首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Incorporation of L-[3H]fucose into glycoproteins was studied in R2, the giant neuron in the abdominal ganglion of Aplysia. [3H]fucose injected directly into the cell body of R2 was readily incorporated into glycoproteins which, as shown by autoradiography, were confined almost entirely to the injected neuron. Within 4 h after injection, 67% of the radioactivity in R2 had been incorporated into glycoproteins; at least 95% of these could be sedimented by centrifugation at 105,000 g, suggesting that they are associated with membranes. Extraction of the particulate fraction with sodium dodecyl sulfate (SDS), followed by gel filtration on Sephadex G-200 and polyacrylamide gel electrophoresis in SDS revealed the presence of only five major radioactive glycoprotein components which ranged in apparent molecular weight from 100,000 to 200,000 daltons. Similar results were obtained after intrasomatic injection of [3H]N-acetylgalactosamine. Mild acid hydrolysis of particulate fractions released all of the radioactivity in the form of fucose. When ganglia were incubated in the presence of [3H]fucose, radioactivity was preferentially incorporated into glial cells and connective tissue. In contrast to the relatively simple electrophoretic patterns obtained from cells injected with [3H]fucose, gel profiles of particulate fractions labeled with [14C]valine were much more complex.  相似文献   

2.
The incorporation of [3H]fucose in the somatotrophic and gonadotrophic cells of the rat adenohypophysis has been studied by electron microscope autoradiography to determine the site of synthesis of glycoproteins and to follow the migration of newly synthesized glycoproteins. The pituitaries were fixed 5 min, 20 min, 1 h, and 4 h after the in vivo injection of [3H]fucose and autoradiographs analyzed quantitatively. At 5 min after [3H]fucose administration, 80–90% of the silver grains were localized over the Golgi apparatus in both somatotrophs and gonadotrophs. By 20 min, the Golgi apparatus was still labeled and some radioactivity appeared over granules. At 1 h and 4 h, silver grains were found predominantly over secretory granules. The kinetic analysis showed that in both protein-secreting cells (somatotrophs) and glycoprotein-secreting cells (gonadotrophs), the glycoproteins have their synthesis completed in the Golgi apparatus and migrate subsequently to the secretory granules. It is concluded from these in vivo studies that glycoproteins which are not hormones are utilized for the formation of the matrix and/or of the membrane of the secretory granules. The incorporation of [3H]fucose in gonadectomy cells (hyperstimulated gonadotrophs) was also studied in vitro after pulse labeling of pituitary fragments in medium containing [3H]fucose. The incorporation of [3H]fucose was localized in both the rough endoplasmic reticulum (ER) and the Golgi apparatus. Later, the radioactivity over granules increased while that over the Golgi apparatus decreased. The concentration of silver grains over the dilated cisternae of the rough ER was not found to be modified at the longest time intervals studied.  相似文献   

3.
Abstract— Seventeen day old rats were injected intraocularly with a phospholipid precursor, [32P]phosphate, and a glycoprotein precursor, [3H]fucose. Animals were killed between 1 h and 21 days later, and structures of the visual pathway (retina, optic nerve, optic tract, lateral geniculate body, and superior colliculus) were dissected. Radioactivity in phospholipids ([32P] in solvent-extracted material) and in glycoproteins ([3H] in solvent-extracted residue) was determined. Incorporation of [3H]fucose into retinal glycoproteins peaked at 6–8 h. Labelled glycoproteins were present in superior colliculus by 2h after injection, indicating a rapid rate of transport; maximal labelling was at 8–10 h after injection. Incorporation of [32P]phosphate into retinal phospholipids peaked at 1 day after injection. Phospholipids were also rapidly transported since label was present in the superior colliculus by 3 h after injection: however, maximal labelling did not occur until 5–6 days. These results indicate that newly synthesized phospholipids enter a preexisting pool, part of which is later committed to transport at a rapid rate. Transported phospholipids were catabolized at the nerve endings with a maximum half-life of several days; there was minimal recycling of precursor label. Lipids were fractionated by thin-layer chromatography, and radioactivity in individual phospholipid classes determined. Choline and ethanolamine phosphoglycerides were the major transported phospholipids, together accounting for approx 85% of the total transported lipid radioactivity. At early time points, the ratio of radioactivity in choline phosphoglycerides to that in ethanolamine phosphoglycerides increased in structures progressively removed from the site of synthesis (retina) but by 2 days approached a constant value. In each structure, choline phosphoglyceride-ethanolamine phosphoglyceride radioactivity ratios decreased with time, rapidly at first, but plateaued by 2 days. These results indicate that choline phosphoglycerides are committed to transport sooner than ethanolamine phosphoglycerides. Some experiments were also conducted using [2-3H]glycerol as a phospholipid precursor. Results concerning incorporation of this precursor into individual phospholipid classes and their subsequent axonal transport were comparable to those obtained using [32P]phosphate, with the following exceptions: (a) incorporation of [2-3H]glycerol into retinal phospholipids was relatively rapid (near-maximal levels at 1 h after injection) although transport to the superior colliculus showed an extended time course very similar to [32P]-labelled lipids; (b) [2-3H]glycerol was somewhat less efficient than [32P]phosphate in labelling lipids committed to transport relative to labelling those which remained in the retina; and (c) [2-3H]glycerol did not label plasmalogens.  相似文献   

4.
The biosynthesis and intracellular transport of glycoproteins in duodenal absorptive cells of intact rats at 6 and 24 days and hypophysectomized rats at 24 days of age were studied after 20 min intralumenal pulse-labeling of d-[3H]galactose, l-[3H]fucose, or d-[3H]mannose. Autoradiographic studies showed that the incorporation of sugars increased significantly in intact rats between 6 and 24 days. When rats were hypophysectomized at 6 days of age, the intestinal epithelium at 24 days incorporated d-[3H]galactose at a level significantly lower than that of intact rats at 24 days. Hypophysectomy also interfered with the developmental increase in d-[3H]mannose, but not in l-[3H]fucose, incorporation. Biochemical study indicated that the radioactivity in the lipid-free acid-precipitable glycoproteins in the intestine of 24-day-old intact rats at 20 min after d-[3H]galactose injection was 129% and 97% higher than that in 6-day-old rats and in 24-day-old hypophysectomized rats, respectively. The patterns of intracellular transport of newly synthesized galactosylated or fucosylated glycoproteins in all animal groups were similar; the labeled glycoproteins were initially present in the Golgi and were transported through the smooth endoplasmic reticulum to either the lateral membrane or the brush-border membrane within 60 min after the injection of labeled sugars. The proportion of labeled glycoproteins that migrated to the brush-border membrane, however, increased about twofold in the intact rats between 6 and 24 days of age at 60–240 min after d-[3H]galactose injection. Hypophysectomy interfered with developmental increase in the transport of glycoproteins from the apical cytoplasm to the brush-border membrane. It was concluded that the incorporation of monosaccharide precursors into glycoproteins and the porportion of newly synthesized galactosylated or fucosylated glycoproteins transported to the brush-border membrane increase during postnatal development. The developmental changes are regulated, at least partially, by the pituitary gland.  相似文献   

5.
The metabolism of neuroblastoma cell glycoproteins was examined using l-[3H]fucose. Incubation of monolayer cultures with [3H]fucose resulted in a rapid uptake of the radioactive precursor and its incorporation into acid-insoluble macromolecules. Less than 3% of the [3H]fucose that was isolated from neuroblastoma cells by trichloroacetic acid precipitation was associated with glycolipids. The metabolism of fucosylated macromolecules was studied in cells which were labelled to a steady state, and then reincubated under conditions which limited reutilization of the radioactive precursor (40 mM unlabelled fucose). During reincubation of the cells, we observed a rapid metabolism (27% by 2 h)_ of the prelabelled macromolecules which stabilized within a cell generation time to give an overall rate of turnover of 9%. This rapid loss of radioactivity from the cells was not due to exocytosis since less than 4% of the [3H]-fucose was lost into the media as macromolecules during a 5 h reincubation period. The presence of 40 mM fucose in the media did not affect cell growth until after 24 h of incubation or cellular synthesis until after 15 h of incubation. When the metabolism of neuroblastoma cell glycoproteins was measured in the presence of 1.8 · 10?4 M cycloheximide, there appeared to be a less rapid decrease in cell-associated specific activity, and an increased reutilization of [3H]fucose. Although the major proportion of the radioactivity remained as [3H]fucose, extensive incubation of neuroblastoma cells with this radioactive precursor led to increased amounts of tritium associated with other cellular components. However, a rapid rate of glycoprotein metabolism could also be demonstrated with cells incubated with [4C]fucose. This eliminated the possibility that the above results were restricted to the tritiated precursor and merely a reflection of hydrogen-tritium exchange.  相似文献   

6.
Synopsis The three major types of glycoproteins present in animal cells, that is, the secretory, lysosomal and plasma membrane glycoproteins, were examined with regard to the sites of synthesis of their carbohydrate side chains and to their subsequent migration within cells.The site at which a monosaccharide is added to a growing glycoprotein depends on the position of that monosaccharide in the carbohydrate side-chain. Thus, radiauutography of thyroid cells within minutes of the intravenous injection of labelled mannose, a sugar located near the base of the larger side-chains, reveals that it is incorporated in rough endoplasmic reticulum, whereas the more distally located galactose and fucose are incorporated in the Golgi apparatus. Recently [3H]N-acetylmannosamine, a specific precursor for the terminally located sialic acid residues, was shown to be also added in the Golgi apparatus. Presumably synthesis of glycoproteins is completed in this organelle.Radioautographs of animals sacrificed a few hours after injection of [3H]N-acetylmannosamine show that, in many secretory cells, labelled glycoproteins pass into secretory products. In these cells, as well as in non-secretory cells, the label may also appear within lysosomes and at the cell surface. In the latter site, it is presumably included within the plasma membrane glycoproteins whose carbohydrate side-chains form the cell coat. The continual migration of glycoproteins from Golgi apparatus to cell surface implies turnover of plasma membrane glycoproteins. Radioautographic quantitation of [3H]fucose label at the surface of proximal tubule cells in the kidney of singly-injected adult mice have shown that, after an initial peak, cell surface labelling decreases at a rate indicating a half-life of plasma membrane glycoproteins of about three days.  相似文献   

7.
Summary Organ cultures of human surgical specimens can be used to investigate glycoprotein production in vitro under conditions in which three-dimensional tissue structures and cell-cell interactions resemble those present in vivo. In this report, an organ-culture system is used to investigate the synthesis, transport and release of glycoprotein by normal and benign hyperplastic human mammary epithelium. Autoradiography of explants pulse-labeled with individual glycoprotein precursors ([3H]glucosamine, [3H]fucose, [3H]acetylmanosamine) and maintained in organ culture for intervals up to 72hr revealed that glycoprotein is synthesized and then secreted by mammary epithelium. Incorporation of each isotope took place in the Golgi apparatus. Most of the newly synthesized glycoprotein, labeled with each of the three precursors, then was transported to apical cell surfaces and secreted into gland lumina. Observations were indistinguishable in normal and benign hyperplastic glands. Thus nonlactating human mammary epithelium exhibits a glycoprotein secretory activity. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of [3H]glucosamine-labeled macromolecules released into the medium showed a group of glycoproteins with a molecular weight of 48,000±6,000 daltons plus high-molecular-weight glycosylated components at the top of gels. The nature of gp48 is not known, but similar molecular-weight glycoproteins also are released by surgical specimens of human mammary cancer maintained in organ culture. Z. A. T. received support from NCI Grant No. CA-14089.  相似文献   

8.
Rapid axonal transport of glycoproteins was examined in the retinofugal projections of hypothermic and normothermic adult male Long-Evans hooded rats previously receiving intraocular injections of [3H]fucose. The amount of retinal fucosylation appeared normal in the hypothermic animals 3.5 h after isotope injection, but glycoprotein transport was reduced relative to normothermic controls. This reduction was especially pronounced in the most distal structure of the retinofugal tract (superior colliculus). We conclude that rapid axonal transport decreases with reductions in mammalian body temperature. This finding emphasizes the importance of controlling body temperature in in vivo studies of mammalian axonal transport.  相似文献   

9.
The effects of tunicamycin on protein glycosylation and cell differentiation were examined during early development of Dictyostelium discoideum. Tunicamycin inhibited cell growth reversibly in liquid medium. At a concentration of 3 μg/ml, tunicamycin completely inhibited morphogenesis and cell differentiation in developing cells. These cells remained as a smooth lawn and failed to undergo chemotactic migration. The expression of EDTA-resistant contact sites was also inhibited. The inhibition by tunicamycin was reversible if cells were washed free of the drug within the first 10 hr of incubation. After 12 hr of development, cells were protected from the drug by the sheath. When cells were treated with tunicamycin during the first 10 hr of development, incorporation of [3H]mannose and [3H] fucose was inhibited by approximately 75% within 45 min while no significant inhibition of [3H]leucine incorporation was observed during the initial 3 hr of drug treatment. The inhibition of protein glycosylation was further evidenced by the reduction in number of glycoproteins “stained” with 125I-labelled con A. A number of developmentally regulated high-molecular-weight glycoproteins, including the contact site A glycoprotein (gp80), were undetectable when cells were labelled with [3H]fucose in the presence of tunicamycin. It is therefore evident that glycoproteins with N-glycosidically linked carbohydrate moieties may play a crucial role in intercellular cohesiveness and early development of D. discoideum.  相似文献   

10.
Abstract— The characteristics of a rapidly labelled and rapidly transported neuronal perikaryal protein fraction (Rose & Sinha . 1974a) were investigated in three experiments. (1) The kinetics of labelling of neuronal cell body and neuropil fractions from [3H]fucose were followed and shown to be similar to those from [3H]lysine, the label first appearing in the neuronal fraction and then being exported. The neuronal/neuropil incorporation ratio fell from 1.37 at 1 h to 0.77 at 4 h. (2) When cycloheximide (5 mg/kg) was injected intraperitoneally 15 min after [3H]lysine, incorporation into neuronal protein was inhibited to a greater extent (85%) than into neuropil (60%). (3) Colchicine was injected at a dose (40 μg/kg) sufficient to prevent accumulation of radioactively labelled protein into synaptosomes but insufficient to affect total incorporation of precursor into protein. [3H]Lysine was injected 1 h after colchicine and neurons and neuropil fractions made 1 h and 4 h later; colchicine inhibited the export of labelled protein from the neuronal perikaryon and its accumulation in the neuropil. We conclude that the rapidly labelled neuronal protein is partially glycoprotein in character and may be normally transported from the cell body by way of the axonal/(dendritic?) flow mechanism.  相似文献   

11.
A single intravenous injection of L-[3H]fucose, a specific glycoprotein precursor, was given to young 35–45 g rats which were sacrificed at times varying between 2 min and 30 h later. Radioautography of over 50 cell types, including renewing and nonrenewing cells, was carried out for light and electron microscope study. At early time intervals (2–10 min after injection), light microscope radioautography showed a reaction over nearly all cells investigated in the form of a discrete clump of silver grains over the Golgi region. This reaction varied in intensity and duration from cell type to cell type. Electron microscope radioautographs of duodenal villus columnar cells and kidney proximal and distal tubule cells at early time intervals revealed that the silver grains were restricted to Golgi saccules. These observations are interpreted to mean that glycoproteins undergoing synthesis incorporate fucose in the saccules of the Golgi apparatus. Since fucose occurs as a terminal residue in the carbohydrate side chains of glycoproteins, the Golgi saccules would be the site of completion of synthesis of these side chains. At later time intervals, light and electron microscope radioautography demonstrated a decrease in the reaction intensity of the Golgi region, while reactions appeared over other parts of the cells: lysosomes, secretory material, and plasma membrane. The intensity of the reactions observed over the plasma membrane varied considerably in various cell types; furthermore the reactions were restricted to the apical surface in some types, but extended to the whole surface in others. Since the plasma membrane is covered by a "cell coat" composed of the carbohydrate-rich portions of membrane glycoproteins, it is concluded that newly formed glycoproteins, after acquiring fucose in the Golgi apparatus, migrate to the cell surface to contribute to the cell coat. This contribution implies turnover of cell coat glycoproteins, at least in nonrenewing cell types, such as those of kidney tubules. In the young cells of renewing populations, e.g. those of gastro-intestinal epithelia, the new glycoproteins seem to contribute to the growth as well as the turnover of the cell coat. The differences in reactivity among different cell types and cell surfaces imply considerable differences in the turnover rates of the cell coats.  相似文献   

12.
When monolayer cultures of neuroblastoma N2a cells were prelabelled with [3H]fucose to steady state, and then reincubated in complete medium in the presence of unlabelled 40mm-l-fucose, there was a rapid metabolism of fucosylated cellular macromolecules and the specific radioactivity of the acid-insoluble material decreased by 22% within 2h. After this period of time the remaining radioactive glycoproteins appeared to be more stable and the rate of loss of specific radioactivity markedly decreased. Since fucose is known to be associated predominantly with plasma-membrane components, the analysis of fucosylated glycoproteins was characterized in plasma-membrane fractions by polyacrylamide-gel electrophoresis. Two experimental approaches were used to measure glycoprotein degradation and turnover in the cell-surface membranes. In one set of experiments, with a similar incubation procedure to that used with intact cells, three membrane components were rapidly degraded (150000, 130000 and 48000 daltons), but another surface glycoprotein (68000 daltons) appeared to be more slowly metabolized than the mean rate of glycoprotein degradation. The relationship of the degradation of membrane glycoproteins to their turnover was analysed by dual-label experiments that used both [14C]fucose and [3H]fucose. Glycoproteins of the surface membrane of neuroblastoma cells were found to turn over at heterogeneous rates. The components mentioned above that exhibited significantly rapid rates of degradation, were also shown to turn over more rapidly than the average surface component. In addition to the membrane components detected by the use of only [3H]fucose, dual-label experiments illustrated that numerous surface glycoproteins were metabolized more rapidly or slowly than most of the cell-surface constituents.  相似文献   

13.
We investigated some effects of prostaglandin E1 on the metabolism of rat parathyroid glands using a culture system containing basal Eagle's medium supplemented with 5–10% heat-inactivated rat serum. Rat parathyroid glands incorporate [3H]fucose and 14C-labeled amino acids into cellular glycoproteins and secrete some of these into the culture medium. Gel filtration chromatography separates these glycoproteins into three classes, the smallest of which (peak 3) is secreted with immunoreactive parathyroid hormone. In cultures of 48 h, prostaglandin E1 (1 μg/ml) specifically inhibits the secretion of peak 3 and of parathyroid hormone but has no effect on the incorporation of [3H]-fucose, 14C-labeled amino acids, or [3H]uridine into parathyroid glands. Cytochalasin B inhibits the secretion of parathyroid hormone and the incroporation of isotopic fucose and amino acids. Cortisol stimulates incorporation of [3H]fucose and the secretion of parathyroid hormone even in the presence of inhibitory doses of prostaglandin E1. It is concluded that, in organ culture, prostaglandin E1 inhibits the secretion of parathyroid hormone and of a specific glycoprotein the function of which may be related to the secretion of the hormone.  相似文献   

14.
—Rabbit vagus nerves and nodose ganglia were incubated in vitro for up to 24 h in two-compartment chambers. After the introduction of [3H]leucine or [3H]fucose to the ganglion compartments a rapid anterograde axonal transport of labelled proteins or glycoproteins occurred at rates of 330 ± 44 mm/day and 336 ± 30 mm/day respectively. Accumulation of [3H]leucine-labelled proteins proximal to a ligature on the nerve was unaffected by a delay of up to 6 h between removal of the nerve and labelling in vitro. Accumulation was prevented by inhibition of protein synthesis in the ganglion but not in the axon and was inhibited in a graded manner by colchicine.  相似文献   

15.
Disposition of fucose in brain   总被引:6,自引:4,他引:2  
Abstract— Labelled fucose administered to rats in vivo was rapidly incorporated into brain glycoproteins, but not into any other brain constituents, including glycolipids and acid mucopolysaccharides. Maximum incorporation of tritium-labelled fucose into brain glyco-proteins occurred 3–6 h after intraperitoneal injection in young or adult rats, and the half-time for the turnover of glycoprotein-fucose in young rats was approximately 2 weeks. Within 3 h after the administration of either [1-3H]fucose or fucose generally labelled with tritium, 75 per cent of the total acid-soluble radioactivity in plasma and brain was found to be volatile, and by 24 h after injection more than 90 per cent of the acid-soluble radioactivity was volatile. The tritium in labelled fiicose appears to undergo arapid exchange reaction with hydrogen atoms in body water, although the tritium in fucose glycosidically- linked to glycoproteins is biologically stable. The rapid disappearance of labelled free fucose from the plasma and tissues of the rat precludes the possibility of any significant degree of reutilization of labelled precursor, and provides support for other data indicating that the turnover of fucose in brain glycoproteins is relatively slow in comparison to that of hexosamine and sialic acid. Activities of α-L-fucosidase in rat brain, with pH optima at 40 and 6.0, had essentially the same Km (4 × 10?4 M and 3.2 × 10?4 M, respectively) with p-nitrophenyl-α-L-fucopyranoside as substrate. Activities of both were competitively inhibited by L-fucose. However, the Kt measured at pH 4 (1.9 × 10?2) was almost ten times greater than that measured at pH 6 (1.5 × 10?4).  相似文献   

16.
Dorsal root ganglia were removed from adult bullfrogs and incubated with [3H]fucose for intervals from 15 min to 1 h, followed by fixation. Some ganglia were post-incubated in the absence of [3H]fucose for up to 17 h. In additional in vivo experiments, young frogs were injected with [3H]fucose, and killed 30 min or 1 h later, and then ganglia were removed and fixed. Electron microscope radioautographs of the ganglia revealed an intense radioautographic reaction over the nuclei of Schwann and satellite cells as early as 5 min after initial exposure to [3H]fucose. At time intervals up to 2 h after initial exposure to [3H]fucose, the silver grains were evenly distributed over both the periphery and internal regions of the nucleus, while at 18 h they were localized to the cell periphery. In occasional cells, the perinuclear space was expanded in some areas and was the site of reaction. In young rats, injected with [3H]galactose and killed 15 min to 5 h later, electron microscope radioautographs revealed heavy reaction over the nuclei of duodenal villous and crypt columnar cells, in which the grains were evenly distributed over both the peripheral and internal regions. In mitotic cells, grains appeared to be associated with the condensed chromatin of forming chromosomes. These results provide strong evidence that glycoproteins exist in the nuclei of the above cell types and that they are actively renewed. The rapid appearance of nuclear reaction after initial exposure to [3H]fucose or [3H]galactose indicates that either these sugars are added to glycoproteins within the nucleus itself or that they migrate rapidly to this site after having been glycosylated elsewhere.  相似文献   

17.
1. Confluent human skin fibroblasts maintained in a chemically defined medium incorporate l-[1-3H]fucose in a linear manner with time into non-diffusible macromolecules for up to 48h. Chromatographic analysis demonstrated that virtually all the macromolecule-associated 3H was present as [3H]fucose. 2. Equilibrium CsCl-density-gradient centrifugation established that [3H]fucose-labelled macromolecules released into the medium were predominantly glycoproteins. Confirmation of this finding was provided by molecular-size analyses of the [3H]fucose-labelled material before and after trypsin digestion. 3. The [3H]fucose-labelled glycoproteins released into fibroblast culture medium were analysed by gel-filtration chromatography and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. These techniques demonstrated that the major fucosylated glycoprotein had an apparent mol.wt. of 230000–250000; several minor labelled species were also detected. 4. Dual-labelling experiments with [3H]fucose and 14C-labelled amino acids indicated that the major fucosylated glycoprotein was synthesized de novo by cultured fibroblasts. The non-collagenous nature of this glycoprotein was established by three independent methods. 5. Gel-filtration analysis before and after reduction with dithiothreitol showed that the major glycoprotein occurs as a disulphide-bonded dimer when analysed under denaturing conditions. Further experiments demonstrated that this glycoprotein was the predominant labelled species released into the medium when fibroblasts were incubated with [35S]cysteine. 6. The relationship between the major fucosylated glycoprotein and a glycoprotein, or group of glycoproteins, variously known as fibronectin, LETS protein, cell-surface protein etc., is discussed.  相似文献   

18.
The in vivo incorporation of [3 5S]sulfate and [3H]fucose into rat brain myelin was investigated. Most of the 3 5S in the myelin was in sulfatide, but about 4% was associated with the residual proteins after chloroform/methanol extraction. Polyacrylamide gel electrophoresis of these proteins indicated that the major 3 5S-labeled component corresponded to the major fucose-labeled glycoprotein. The labeling of this predominant glycoprotein with sulfate was more selective than with fucose, since there was relatively little incorporation of sulfate into some of the minor fucose-labeled glycoproteins. There was little or no 3 5S associated with proteolipid or basic protein on polyacrylamide gels. The fucose-labeled glycoproteins were converted to glycopeptides by pronase digestion and separated into two major classes by gel filtration on Sephadex-G50. Only the higher molecular weight class contained significant amounts of 3 5S. The association of 3 5S with the glycopeptides was not due to binding of sulfatide or free inorganic sulfate. The results indicate that the predominant myelin-associated glycoprotein in rat brain is sulfated.  相似文献   

19.
—[3H]Leucine, [3H]glucosamine and [3H]fucose were incorporated in vitro into proteins in frog sciatic ganglia and subsequently transported at a rapid rate along the sciatic nerve towards a ligature, in front of which they accumulated. The synthesis of transported fucose-labelled proteins is closely linked to protein synthesis but is not dependent on RNA synthesis, as judged by effects after incubation for 17 h in the presence of cycloheximide and actinomycin D. Labelled ganglionic as well as transported material were solubilized in sodium dodecyl sulphate and characterized by polyacrylamide gel electrophoresis. The bulk of ganglionic proteins, labelled with any of the precursors used, had molecular weights exceeding 40,000. The radioactivity patterns of leucine- and glucosamine-labelled ganglionic proteins showed similarities with dominant peaks corresponding to molecular weights of about 75,000 and 50,000. The last peak was almost lacking in fucose-labelled ganglionic components. Leucine- and glucosamine labelled-transported proteins exhibited characteristic and similar electrophoretic distributions in contrast to the pattern of fucose-labelled nerve proteins, which was more polydisperse. The most conspicious nerve proteins corresponded to molecular weights of about 75,000 and 18,000. There was a remarkable agreement in the profile of leucine-labelled transported nerve proteins and fucose-labelled ganglionic proteins. In the light of these observations the possibility that glycoproteins constitute a large part of rapidly transported proteins will be discussed.  相似文献   

20.
[3H]Choline, injected directly into the major axon of the identified cholinergic neuron R2, was readily incorporated into [3H]acetylcholine. Its metabolic fate was similar to that of [3H]choline injected into the cell body of R2. Over the range injected, we found that the amounts of acetylcholine formed were proportional to the amounts injected; the synthetic capability was not exceeded even when 88 pmol of [3H]choline were injected into the axon. Newly synthesized acetylcholine moved within the axon with the kinetics expected of diffusion. We could not detect any selective orthograde or retrograde transport from the site of the injection. In contrast, as indicated by experiments with colchicine, 30% of the [3H]acetylcholine formed after intrasomatic injection was selectively exported from the cell body and transported along the axon. Most of the [3H]acetylcholine was recovered in the soluble fraction after both intra-axonal and intrasomatic injection of [3H]choline; only a small fraction was particulate. The significance of large amounts of soluble acetylcholine in R2 is uncertain, and some may occur physiologically. The concentrations of choline introduced by intraneuronal injection into both cell body and axon were, however, greater than those normally available to choline acetyltransferase in the cholinergic neuron; nevertheless, these large concentrations were efficiently converted into the transmitter. The synthetic capacity of the neuron supplied with injected choline may exceed the capacity of storage vesicles and of the axonal transport process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号