首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
GH4C1 cells are a rat pituitary tumor cell strain in which the level of cellular prolactin (PRL) and PRL-containing secretory granules can be regulated by hormone treatment. The chromogranins/secretogranins (Sg) are a family of secretory proteins which are widely distributed in the secretory granules of endocrine and neuronal cells. In the present study, we investigated in GH4C1 cell cultures the regulation of the cell content of the Sg by immunoblotting and the relationship between the storage of Sg I and Sg II and PRL by double immunocytochemistry. GH4C1 cells grown in the presence of gelded horse serum, a condition in which these cells contain a low level of secretory granules, contained low levels of PRL, Sg I, and Sg II. Treatment of GH4C1 cells with a combination of 17 beta-estradiol, insulin, and epidermal growth factor for 3 days, known to induce a marked increase in the number of secretory granules, increased the cell contents of PRL, Sg I, and Sg II. To determine whether the induction of PRL was morphologically associated with that of the Sg, the distribution of PRL and the Sg was determined by double immunofluorescence microscopy. After hormone treatment, 54% of cells showed positive PRL immunoreactivity, fluorescence being extranuclear and consistent with staining of the Golgi zone and secretory granules. Forty-six percent of PRL-positive cells stained coincidently for Sg I, while 72% of the PRL cells were also reactive with anti-Sg II. To determine whether PRL storage was associated with storage of at least one of the Sg, cells were stained with anti-PRL and anti-Sg I and anti-Sg II together. Eighty-six percent of PRL cells stained for one or the other of the Sg. Therefore, PRL storage in GH4C1 cell cultures is closely but not completely associated with the storage of Sg I and/or II.  相似文献   

2.
We investigated the co-localization in secretory granules of secretogranins/chromogranins, thyrotropin, and luteinizing hormone in ultra-thin frozen sections of cow anterior pituitary by double immunoelectron microscopy, using specific antibodies and protein A-gold particles of different sizes. The distribution of secretogranin II, chromogranin A, and chromogranin B (secretogranin I) was largely similar. In cells containing secretory granules of relatively small size (100-300 nm) and low electron density (identified as thyrotrophs and gonadotrophs by immunolabeling for the respective hormone) and in cells containing both small (170-250 nm) and large (300-500 nm) secretory granules of low electron density (also identified as gonadotrophs), all three secretogranins/chromogranins were detected in most if not all granules, being co-localized with the hormone. In cells containing both relatively large (400-550 nm), electron-dense granules and small, less electron-dense secretory granules (150-300 nm), identified as somatomammotrophs by double immunolabeling for growth hormone and prolactin, all three secretogranins/chromogranins were predominantly detected in the subpopulation of small, less electron-dense granules containing neither growth hormone nor prolactin. Interestingly, this granule subpopulation of somatomammotrophs was also immunoreactive for thyrotropin and luteinizing hormone. These data show that somatomammotrophs of cow anterior pituitary are highly multihormonal, in that the same cell can produce and store in secretory granules up to four different hormones and, in addition, the three secretogranins/chromogranins. Moreover, selective localization of the secretogranins/chromogranins together with thyrotropin and luteinizing hormone in a subpopulation of secretory granules of somatomammotrophs indicates the preferential co-packaging of the secretogranins/chromogranins and these hormones during secretory granule formation.  相似文献   

3.
Growth hormone (GH), prolactin (PRL), and mammosomatotrope (MS) cells of gilthead sea bream, Sparus aurata, a teleost fish, were studied in specimens from hatching to 15 months (adults) using conventional electron microscopy and an immunogold method using anti-tilapia GH sera and anti-chum salmon PRL serum. MS cells, immunoreactive to both anti-GH sera and anti-PRL sera, had been first identified in fish in a previous study in newly hatched larvae and in older larvae and juvenile specimens of Sparus aurata by light microscopic immunocytochemistry. In the present work, MS cells reacted positively to immunogold label only in older larvae and juveniles and their secretory granules immunoreacted with both GH and PRL antisera or with only one of them. MS cells were ultrastructurally similar to the PRL cells, with which they coincided in time. This is the first report on the ultrastructural characterization of MS cells in fish. In adults, the secretory granules of GH cells (immunoreactive to anti-GH serum) were mainly round, of variable size, and had a homogeneous, highly electron-dense content. Irregularly shaped secretory granules were also present. PRL cells (immunoreactive to anti-PRL serum) were usually observed in a follicular arrangement; they showed few, small, and mainly round secretory granules with a homogeneous and high or medium electron-dense content. Some oval or elongated secretory granules were also observed. GH and PRL cells that showed involutive features were also found. In newly hatched larvae, GH, PRL, and MS cells could not be distinguished either by their ultrastructure or by the immunogold labeling of the secretory granules. In 1-day-old larvae, presumptive GH and PRL cells were observed according to their position in the pituitary gland. In 2-day-old larvae, a few cells showed some of the ultrastructural features described for GH and PRL cells of adults. During development, the number, size, and shape of the secretory granules in both cell types clearly increased and the organelles developed gradually. Some GH cells were found undergoing mitosis.  相似文献   

4.
Summary Two types of mammosomatotropes (MS), the small-granule and vesicle-granule MS, were detected in mouse adenohypophysis by electron microscopy and immunohistochemistry. Both cell-types were immunoreactive to prolactin (PRL) and growth hormone (GH) antisera. The small-granule MS contained small, round, solid secretory granules about 100 nm in diameter, and were smaller than the classical GH and PRL cell-types. The vesicle-granule MS contained secretory granules like cored vesicles, and were larger than classical GH and PRL cells. Small-granule MS were immunoreactive to both PRL and GH antisera in the same region of the cell cytoplasm; the vesicle-granule MS, however, were immunoreactive to only PRL antiserum in most cytoplasmic areas, and a positive response to both PRL and GH antisera was confined to only certain small areas.  相似文献   

5.
Tachibana T  Ito T 《Human cell》2003,16(4):205-215
In order to elucidate the effects of hypothalamic regulation on the morphology of GH cells, light and electron microscopic immunocytochemical examinations were carried out comparing GH cells in the anterior pituitary gland of anencephalic fetus with those of normal fetuses. Three types of GH cells were identified in the anterior pituitary gland of anencephalic fetus as well as in the normal fetus. Type-I is a small, round cell containing a few small secretory granules. Type-III is a large, polygonal cell with numerous large secretory granules. Type-II is a polygonal cell with medium-sized secretory granules. The Type-II GH cell was predominant in both anencephalic and normal fetuses. The most striking difference between anencephalic and normal fetuses was the presence of atypical forms of the Type II cell. These were polygonal cells containing secretory granules, which were either immunopositive or immunonegative to anti-human GH (anti-hGH) serum. Furthermore, two other types of GH cells were identified. The somatomammotroph (SM cell) contained GH and PRL in different granules within the same cell. Also, a different type of the GH cell was noted containing two varieties of secretory granules; one was immunolabeled only with anti-hGH and the other was not immunolabeled to either anti-hGH or anti-human PRL (anti-hPRL). From these results, we suggest that an absence of hypothalamic regulation in the anencehpalic does not seriously modify GH cell morphology but induces an altered GH storage pattern in some of the cells.  相似文献   

6.
Summary Growth hormone (GH) secretory cells were identified by immunogold cytochemistry, and were classified on the basis of the size of secretory granules. Type I cells contained large secretory granules (250\2-350 nm in diameter). Type II cells contained the large secretory granules and small secretory granules (100\2-150 nm in diameter). Type III cells contained the small secretory granules. The percentages of each GH cell type changed with aging in male and female rats of the Wistar/Tw strain. Type I cells predominated throughout development; the proportion of type I cell was highest at 6 months of age, and decreased thereafter. The proportion of type II and type III cells decreased from 1 month to 6 months of age, but then increased at 12 and 18 months of age. The pituitary content of GH was highest at 6 months of age, and decreased thereafter. Estrogen and androgen, which are known to affect GH secretion, caused changes in the proportion of each GH cell type. The results suggest that when GH secretion is more active the proportion of type I GH cell increased, and when GH secretion is less active the proportion of type II and type III cells increased. The type III GH cell may therefore be an immature type of GH cell, and the type I cell the mature type of GH cell. Type II cells may be intermediate between type I and III cells.  相似文献   

7.
Homozygous little (lit/lit) mutant mice exhibit a growth lag which is manifested at approximately two weeks postnatally. Functional aspects of the development of pituitary growth hormone (GH) cells and prolactin (PRL) cells were thus analyzed by means of colloidal gold immunocytochemistry at the ultrastructural level in lit/lit mice and their normal counterparts ranging in age from 5 days postnatally to adulthood. In the adult normal and lit/lit pituitaries, secretory granules in GH cells and PRL cells showed a positive immunoreaction to their respective antisera, as did granules in both cell-types at 5 days postnatally. By 14 days some GH cells in lit/lit pituitaries appeared to be less densely populated with granules than GH cells in normal pituitaries, but a positive immunoreaction continued to occur even in sparsely granulated GH cells. PRL cells showed ultrastructural features in lit/lit pituitaries which were similar to those in normal mice, and immunoreactivity was present at all stages examined. The results indicate that since differences in granule reactivity were not evident between lit/lit and normal GH cells, despite ultrastructural morphologic differences which were present by 14 days postnatally, manifestations of the defect in lit/lit may be primarily quantitative in terms of numbers of granules and/or numbers of GH cells. With respect to PRL cells, neither morphologic nor functional aberrations could be observed; thus, a deficit in PRL hormone production might be the result of a more subtle defect than that in GH cells.  相似文献   

8.
Recent immunoelectron microscopic studies have shown that immunoreactive prolactin (PRL) in rat pituitary can be detected not only in typical PRL cells, characterized by large secretory granules, but also in another type of cell, which contains small secretory granules. To determine whether or not these two cell types are involved in PRL biosynthesis, we developed a procedure to investigate PRL gene expression by using in situ hybridization at the ultrastructural level. Rat pituitary was fixed and vibratome sections were incubated with a PRL [35S]-cDNA probe and subsequently flat-embedded in Araldite. Semi-thin and ultra-thin sections were processed for autoradiography. The results indicate that only the two PRL cell types were labeled. When immunolabeling for PRL was applied to ultra-thin sections, only immunopositive cells were seen to contain silver grains. In these cells the silver grains were associated with the rough endoplasmic reticulum and nucleus. When a growth hormone (GH) [35S]-cDNA probe was used as a control, only GH-secreting cells were labeled. This study confirms that the two PRL cell types are involved in biosynthesis of PRL. Moreover, this simple in situ hybridization technique provides a new approach to accurately localize mRNA in complex tissue and to investigate the subcellular distribution of mRNA under differing experimental conditions.  相似文献   

9.
An immunohistochemical study of the anterior pituitary gland of the female Afghan pika was carried out to distinguish the ultrastructural features of GH, PRL, ACTH, TSH and LH cells. The histochemically identified GH cells resembled ultrastructurally oval or round GH cells of the rat laden with large, dense secretory granules. PRL cells were divided into three subtypes based on differences in the diameter of their spherical secretory granules. They lacked polymorphic or irregularly shaped secretory granules. ACTH cells resembled ultrastructurally, in some respects, Siperstein's "corticotrophs" of the rat with peripheral arrangement of secretory granules. However, they were not always stellate, but elongate or angular in shape. The dense secretory granules were concentrated in the peripheral area of cytoplasm. TSH cells were non-stellate, but usually oval in shape, containing the smallest spherical secretory granules (100-200 nm in diameter). Almost all LH cells reacted also with FSH antiserum. They were irregular in shape, sometimes in contact with or surrounded the GH cells. They contained an abundance of medium-sized secretory granules (140-260 nm in diameter) which were larger than those in the LH cells of the female rat throughout the estrous cycle. Large secretory granules in the LH cells of the female pika seemed to be related to the endocrine state of persistent estrus.  相似文献   

10.
The distribution of three proteins discharged by regulated exocytosis--growth hormone (GH), prolactin (PRL), and secretogranin II (SgII)--was investigated by double immunolabeling of ultrathin frozen sections in the acidophilic cells of the bovine pituitary. In mammotrophs, heavy PRL labeling was observed over secretory granule matrices (including the immature matrices at the trans Golgi surface) and also over Golgi cisternae. In contrast, in somatotrophs heavy GH labeling was restricted to the granule matrices; vesicles and tubules at the trans Golgi region showed some and the Golgi cisternae only sparse labeling. All somatotrophs and mammotrophs were heavily positive for GH and PRL, respectively, and were found to contain small amounts of the other hormone as well, which, however, was almost completely absent from granules, and was more concentrated in the Golgi complex, admixed with the predominant hormone. Mixed somatomammotrophs (approximately 26% of the acidophilic cells) were heavily positive for both GH and PRL. Although admixed within Golgi cisternae, the two hormones were stored separately within distinct granule types. A third type of granule was found to contain SgII. Spillage of small amounts of each of the three secretory proteins into granules containing predominantly another protein was common, but true intermixing (i.e., coexistence within single granules of comparable amounts of two proteins) was very rare. It is concluded that in the regulated pathway of acidophilic pituitary, cell mechanisms exist that cause sorting of the three secretory proteins investigated. Such mechanisms operate beyond the Golgi cisternae, possibly at the sites where condensation of secretion products into granule matrices takes place.  相似文献   

11.
Six GH adenomas and three prolactinomas were investigated by light- and electron-microscopic morphological and immunocytochemical methods and the effect of vasoactive intestinal polypeptide (VIP) on growth hormone (GH) and prolactin (PRL) secretion was tested in vitro. The tumour cells of the acromegalic patients revealed both GH and PRL immunoreactivity while prolactinomas showed only PRL activity. All the adenomas stained immunocytochemically also for VIP. By electron microscopy, the tumours included two densely and two sparsely granulated GH, two mixed GH/PRL, and three sparsely granulated PRL adenomas. The dissociated cells were explanted, and cultured in vitro. The cultures in micro test plates were treated with VIP at different concentrations between 10(-5)-10(-12) M. GH and PRL contents in the culture media were measured by radioimmunoassay. GH release was significantly stimulated by VIP in a dose-dependent manner over the whole concentration range, while VIP was effective on the PRL release only at 10(-6)-10(-7) M concentration. The cells of a mixed adenoma were grown in Petri dishes and used for ultrastructural and immunocytochemical studies. The cytoplasmic structure of the cells treated with VIP corresponded to that of active hormone-secreting cells with large ergastoplasmic fields and Golgi zones containing secretory granules. Massive exocytotic events were encountered mainly in the GH-type cells. GH and PRL double immunocytochemistry showed the predominance of GH cells, many of them containing low amounts of PRL as well. Cells predominantly containing PRL were spread among them, they also might contain GH as well. Some of the cells contained only a single immunoreactive hormone. The intensity of gold labelling of the secretory granules appeared higher in the VIP-treated cells than in the untreated control ones which showed a cytoplasmic structure characteristic of glandular cells with low secretory activity. As all the adenoma cells both contained and reacted to VIP, our results are in agreement with an autocrine or paracrine effect of this peptide. The fine structure of the cells in the cultures treated with VIP supply an additional argument to the assumption that VIP may serve as a growth factor for these cell types.  相似文献   

12.
《The Journal of cell biology》1983,96(5):1197-1207
Antibodies directed against membrane components of dog pancreas rough endoplasmic reticulum (A-RER) and rat liver Golgi apparatus (A-Golgi) (Louvard, D., H. Reggio, and G. Warren, 1982, J. Cell Biol. 92:92-107) have been applied to cultured rat prolactin (PRL) cells, either normal cells in primary cultures, or clonal GH3 cells. In normal PRL cells, the A-RER stained the membranes of the perinuclear cisternae as well as those of many parallel RER cisternae. The A-Golgi stained part of the Golgi membranes. In the stacks it stained the medial saccules and, with a decreasing intensity, the saccules of the trans side, as well as, in some cells, a linear cisterna in the center of the Golgi zone. It also stained the membrane of many small vesicles as well as that of lysosomelike structures in all cells. In contrast, it never stained the secretory granule membrane, except at the level of very few segregating granules on the trans face of the Golgi zone. In GH3 cells the A-RER stained the membrane of the perinuclear cisternae, as well as that of short discontinuous flat cisternae. The A-Golgi stained the same components of the Golgi zone as in normal PRL cells. In some cells of both types the A-Golgi also stained discontinuous patches on the plasma membrane and small vesicles fusing with the plasma membrane. Immunostaining of Golgi membranes revealed modifications of membrane flow in relation to either acute stimulation of PRL release by thyroliberin or inhibition of basal secretion by monensin.  相似文献   

13.
《The Journal of cell biology》1985,101(5):1999-2011
We report on the biochemical and immunological properties as well as on the cellular and subcellular distribution of two proteins, called secretogranins I and II. These proteins specifically occur in a wide variety of endocrine and neuronal cells that package and sort regulatory peptides into secretory granules. Both secretogranins take the same intracellular route as the peptides and are also sorted into secretory granules. Secretogranins I and II are biochemically and immunologically distinct proteins and differ from chromogranin A. Yet, these three proteins are similar to each other in many respects and therefore constitute one class of proteins. A remarkable feature of this protein class is a very acidic pI, brought about by a high content of acidic amino acids as well as by phosphorylation on serine and sulfation on tyrosine and O-linked carbohydrate. As a result, this class of proteins has a high net negative charge even at the acidic pH of the trans Golgi cisternae. We discuss the possibility that this property of the proteins may point to a role in the packaging of regulatory peptides into secretory granules.  相似文献   

14.
The granin (chromogranin/secretogranin) family   总被引:27,自引:0,他引:27  
The chromogranins/secretogranins, referred to in abbreviated form as granins, are a family of acidic secretory proteins that are found in the secretory granules of a wide variety of endocrine cells and neurons, being stored together with many different peptide hormones and neuropeptides. The recent elucidation of their primary structure has provided insights into possible functions of these proteins. Moreover, the granins have been successfully used as markers for normal and neoplastic endocrine and neuronal cells, as well as model proteins to understand the sorting mechanism involved in the formation of secretory granules.  相似文献   

15.
Seven human pituitary adenomas obtained by transphenoidal surgery were investigated for the intracellular localization of PRL and GH, using the protein A-gold immunocytochemical technique. Among the seven cases two were prolactinomas, two were GH-secreting adenomas and three were mixed PRL and GH-secreting adenomas. When PRL or GH were revealed, immunoreactivity was found in the cellular compartments involved in protein secretion, RER, Golgi apparatus and secretory granules of corresponding secreting cells. An increasing gradient in the intensity of labeling was observed from the RER to the Golgi and to the granules which may correspond to the increasing concentration of the proteins occurring along their secretory pathway. In addition, crinophagy or destruction of secretory granules by the lysosomal system was observed for both secretory cells. Cells displaying simultaneously PRL and GH reactivity were never found, neither in pure nor in mixed adenomas demonstrating that in the different adenomas studied, secreting cells have retained their specificity and differentiation for the secretion of a single hormone.  相似文献   

16.
Seven human pituitary adenomas obtained by transphenoidal surgery were investigated for the intracellular localization of PRL and GH, using the protein A-gold immunocytochemical technique. Among the seven cases two were prolactinomas, two were GH-secreting adenomas and three were mixed PRL and GH-secreting adenomas. When PRL or GH were revealed, immunoreactivity was found in the cellular compartments involved in protein secretion, RER, Golgi apparatus and secretory granules of corresponding secreting cells. An increasing gradient in the intensity of labeling was observed from the RER to the Golgi and to the granules which may correspond to the increasing concentration of the proteins occurring along their secretory pathway. In addition, crinophagy or destruction of secretory granules by the lysosomal system was observed for both secretory cells. Cells displaying simultaneously PRL and GH reactivity were never found, neither in pure nor in mixed adenomas demonstrating that in the different adenomas studied, secreting cells have retained their specificity and differentiation for the secretion of a single hormone.  相似文献   

17.
Ca2+ is a major regulator of exocytosis in secretory cells, however, the biochemical mechanisms underlying regulation remain to be identified. To render the secretory apparatus accessible for biochemical studies, we have developed a cell permeabilization method (cell cracking) which utilizes mechanical shear. GH3 pituitary cells subjected to cracking were permeable to macromolecules but retained a normal cytoplasmic ultrastructure including secretory granules. Incubation of the permeable cells at 30-37 degrees C with 0.1-1.0 microM Ca2+ and millimolar MgATP resulted in the release of the secretory proteins, prolactin (PRL) and a proteoglycan, but not lysosomal enzymes. Extensively washed permeable cells were incapable of releasing PRL in response to Ca2+ and MgATP addition. However, addition of cytosol was found to restore Ca2+-activated, MgATP-dependent PRL release. The cytosolic factor responsible for activity was thermolabile and protease sensitive. The protein was partially purified, and its molecular mass was estimated to be equivalent to that of a globular protein of 200-350 kDa by molecular sieve chromatography. Inhibitors of calmodulin or protein kinase C (trifluroperazine, calmidazolium, H-7) failed to inhibit Ca2+-activated PRL release, and the required cytosolic protein could not be replaced by purified calmodulin, calmodulin-dependent protein kinase II, protein kinase C, or calpactin I. Further purification and characterization of the cytosolic protein should reveal the nature of biochemical events involved in regulated secretory exocytosis.  相似文献   

18.
Growth hormone [GH] and prolactin [PRL] can be demonstrated simultaneously in electron micrographs by means of the double immunocytochemical labeling technique using colloidal gold particles of two different sizes. This method was used to study biopsy specimens obtained from 15 patients suffering from acromegaly, 11 patients suffering from prolactinomas, and eight biopsy specimens obtained during adenomectomy from the normal, paraadenomatous pituitary tissue. Four granule populations with different immunoreactions were found: (1) granules containing GH only, (2) granules containing PRL only, (3) mixed granules containing GH and PRL, and (4) granules displaying no immunoreactivity. The existence of mixed granules indicated that the two hormones are synthesized by the same cell and in communicating compartments of the cells; i.e., the rough-surfaced endoplasmic reticulum. The number of GH-containing granules (pure GH granules and mixed GH-PRL granules) was greater than that of PRL-containing granules (pure PRL granules and mixed PRL-GH granules) in adenomas causing acromegaly and in the normal pituitary tissue, whereas the opposite was true for prolactinomas. The number of PRL-containing granules was larger in biopsy specimens from patients who had acromegaly and hyperprolactinemia than in patients with acromegaly and normal serum PRL levels.  相似文献   

19.
Immunodetection of renin-angiotensin system (RAS) components indicates that there is a local RAS in anterior pituitary cells, particularly in lactotropes. We have attempted to determine if RAS molecules are secreted by lactotropes and the secretory pathways and intracellular sites of maturation. We investigated the secretory activity of individual lactotropes, using the reverse hemolytic plaque assay (RHPA), with GH3B6 tumor cells and normal male rat pituitary cells. We also determined the subcellular distributions of RAS components in these cells. Both tumor and normal cells secreted angiotensinogen, prorenin, renin, angiotensin I, angiotensin-converting enzyme, and angiotensin II, although at different levels. The percentage of secretory cells was generally higher in tumor lactotropes than in normal cells. The subcellular distribution of RAS components obtained by immunoperoxidase was very similar in both cell types, although the intensities of immunoreactivity differed. Cleaved and uncleaved components were found in rough endoplasmic reticulum (RER), Golgi saccules, and secretory granules, all compartments of the secretory pathway. The cleaved components in the RER suggest the existence of early maturation, whereas the presence of uncleaved products in the secretory granules of normal lactotropes might indicate late maturation sites.  相似文献   

20.
Summary Snell dwarf mice display remarkable retardation of growth after birth and are known to lack prolactin (PRL), thyroid stimulating hormone (TSH) and growth hormone (GH). The aim of this study was to determine the reason for these hormonal deficiencies. We examined the fine structure of the gland and its immunohistochemical staining pattern with respect to antisera raised against PRL, TSH, GH, adrenocorticotrophic hormone (ACTH) and luteinizing hormone (LH). The gland of control mice reacted immunohistochemically against all antisera used, whereas only ACTH-producing cells (ACTH cells) and LH-producing cells (LH cells) were distinguished in the dwarf mice. ACTH cells in dwarf mice varied in cell shape, although they were similar in size to those of controls. The distribution of secretory granules in the cytoplasm varied from cell to cell. LH cells in the dwarf mice showed immature features, having poorly developed rough endoplasmic reticulum and Golgi apparatus. The cells were about half the size of controls, and secretory granules were smaller. In dwarf mice, non-granulated cells were encountered in addition to granulated ACTH and LH cells. Some of them formed small clusters, characteristic cell junctions being found between the cells; they thus appeared to be follicular cells. The above results suggest that hormone deficiency in Snell dwarf mice is a result of a defect in the hormoneproducing cells in the gland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号