted plants fully recover from photoinhibition in the dark, whereas non-acclimated plants show reduced levels of recovery and demonstrate a requirement for light. The role of the PSII repair cycle, PSII quenching centres, and the use of Chl fluorescence imaging to monitor photoinhibitory responses in planta are discussed.  相似文献   

4.
Photoinhibition of PSII occurs at the same quantum efficiency from very low to very high light, which raises a question about how important is the rate of photosynthetic electron transfer in photoinhibition. We modulated electron transfer rate and light intensity independently of each other in lincomycin-treated pea leaves and in isolated thylakoids, in order to elucidate the specific effects of light and PSII electron transport on photoinhibition. Major changes in the rate of electron transport caused only small changes in the rate of photoinhibition, suggesting the existence of a significant photoinhibitory pathway that contains an electron-transfer-independent phase. We compared the action spectrum of photoinhibition with absorption spectra of PSII components that could function as photoreceptors of the electron-transfer-independent phase of photoinhibition and found that the absorption spectra of Mn(III) and Mn(IV) compounds resemble the action spectrum of photoinhibition, showing a steep decrease from UV-C to blue light and a low visible-light tail. Our results show that the release of a Mn ion to the thylakoid lumen is the earliest detectable step of both UV- and visible-light-induced photoinhibition. After Mn release from the oxygen-evolving complex, oxidative damage to the PSII reaction center occurs because the Mn-depleted oxygen-evolving complex cannot reduce P680+ normally.  相似文献   

5.
The seasonal changes in photosynthetic properties in 1-year-old needles of Sakhalin spruce ( Picea glehnii ) were measured using the chlorophyll fluorescence technique at various temperatures (5, 10, 20, 25 and 30°C). In the course of seasonal change, a temporary decrease in the quantum yield of PSII electron transport (ΦPSII) was observed just before budbreak. A decline in photochemical quenching ( q P) was observed at the same time as that of ΦPSII but only at the two lowest temperatures (5 and 10°C). Photochemical efficiency of open PSII ( F v'/ F m') also declined just before budbreak at 25 and 30°C. An increase in thermal energy dissipation as indicated by a decrease in F v'/ F m' before budbreak was not significant at lower temperatures (5 and 10°C) in spite of the declines in q P. This implies that thermal energy dissipation necessitated by the decline in ΦPSII might not be sufficiently strong to prevent a decline in q P at lower temperatures. On the other hand, at higher temperatures no decline was observed in q P because ΦPSII decreased to a relatively small extent, therefore thermal energy dissipation is sufficient in coping with the excessive energy accumulation in PSII. Seedlings of Sakhalin spruce exposed to ambient air temperature below 10°C before budbreak exhibited photoinhibition indicated by a decrease in the maximal photochemical efficiency of PSII ( F v/ F m) after an overnight dark adaptation. The present study suggests that 1-year-old shoots of Sakhalin spruce have an increased susceptibility to photoinhibition at low temperature just before budbreak.  相似文献   

6.
Photoinhibition of photosynthesis and its recovery were studied in intact barley ( Hordeum vuigare L. cv. Gunilla) leaves grown in a controlled environment by exposing them to two temperatures, 5 and 20°C, and a range of photon flux densities in excess of that during growth. Additionally, photoinhibtion was examined in the presence of chloramphenicol (CAP, an inhibitor of chloroplast protein synthesis) and of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Susceptibility to photoinhibition was much higher at 5 than at 20°C. Furthermore, at 20°C. CAP exacerbated photoinhibition strongly, whereas CAP had little additional effect (10%) at 5°C. These results support the model that net photoinhibition is the difference between the inactivation and repair of photosystem II (PSII); i.e. the degradation and synthesis of the reaction centre protein, Dl. Furthermore, the steady-state extent of photoinhibition was strongly dependent on temperature and the results indicated this was manifested through the effects of temperature on the repair process of PSII. We propose that the continuous repair of PS II at 20°C conferred at least some protection from photoinhibition. At 5°C the repair process was largely inhibited, with increased photoinhibition as a consequence. However, we suggest where repair is inhibited by low temperature, some protection is alternatively conferred by the photoinhibited reaction centres. Providing they are not degraded, such centres could still dissipate excitation energy non-radiatively, thereby conferring protection of remaining photochemically active centres under steady-state conditions.
A fraction of PS II centres were capable of resisting photoinhibition when the repair process was inhibited by CAP. This is discussed in relation to PS II heterogeneity. Furthermore, the repair process was not apparently activated within 3 h when barley leaves were transferred to photoinhibitory light conditions at 20°C.  相似文献   

7.
High-light-induced decrease in photosystem II (PSII) electron transfer activity was studied in high- and low-light-grown pumpkin (Cucurbita pepo L.) plants in vivo and in vitro. The PSII light-harvesting antenna of the low-light leaves was estimated to be twice as big as that of the high-light leaves. The low-light leaves were more susceptible to photoinhibition in vivo. However, thylakoids isolated from these two plant materials were equally sensitive to photoinhibition when illuminated in the absence of external electron acceptors. Only the intensity of the photoinhibitory light and the chlorophyll concentration of the sample, not the size of the light-harvesting antenna, determined the rate of PSII photoinhibition in vitro. Because excitation of the reaction center and not only the antenna chlorophylls is a prerequisite for photoinhibition of PSII activity, independence of photoinhibition on antenna size provides support for the hypothesis (Schatz EH, Brock H, Holzwarth AR [1988] Biophys J 54: 397-405) that the excitations of the antenna chlorophylls are in equilibrium with the excitations of the reaction centers. Better tolerance of the high-light leaves in vivo was due to a more active repair process and more powerful protective mechanisms, including photosynthesis. Apparently, some protective mechanism of the high-light-grown plants is at least partially active at low temperature. The protective mechanisms do not appear to function in vitro.  相似文献   

8.
Inactivation of photosystem II (PSII) in the alga Chlorella pyrenoidosa Chick induced by photoinhibition (high light illumination at an intensity 10 times higher than photosynthesis-saturating light) or by incubation at a supraoptimum temperature (41°C) in darkness, resulted in a decrease in the relative yield of variable fluorescence due to a selective suppression of the slow phase of its rise. This indicates that low-activity PSII complexes, with a low efficiency of QA formation are inactivated first. We suppose that the transition of normal PSII complexes to a low-activity state precedes the complete loss of their photochemical activity. The existence of some common stages of PSII inactivation, when induced by photoinhibition or incubation at supraoptimum temperature in darkness, is discussed. We suggest a scheme of the sequential stages in the regulation of photosynthetic light reactions involving a reversible redox-dependent PSII inactivation.  相似文献   

9.
Mechanism of copper-enhanced photoinhibition in thylakoid membranes   总被引:2,自引:0,他引:2  
The effect of copper on photoinhibition of photosystem II (PSII) in vitro was studied in bean ( Phaseolus vulgaris L. cv. Dufrix) and pumpkin ( Cucurbita pepo L.) thylakoids. The thylakoids were illuminated at 200–2 000 μmol photons m−2 s−1 in the presence of 70–1 830 added Cu2+ ions per PSII. Three lines of evidence show that the irreversible damage of PSII caused by illumination of thylakoids in the presence of Cu2+ was mainly due to donor-side photoinhibition resulting from inhibition of the PSII donor side by Cu2+. First, addition of an artificial electron donor partially restored PSII activity of thylakoids that had been illuminated in the presence of Cu2+. Second, already moderate light was enough to cause rapid inhibition of PSII, and the inhibition could be saturated by light. Third, the extrinsic polypeptides of the oxygen-evolving complex were found to become oxidized by the combined effect of Cu2+ and light. The presence of oxygen was not necessary for the copper-induced enhancement of photoinhibition of PSII. When the illumination was prolonged, copper caused a gradual collapse of the thylakoid structure by increasing degradation of thylakoid proteins.  相似文献   

10.
Abstract: Seasonal changes in the efficiency of charge separation in PSII were studied in Thuja occidentalis (L.) and Chamaecyparis lawsonia (A. Murray bis.). Maximum light-dependent charge separation decreased with decreasing temperatures in early winter in both species, but this was less drastic in Chamaecyparis than in Thuja. No positive relationship was seen between photoinhibition and irradiance. Rather, photoinhibition increased as photon flux densities decreased towards midwinter, and it decreased as photon flux densities increased towards spring. However, the decrease in maximum light-dependent charge separation was much stronger on the light-exposed upper surface of the twigs, where in Thuja visible browning occurred, than on the underside of the twigs. During spring, recovery of the photosynthetic efficiency and regreening were observed as both mean temperatures and irradiance increased. Transfer in midwinter of strongly photo-inhibited twigs of Thuja to temperatures close to 20 °C resulted in considerable recovery of PSII activity within several days when low light was also present. Recovery did not occur at temperatures close to freezing or at room temperature in darkness. An analysis of fluorescence quenching suggested photoprotective dissipation of excess radiation not only in the light harvesting antennae of PSII but also in the reaction centres. Reaction centre quenching appeared to be stronger in Thuja than in Chamaecyparis. PSI was fully active in twigs whether or not PSII was photoinhibited. The antioxidant ascorbate was almost fully reduced even in midwinter.  相似文献   

11.
Plants of Spinacia oleracea L. cv. Savoy grown under cold-hardening (5°C) and nonhardening (16°C) conditions were exposed to a photoinhibitory irradiance of 1300 μmol rrr: m-2 S-1 5°C for 12 h. Plants grown at 5°C exhibited a greater resistance to photoinhibition at low temperature in comparison to plants grown at 16°C as measured by the photochemical efficiency of photosyslem II. In contrast, tuily expanded leaves of plants grown at 16°C and then shifted to 5°C for 10 days did not exhibit increased resistance to photoinhibition. This was observed irrespective of the phoioperiod experienced during the shift to a lower temperature. Furthermore, spinach grown at 16°C and subsequently exposed to a stepped, daily decrease in temperature from 16 to 1°C over 10 days w ith a concomitant reduction in photoperiod. also did not exhibit any change in susceptibility to photoinhibition. Thus, a decrease in photoperiod accompanied by either an abrupt or stepped low temperature shift cannot induce increased resistance to photoinhibition. This confirms the hypothesis that growth and development at cold-hardening temperature are absolute requirements for the acquisition of resistance to photoinhibition at low temperature.  相似文献   

12.
Attached leaves of pumpkin (Cucurbita pepo L.) were treated in high or moderate light at room temperature or a 1°C. The symptoms of photoinhibition appearing during light treatments at room temperature could be attributed to a decrease in the primary activity of PSII. However, when the light treatment was given at 1°C, the quantum yield of photosynthetic oxygen evolution decreased much more than would be expected from the decrease in the ratio of variable to maximum fluorescence at 77°K. Also, light treatment at 1°C lowered the chloroplast wholechain electron transfer capacity much more than it affected PSII electron transport (H2O to paraphenylbenzoquinone). Light treatments at both room temperature and 1°C led to an increase in Bmax, which indicates an increase in the proportion of PSIIβ centers. PSI was not affected by the light treatments, and the treatments in the dark at 1°C caused only minor changes in the measured properties of the leaves. We conclude that high light always inhibits the primary activity of PSII, but at low temperature there is greater inhibition of electron transfer from primary electron accepting plastoquinone of PSII to the plastoquinone pool, which leads to a drastic decrease in the quantum yield of oxygen evolution in the chilling-sensitive pumpkin.  相似文献   

13.
Chilling in the light imposes a considerable level of stress on the photosynthetic apparatus, resulting in a decrease of photosystem II activity and the quenching of maximum and variable fluorescence. We selected in a fah - 1 mutagenized population of Arabidopsis thaliana , which permits a direct visible evaluation of the intensity of chlorophyll (Chl) fluorescence, a monogenic recessive nuclear mutant hypersensitive to photoinhibition induced by light and cold. The major phenotypic trait of the mutant is the appearance of chlorotic areas on developed leaves. Photochemical analyses indicate that the mutant is hypersensitive to photoinhibition in excess light in the cold but also at room temperature. The susceptibility to photoinhibition is a consequence of perturbations in photochemistry already present in unstressed plants. Such perturbations result in a greater fraction of the primary acceptor QA remaining in the reduced state even at low light fluxes. From estimates of the number of total and functional PSII units and measurements of PSII quantum yield and QA reoxidation kinetics, the basic lesion of the mutant seems restricted to PSII photochemistry likely affecting the rate of electron transport from QA to QB.  相似文献   

14.
In vivo measurements of chlorophyll a fluorescence indicate that cold-hardened winter rye (Secale cereale L. cv Musketeer) develops a resistance to low temperature-induced photoinhibition compared with nonhardened rye. After 7.2 hours at 5°C and 1550 micromoles per square meter per second, the ratio of variable fluorescence/maximum fluorescence was depressed by only 23% in cold-hardened rye compared with 46% in nonhardened rye. We have tested the hypothesis that the principal site of this resistance to photoinhibition resides at the level of rye thylakoid membranes. Thylakoids were isolated from cold-hardened and nonhardened rye and exposed to high irradiance (1000-2600 micromoles per square meter per second) at either 5 or 20°C. The photoinhibitory response measured by room temperature fluorescence induction, photosystem II electron transport, photoacoustic spectroscopy, or [14C]atrazine binding indicates that the differential resistance to low temperature-induced photoinhibition in vivo is not observed in isolated thylakoids. Similar results were obtained whether isolated rye thylakoids were photoinhibited or thylakoids were isolated from rye leaves preexposed to a photoinhibitory treatment. Thus, we conclude that increased resistance to low temperature-induced photoinhibition is not a property of thylakoid membranes but is associated with a higher level of cellular organization.  相似文献   

15.
Maximum photosynthetic capacity indicates that the Antarctic psychrophile Chlamydomonas raudensis H. Ettl UWO 241 is photosynthetically adapted to low temperature. Despite this finding, C. raudensis UWO 241 exhibited greater sensitivity to low‐temperature photoinhibition of PSII than the mesophile Chlamydomonas reinhardtii P. A. Dang. However, in contrast with results for C. reinhardtii, the quantum requirement to induce 50% photoinhibition of PSII in C. raudensis UWO 241 (50 μmol photons) was comparable at either 8°C or 29°C. To our knowledge, this is the first report of a photoautotroph whose susceptibility to photoinhibition is temperature independent. In contrast, the capacity of the psychrophile to recover from photoinhibition of PSII was sensitive to temperature and inhibited at 29°C. The maximum rate of recovery from photoinhibition of the psychrophile at 8°C was comparable to the maximum rate of recovery of the mesophile at 29°C. We provide evidence that photoinhibition in C. raudensis UWO 241 is chronic rather than dynamic. The photoinhibition‐induced decrease in the D1 content in C. raudensis recovered within 30 min at 8°C. Both the recovery of the D1 content as well as the initial fast phase of the recovery of Fv/Fm at 8°C were inhibited by lincomycin, a chloroplast protein synthesis inhibitor. We conclude that the susceptibility of C. raudensis UWO 241 to low‐temperature photoinhibition reflects its adaptation to low growth irradiance, whereas the unusually rapid rate of recovery at low temperature exhibited by this psychrophile is due to a novel D1 repair cycle that is adapted to and is maximally operative at low temperature.  相似文献   

16.
Differences in the temperature dependence and thermosensitivities of PSII activities in Synechocystis sp. PCC6803 grown at 25 and 35 degrees C were studied. Hill reactions in cells, thylakoid membranes and purified PSII core complexes were measured at high temperatures or at their growth temperatures after high-temperature treatments. In the presence of 2,5-dichloro-p-benzoquinone as an electron acceptor, which can accept electrons directly from Q(A), the temperature dependence of the oxygen-evolving activity was almost the same in thylakoid membranes and in the purified PSII complexes from cells grown at 25 or 35 degrees C. When duroquinone, which accepts electrons only through Q(B) plastoquinone, was used as an electron acceptor, the temperature dependence was the same for purified PSII core complexes but was different between thylakoids isolated from the cells grown at 25 and 35 degrees C. No remarkable difference was observed in protein compositions between thylakoids and between purified PSII complexes from cells grown at 25 or 35 degrees C. However, the fluidity of thylakoids, measured by electron flow to P700, was affected by the growth temperature. These results suggest that one of the major factors which cause the changes in the thermosensitivity of PSII is the change in the fluidity of thylakoid membranes. As for the acclimation of PSII in thylakoids to high temperatures, one of the main causes is the decrease in the high-temperature-induced formation of non-Q(B) PSII due to the decreased fluidity in the cells grown at 35 degrees C.  相似文献   

17.
Chilling-induced photoinhibition and subsequent recovery was studied in Arabidopsis thaliana exposed to 4 degrees C and 150 micromol photons m(-2) s(-1). PSII showed progressive damage with a 14% decrease in quantum yield after 8 h exposure. In contrast, the damage to PSI leveled off after 8 h with a decrease in in vitro NADP+ photoreduction activity of around 32%. In vivo P700 measurements demonstrated that antenna efficiency was decreased by the photoinhibitory treatment. Measurements of P700 and immunoblotting demonstrated that the damaged PSI was not degraded during the 8 h light-chilling treatment, but after 12 h recovery at 20 degrees C, no damaged PSI remained in the thylakoids. Thus, degradation of damaged PSI is a step in the recovery and not a direct result of photodamage. Unlike photodamaged PSII, the PSI core complex is not repaired but completely degraded. In contrast, light harvesting complex I proteins have a slow turnover. PSII recovered completely within 8 h after transfer to 20 degrees C whereas PSI activity recovered very slowly, and the amount of PSI on a leaf area basis remained low even after 1 week at 20 degrees C. The results show that damage, protein turnover and recovery are well separated processes in Arabidopsis.  相似文献   

18.
Thylakoid energy metabolism is crucial for plant growth, development and acclimation. Non‐appressed thylakoids harbor several high molecular mass pigment–protein megacomplexes that have flexible compositions depending upon the environmental cues. This composition is important for dynamic energy balancing in photosystems (PS) I and II. We analysed the megacomplexes of Arabidopsis wild type (WT) plants and of several thylakoid regulatory mutants. The stn7 mutant, which is defective in phosphorylation of the light‐harvesting complex (LHC) II, possessed a megacomplex composition that was strikingly different from that of the WT. Of the nine megacomplexes in total for the non‐appressed thylakoids, the largest megacomplex in particular was less abundant in the stn7 mutant under standard growth conditions. This megacomplex contains both PSI and PSII and was recently shown to allow energy spillover between PSII and PSI (Nat. Commun., 6, 2015, 6675). The dynamics of the megacomplex composition was addressed by exposing plants to different light conditions prior to thylakoid isolation. The megacomplex pattern in the WT was highly dynamic. Under darkness or far red light it showed low levels of LHCII phosphorylation and resembled the stn7 pattern; under low light, which triggers LHCII phosphorylation, it resembled that of the tap38/pph1 phosphatase mutant. In contrast, solubilization of the entire thylakoid network with dodecyl maltoside, which efficiently solubilizes pigment–protein complexes from all thylakoid compartments, revealed that the pigment–protein composition remained stable despite the changing light conditions or mutations that affected LHCII (de)phosphorylation. We conclude that the composition of pigment–protein megacomplexes specifically in non‐appressed thylakoids undergoes redox‐dependent changes, thus facilitating maintenance of the excitation balance between the two photosystems upon changes in light conditions.  相似文献   

19.
Photoinhibition of photosynthesis and subsequent recovery were studied in cultures of the unicellular green alga Chlamydomonas reinhardtii L. (wt strain 137 c mating type +) acclimated at high (27°C) and low (12°C) temperature, Photoinhibition was assayed by fluorescence kinetics (77K) and oxygen evolution measurements under growth temperature conditions Inhibition of 50% was obtained by exposing cultures acclimated at high temperature to a photosynthetic photon flux density (PPFD) of 1 600 μmol m−2 S−1 at. 27°C. and cultures acclimated at low temperature to a PPFD of 900 μmol m−2 s−1 at 12°C When the photoinhibitory conditions were shifted it was revealed that algae acclimated at low temperature had acquired an increased resistance to photoinhibition at both 12 and 27°C. Furthermore, acclimation at low temperature increased the capacity to recover from 50% photoinhibition at both 12 and 27°C Studies of photoinhibition in the presence of the protein synthesis inhibitor, chloramphenicol, revealed that in response to acclimation at low temperature during growth the algae became more dependent on protein synthesis to avoid photoinhibition. It is suggested that acclimation at low temperature rendered C. reinhardtii an increased resistance to photoinhibition by. increasing the rate of turnover of photodamaged proteins in photosystem II (PS II). However, we cannot exclude the possibility that the increased resistance to photoinhibition of C. reinhardtii acclimated at low temperature also involves modifications of the mechanism of photoinhibition.  相似文献   

20.
The effect of light quality on the composition, function and structure of the thylakoid membranes, as well as on the photosynthetic rates of intact fronds from Asplenium australasicum, a shade plant, grown in blue, white, or red light of equal intensity (50 microeinsteins per square meter per second) was investigated. When compared with those isolated from plants grown in white and blue light, thylakoids from plants grown in red light have higher chlorophyll a/chlorophyll b ratios and lower amounts of light-harvesting chlorophyll a/b-protein complexes than those grown in blue light. On a chlorophyll basis, there were higher levels of PSII reaction centers, cytochrome f and coupling factor activity in thylakoids from red light-grown ferns, but lower levels of PSI reaction centers and plastoquinone. The red light-grown ferns had a higher PSII/PSI reaction center ratio of 4.1 compared to 2.1 in blue light-grown ferns, and a larger apparent PSI unit size and a lower PSII unit size. The CO2 assimilation rates in fronds from red light-grown ferns were lower on a unit area or fresh weight basis, but higher on a chlorophyll basis, reflecting the higher levels of electron carriers and electron transport in the thylakoids.

The structure of thylakoids isolated from plants grown under the three light treatments was similar, with no significant differences in the number of thylakoids per granal stack or the ratio of appressed membrane length/nonappressed membrane length. The large freeze-fracture particles had the same size in the red-, blue-, and white-grown ferns, but there were some differences in their density. Light quality is an important factor in the regulation of the composition and function of thylakoid membranes, but the effects depend upon the plant species.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号