首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In some studies the prevalence of tick infection (infection rate) and the intensity of infection are negatively correlated with unfed tick age (in the broad sense of this term). However, no special research has been carried out to consider the phenomenon thoroughly. The infection indices of the female taiga ticks, Ixodes persulcatus, infected with Borrelia burgdorferi s.l. were related to tick physiological age, an index that more precisely reflects tick physiological state than the time of tick collection in the field or the duration of tick survival under laboratory conditions. A novel quantitative technique of physiological age determination based on the evaluation of the ratios between sizes of the stable (scutum) and the changing (alloscutum) structures of the tick body was used. The age was estimated in accordance with the classical age-grade scale introduced by Balashov and a more fractional scale determined by the new technique. In total, 131 female ticks were examined for their infection and physiological age, 46 of which were infected with B. burgdorferi s.l. (mean infection rate 35.1%). The minimal intensity of infection was 0.4 bacterial cells per 100 fields of view whereas the maximal infection was 172 cells. There was no difference between the prevalence of infection in ticks of different physiological age. The intensity of infection obviously differed between ticks of different age groups in the scale introduced by Balashov but did not significantly differ between ticks of different age groups according to the fractional age-grade scale. The data concerning the relationships between Borrelia burgdorferi and unfed Ixodes ticks are considered.  相似文献   

2.
In order to simulate the interstellar chemical evolution, the chemical process was studied in a laboratory plasma flow. The apparatus was so designed as to establish the similarity between laboratory and cosmic conditions. The plasma temperature was found to be less than 100 K in the downstream region. HCN, HC3N, H2CO, and several kinds of hydrocarbons were produced from the plasma whose elementary composition was approximately same as the cosmic abundance. Based on the analysis by laser-induced-fluorescence method, HCN and HC3N were concluded to be synthesized via CN loss reactions, while it was unlikely that the syntheses of C2H2 and H2CO were related to the generation or depletion of C2.  相似文献   

3.
ABSTRACT

The sub-family Conocephalinae constitutes one of the richest groups of katydids in terms of diversity and distribution. Tropical katydids especially in India have largely escaped academic attention. Here, we record and describe call patterns for six conehead katydids from India: Conocephalus melanus, Conocephalus sp X, Euconocephalus indicus, Euconocephalus mucro, and Euconocephalus sp Y from North-Eastern Himalayas and Euconocephalus pallidus from the Western Ghats. All the species showed broadband frequency spectra (10.5–42.4 kHz), and three of the six species showed high rates of calling (289–453 syllables/s). We observed that the co-occurring call types never called at the same time or from the same location. We hypothesized this partitioning between call types is due to similarity in their calls; we used non-metric multi-dimensional scaling (NMDS) to investigate patterns of temporal or habitat-partitioning that some of the co-occurring call types exhibited during the course of study. The co-occurring Euconocephalus sp Y and E. mucro with high degree of overlap and similarity in their calls exhibited partitioning on a spatial scale. Conocephalus sp. X and C. melanus with distinct calling activity peaks formed separate clusters based on temporal call structures. As females rely heavily on spectral qualities, we speculate partitioning on temporal scale to avoid heterospecific interference due to similar spectral properties between the two call types.  相似文献   

4.
《Fly》2013,7(4):284-289
The vinegar flies Drosophila subobscura and D. obscura frequently serve as study organisms for evolutionary biology. Their high morphological similarity renders traditional species determination difficult, especially when living specimens for setting up laboratory populations need to be identified. Here we test the usefulness of cuticular chemical profiles collected via the non-invasive method near-infrared spectroscopy for discriminating live individuals of the two species. We find a classification success for wild-caught specimens of 85%. The species specificity of the chemical profiles persists in laboratory offspring (87–92% success). Thus, we conclude that the cuticular chemistry is genetically determined, despite changes in the cuticular fingerprints, which we interpret as due to laboratory adaptation, genetic drift and/or diet changes. However, because of these changes, laboratory-reared specimens should not be used to predict the species-membership of wild-caught individuals, and vice versa. Finally, we demonstrate that by applying an appropriate cut-off value for interpreting the prediction values, the classification success can be immensely improved (to up to 99%), albeit at the cost of excluding a considerable portion of specimens from identification.  相似文献   

5.
The threatened status of redside dace, Clinostomus elongatus, in Michigan inhibits study and management of remnant populations of the species. We present a phenotypic approach to evaluate the use of redside dace from New York as behavioral and physiological models for Michigan populations. We evaluated behavioral similarity by comparing patterns of microhabitat use and physiological similarity by comparing resting routine metabolic rates measured in the field. Variation between sites in available microhabitat made direct comparisons difficult; however, redside dace in Michigan and New York showed a common preference for mid-water positions in the deepest parts of pools under overhanging structure. Field measurements at 10°C showed that Michigan fish had higher metabolic rates than rates predicted for New York fish at the same temperature, though biological significance of this difference is questionable. In laboratory experiments, we measured metabolic rate and upper thermal tolerance in relation to acclimation temperatures of 6–20°C using redside dace collected from four streams in New York. Redside dace showed a significant increase in metabolic rate as acclimation temperature increased (Q10=2.3). Critical thermal maxima (CTM) of New York redside dace also increased with acclimation temperature. Obstacles related to the transferability of habitat use data and variation in physiology due to uncontrolled and unmeasured environmental factors in the field lead us to urge caution when extrapolating behavioral and physiological characteristics between widely-separated populations of a species. Despite these obstacles, we described useful patterns of microhabitat use and provided estimates of physiological tolerances that will assist resource managers in the recovery of Michigan redside dace.  相似文献   

6.
Brouat C  Duplantier JM 《Oecologia》2007,152(4):715-720
Beta-diversity, or how species composition changes with geographical distance, has seldom been studied for different habitats. We present here quantitative estimates of the relationship between geographic distance and similarity of parasitic nematode communities in two closely related rodent host species that live in habitats with very different spatial configurations. In southeastern Senegal Mastomys natalensis lives exclusively inside human villages whereas M. erythroleucus is continuously distributed outside villages. Both host species and their gastro-intestinal nematodes were sampled on the same spatial scale. Beta-diversity was found to be higher in parasite communities of M. erythroleucus than in those of M. natalensis, and significantly related to geographic distance in this first species. Even on the local spatial scale studied, host dispersal limitation, and stochastic events, may affect species turnover in nematode communities of M. erythroleucus. In M. natalensis, no relationship was found between geographic distance and nematode community similarity, however, suggesting low host dispersal rates between habitat patches. Together with previous population genetic results, this study illustrates the need for different approaches with regard to dispersal in natural populations and its effect on biodiversity.  相似文献   

7.
White rot fungi Fomes lividus and Trametes versicolor, isolated from the Western Ghats region of Tamil Nadu, India, were used to treat pulp and paper industry effluents on a laboratory scale and in a pilot scale. On the laboratory scale a maximum decolourization of 63.9% was achieved by T. versicolor on the fourth day. Inorganic chloride at a concentration of 765 mg/l, which corresponded to 227% of that in the untreated effluent, was liberated by F. lividus on the 10th day. The chemical oxygen demand (COD) was also reduced to 1984 mg/l (59.3%) by each of the two fungi. On the pilot scale, a maximum decolourization of 68% was obtained with the 6-day incubation by T. versicolor, inorganic chloride 475 mg/l (103%) was liberated on the seventh day by T. versicolor, and the COD was reduced to 1984 mg/l corresponding to 59.32% by F. lividus. These results suggested that F. lividus seems to be another candidate efficient for dechlorination of wastewater.  相似文献   

8.
Summary Two promising methods, osmotic shock and guanidine treatment, for the selective release of human cystatin C from the periplasmic space of E. coli were developed at the laboratory scale. High release efficiencies were achievable by both approaches, however, the chemical membrane permeabilization proved to be much more selective. Both methods have excellent potential for scale up.  相似文献   

9.
The key concepts underlying the Frank model (1953) for spontaneous asymmetric synthesis in chemistry are traced back to the pioneering works of Volterra (1926) and Lotka (1932) on biological species competition. The Lotka‐Volterra (L‐V) two‐species exclusive competition model reduces to the Frank model for the special case of distinguishable but degenerate species (i.e., the enantiomers). The important ecological principle of competitive exclusion, originally derived from the L‐V two‐competitors model, is a consequence of sufficiently antagonistic interactions between the species competing for limited common resources, or mutual inhibition, as the term is known in the chemical literature on absolute asymmetric synthesis. The L‐V and Frank models are described by the same general differential equations, nevertheless a crucial thermodynamic distinction between these models is necessary to correlate ecological selection and chemical selectivity arising from 1) the absence of reversibility in biological transformations, in marked contrast to chemical reactions, and 2) the constraints in chemical scenarios on the reaction rate constants required to fulfill the principle of micro‐reversibility. Chirality 27:722–727, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

10.
The estrous cycles of a group of female laboratory rats (Rattus norvegicus) who live together become significantly more synchronized than either the cycles of solitary female rats (P 0.01) or the cycles of female rats randomly selected from different living groups (P 0.01). Airborne chemical communication between otherwise isolated groups of female rats is sufficient to produce the same level of estrous synchrony found among female rats that are actually living together.  相似文献   

11.
Mean power consumption and maximum local energy dissipation were measured as function of operating conditions of a milliliter‐scale stirred tank bioreactor (V = 12 mL) with a gas‐inducing impeller. A standard laboratory‐scale stirred tank bioreactor (V = 1,200 mL) with Rushton turbines was used as reference. The measured power characteristics (Newton number as function of Reynolds number) were the same on both scales. The changeover between laminar and turbulent flow regime was observed at a Reynolds number of 3,000 with the gas‐inducing stirrer on a milliliter‐scale. The Newton number (power number) in the turbulent flow regime was 3.3 on a milliliter‐scale, which is close to values reported for six‐blade Rushton turbines of standard bioreactors. Maximum local energy dissipation (εmax) was measured using a clay/polymer flocculation system. The maximum local energy dissipation in the milliliter‐scale stirred tank bioreactor was reduced compared with the laboratory‐scale stirred tank at the same mean power input per unit mass (εø), yielding εmax/εø ≈ 10 compared with εmax/εø ≈ 16. Hence, the milliliter‐scale stirred tank reactor distributes power more uniformly in the reaction medium. These results are in good agreement with literature data, where a decreasing εmax/εø with increasing ratio of impeller diameter to reactor diameter is found (d/D = 0.7 compared with d/D = 0.4). Based on these data, impeller speeds can now be easily adjusted to achieve the same maximum local energy dissipation at different scales. This enables a more reliable and robust scale‐up of bioprocesses from milliliter‐scale to liter‐scale reactors. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

12.
Abstract

Allelopathic potential of Thymus pulegioides L. chemical polymorphism was investigated under natural and laboratory conditions. A field analysis of 127 natural habitats hosting chemotypes of T. pulegioides with different ratios of phenolics, geraniol, and ɑ-terpinyl acetate was conducted. Effects of chemotypes, and their main compounds on seed germination and radicle growth of Trifolium pratense L. and Poa pratensis L. were conducted under laboratory conditions. Field analysis showed that Poa species were more plentiful in comparison with Trifolium species, independent of the chemotypical composition of T. pulegioides habitats. Laboratory tests with plant-acceptors showed a stronger inhibitory effect of essential oils on the germination and radicle growth of P. pratensis but in some instances germination was stimulated. Dissimilar effects were observed for the same allelochemical through air and water on the same plant-acceptor. Significantly, different effects of essential oils on radicle growth occurred in T. pratense and P. pratensis: with sensitivity to the phenolic chemotype via air and the ɑ-terpinyl acetate chemotype through water. This demonstrates that chemical polymorphism can expand communication opportunities of T. pulegioides with associated plant species. Combining investigations in natural habitats with laboratory experiments can help understand the effect of chemical polymorphism on plant-plant ecological interactions.  相似文献   

13.
The development of sustainable integrated aquaculture systems requires combining fed aquaculture (finfish) with extractive inorganic aquaculture (seaweed) and extractive organic aquaculture (shellfish). With the support of AquaNet, the Network of Centers of Excellence in Aquaculture in Canada, we are developing such a system at an industrial pilot scale by co‐cultivating salmon (Salmo salar), kelp (Laminaria saccharina) and blue mussel (Mytilus edulis) at aquaculture sites in the Bay of Fundy, Canada. This presentation will focus on the development of the extractive inorganic component. The entire cycle of rearing Laminaria saccharina has been completed and improved, both in the laboratory and at the integrated sites: release in the laboratory of spores from mature macroscopic sporophytes, seeding of ropes, germination of microscopic gametophytes, sexual maturation of male and female gametophytes, development of zygotes into juvenile sporophytes, which are then transplanted to the sites for rapid grow‐out. Another aspect of the project, food safety monitoring of chemical therapeutants and phycotoxins in mussel and kelp cultured in proximity to salmon, will also be described. The productivity, nutrient absorption capacity, and role of the seaweed component are being analyzed so that its appropriate scale to the other components can be defined in order to develop responsible aquaculture practices in which metabolic/physiological processes of the different co‐cultured organisms counter‐balance each other within acceptable operational limits. Adopting polytrophic strategies will be key to the aquaculture industry to develop its environmentally and economically‐balanced diversification and increase its social acceptability within a broader coastal management framework.  相似文献   

14.
Mitigation strategies can be implemented to decrease chlorinated and non‐chlorinated organic exposures to biota of aquatic receiving systems thereby reducing associated risks. In this work, we investigated the concept of coupling a physical/chemical reactor (i.e. a cavitation reactor) with a biological reactor (i.e. a constructed wetland) in an effort to efficiently transform PCE, TCE, and petroleum in freshwater into non‐toxic chemical forms or concentrations. Rates of TCE degradation due to cavitation ranged from 0.010 to 0.026 min‐1 with corresponding half‐lives of 69 to 27 min. Compared to controls, degradation of petroleum in water by cavitation was not detected in these experiments. After treatment in anaerobic wetland reactors, TCE and PCE decreased by more than 99 % under two flow regimes (5‐d and 20‐d HRT). In reciprocating constructed wetland reactors receiving petroleum, mean COD, BOD5, and total Zn decreased by 90.0, 88.8, and 86.8 %, respectively, in wetland outflows compared to the initial conditions (96‐h HRT). Percent survival (96‐h) of D. magna and P. promelas increased from zero percent in initial conditions to 80.1 (± 18.9) and 80.0 (± 21.4) %, respectively, after treatment in the constructed wetland reactors. The experimental results obtained in the laboratory‐scale set‐up and the theoretical model for the hybrid reactor concept will be used to obtain the intrinsic kinetic coefficients for the appropriate reactors. This kinetic information will be used to scale‐up the hybrid reactor model concept for the same level of pollutant removal.  相似文献   

15.
The introduced parasitoid,Aphytis melinusDeBach (Hymenoptera: Aphelinidae), is used for augmentative biological control of California red scale,Aonidiella aurantii(Maskell) (Homoptera: Diaspididae). Commercially reared wasps are reared on oleander scale,Aspidiotus neriiBouché (Homoptera: Diaspididae). Oleander scale covers lack the chemical,O-caffeoyltyrosine, a kairomone mediating host selection byA. melinus.Wasps reared on oleander scale but individually exposed, or primed, toO-caffeoyltyrosine more readily accepted California red scale for probing in laboratory bioassays and parasitized a greater proportion of available California red scale in the field than wasps reared similarly but not exposed toO-caffeoyltyrosine. Thus, it may be possible to improve host recognition of commercial, insectary-rearedA. melinusby exposing them toO-caffeoyltyrosine prior to release. The goal of this study was to develop an inexpensive but effective means of priming thousands of wasps simultaneously toO-caffeoyltyrosine. The most effective method, but potentially the most expensive, was simply to spray parasitized oleander scale on their host plant with diluteO-caffeoyltyrosine prior to wasp emergence. In additional experiments, using controlled doses of syntheticO-caffeoyltyrosine applied to scale covers, we showed that primed wasps require both a lower minimum dose ofO-caffeoyltyrosine for recognition and also respond to measuredO-caffeoyltyrosine doses more consistently than unprimed wasps. The ability to mass-prime thousands of wasps prior to release is a crucial step toward realizing the concept of behavioral improvement of host selection of parasitoids on a commercial scale.  相似文献   

16.
The distribution and extent of chemical alarm signaling systems among some families of fishes, including the Cottidae, remains unclear. In laboratory experiments, we tested whether reticulate sculpins, Cottus perplexus, respond to chemical alarm signals released by injured conspecifics. Sculpins decreased movement following exposure to skin extracts from conspecifics, but did not respond to cues of syntopic speckled dace, Rhinichthyes osculus, or allotopic swordtails, Xiphophorous helleri. Additional tests demonstrated that the responses of sculpins to alarm cues were dependent on the hunger level of the test fish. Sculpins deprived of food for 2 days failed to respond to conspecific alarm cues, however, the same individuals fed to satiation did respond to alarm cues.  相似文献   

17.
Allozymic and morphometric variation was studied in 28 clones ofLemna minor. This variation was compared with the corresponding variation in four clones ofLemna gibba and four clones ofSpirodela polyrrhiza. A high level of allozymic variation was observed among the clones, despite having been grown under uniform laboratory conditions for several years and despite its quasi-exclusive clonal means of propagation. Based on degree of allozymic similarity,Spirodela polyrrhiza was distinguished from the twoLemna species but the latter species were genetically indistinguishable. Allozymic similarity among clones ofLemna minor was not related to morphometric similarity, nor was it related to the degree of geographic separation or climatic similarity of their sites of origin. The results suggest that allozymic variation among these clones ofLemna minor may be largely neutral and not a consequence of differential selection.  相似文献   

18.
This study isolated a novel erythritol-producing yeast strain, which is capable of growth at high osmolarity. Characteristics of the strain include asexual reproduction by multilateral budding, absence of extracellular starch-like compounds, and a negative Diazonium blue B color reaction. Phylogenetic analysis based on the 26S rDNA sequence and physiological analysis indicated that the strain belongs to the species Pseudozyma tsukubaensis and has been named P. tsukubaensis KN75. When P. tsukubaensis KN75 was cultured aerobically in a fed-batch culture with glucose as a carbon source, it produced 245 g/L of erythritol, corresponding to 2.86 g/L/h productivity and 61% yield, the highest erythritol yield ever reported by an erythritol-producing microorganism. Erythritol production was scaled up from a laboratory scale (7 L fermenter) to pilot (300 L) and plant (50,000 L) scales using the dissolved oxygen as a scale-up parameter. Erythritol production at the pilot and plant scales was similar to that at the laboratory scale, indicating that the production of erythritol by P. tsukubaensis KN75 holds commercial potential.  相似文献   

19.
The similarity in species composition between two communities generally decays as a function of increasing distance between them. Parasite communities in vertebrate definitive hosts follow this pattern but the respective relationship in intermediate invertebrate hosts of parasites with complex life cycles is unknown. In intermediate hosts, parasite communities are affected not only by the varying vagility of their definitive hosts (dispersing infective propagules) but also by the necessary coincidence of all their hosts in environmentally suitable localities. As intermediate hosts often hardly move they do not contribute to parasite dispersal. Hence, their parasite assemblages may decrease faster in similarity with increasing distance than those in highly mobile vertebrate definitive hosts. We use published field survey data to investigate distance decay of similarity in trematode communities from three prominent coastal molluscs of the Eastern North-Atlantic: the gastropods Littorina littorea and Hydrobia ulvae, and the bivalve Cerastoderma edule. We found that the similarity of trematode communities in all three hosts decayed with distance, independently of local sampling effort, and whether or not the parasites used the mollusc as first or second intermediate host in their life cycle. In H. ulvae, the halving distance (i.e. the distance that halves the similarity from its initial similarity at 1 km distance) for the trematode species using birds as definitive hosts was approximately two to three times larger than for species using fish. The initial similarities (estimated at 1 km distance) among trematode communities were relatively higher, whereas mean halving distances were lower, compared to published values for parasite communities in vertebrate hosts. We conclude that the vagility of definitive hosts accounts for a high similarity at the local scale, while the strong decay of similarity across regions is a consequence of the low probability that all necessary hosts and suitable environmental conditions coincide on a large scale.  相似文献   

20.
The worldwide colony-forming haptophyte phytoplankton Phaeocystis spp. are key organisms in trophic and biogeochemical processes in the ocean. Many organisms from protists to fish ingest cells and/or colonies of Phaeocystis. Reports on specific mortality of Phaeocystis in natural plankton or mixed prey due to grazing by zooplankton, especially protozooplankton, are still limited. Reported feeding rates vary widely for both crustaceans and protists feeding on even the same Phaeocystis types and sizes. Quantitative analysis of available data showed that: (1) laboratory-derived crustacean grazing rates on monocultures of Phaeocystis may have been overestimated compared to feeding in natural plankton communities, and should be treated with caution; (2) formation of colonies by P. globosa appeared to reduce predation by small copepods (e.g., Acartia, Pseudocalanus, Temora and Centropages), whereas large copepods (e.g., Calanus spp.) were able to feed on colonies of Phaeocystis pouchetii; (3) physiological differences between different growth states, species, strains, cell types, and laboratory culture versus natural assemblages may explain most of the variations in reported feeding rates; (4) chemical signaling between predator and prey may be a major factor controlling grazing on Phaeocystis; (5) it is unclear to what extent different zooplankton, especially protozooplankton, feed on the different life forms of Phaeocystis in situ. To better understand the mechanisms controlling zooplankton grazing in situ, future studies should aim at quantifying specific feeding rates on different Phaeocystis species, strains, cell types, prey sizes and growth states, and account for chemical signaling between the predator and prey. Recently developed molecular tools are promising approaches to achieve this goal in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号