首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Platelet activation converts the membrane GP IIb-IIIa complex into a functional receptor for fibrinogen, but the mechanism is poorly understood. We asked whether induction of receptor competency coincides with a conformational change affecting the spatial arrangement of exoplasmic domains of the IIb and IIIa subunits. Epitopes on these subunits were labeled with monoclonal antibodies conjugated to either a donor fluorescein (FITC) or an acceptor tetramethylrhodamine (TR) chromophore. Then, fluorescence resonance energy transfer (RET) between platelet-bound FITC and TR was measured by flow cytometry. In unstimulated platelets, 6-8% RET efficiency was detected between antibody B1B5, bound to GP IIb, and antibody SSA6, bound to GP IIIa, regardless of which antibody served as RET donor. RET was also observed between these antibodies and A2A9, an antibody specific for the GP IIb-IIIa complex. Cell stimulation by thrombin, ADP plus epinephrine or phorbol-ester caused up to a 2-fold increase in RET between chromophore-labeled, platelet-bound B1B5, SSA6, and A2A9 (p less than or equal to 0.05), suggesting a change in the separation or orientation of these epitopes within the GP IIb-IIIa complex. The activation-related conformational change detected by the increase in RET between antibody B1B5 and SSA6 was independent of receptor occupancy since it was unaffected by the addition of fibrinogen or by the inhibition of fibrinogen binding by the antibody, A2A9, or the peptide, RGDS. In contrast to these results with antibodies bound to different epitopes within GP IIb-IIIa, no RET was observed between FITC-A2A9 and TR-A2A9 bound to different GP IIb-IIIa complexes or between a TR-labeled GP Ib antibody and FITC-labeled GP IIb-IIIa antibodies. These studies demonstrate that platelet activation causes a change in the spatial separation or orientation of exoplasmic domains within GP IIb and IIIa, which may serve to convert this integrin into a functional adhesion receptor.  相似文献   

2.
A method for purifying the platelet membrane glycoprotein IIb-IIIa complex   总被引:8,自引:0,他引:8  
A method has been developed for the rapid isolation of platelet membrane glycoproteins (GP) IIb and IIIa. This method produces an excellent yield and does not require the prior isolation of platelet membranes. Outdated platelets were washed and solubilized in Triton X-100. Concanavalin A affinity chromatography was used to purify a platelet glycoprotein fraction. The concanavalin A-retained glycoproteins were eluted and adsorbed with a heparin-Sepharose column to remove a major contaminant, thrombospondin. Sephacryl S-300 gel filtration was used as the final purification step to remove most fibrinogen and low-molecular-weight contaminants. Wheat germ agglutinin affinity chromatography was used to completely remove trace amounts of fibrinogen. The purified GP IIb and GP IIIa were analyzed by sucrose gradient sedimentation and found to consist of heterodimer complexes.  相似文献   

3.
Fibronectin, von Willebrand factor, and fibrinogen each bind to the glycoprotein IIb-IIIa complex on activated platelets via an arg-gly-asp-ser (RGDS) sequence present within the adhesive proteins. Both the IIb and IIIa polypeptides of the IIb-IIIa complex on thrombin activated platelets are specifically and extensively labeled by a radiolabeled, photoactivatable arylazide derivative of the RGDS sequence when the labeling is performed in the presence of concentrations of Ca++ or Mg++ approaching 0.5 mM. In contrast, labeling of unactivated platelets, ADP activated platelets, or thrombin activated platelets in the presence of low concentrations of divalent cations resulted in restriction of labeling to the IIb polypeptide of the complex.  相似文献   

4.
The involvement of platelet glycoprotein (GP) IIb-IIIa complex in calcium channel activity on the plasma membrane was investigated using an electrophysiological approach. Plasma membrane vesicles were prepared from thrombin-stimulated platelets and incorporated into planar lipid bilayers. Voltage-independent Ca2+ channel currents with a conductance of about 10 pS (in 53 mM Ba2+) were observed, in membranes derived from thrombin-stimulated, but not unstimulated platelet membranes. These channel activities were markedly reduced by exposure of membranes to EGTA at 37 degrees C. This reduction was specifically related to the dissociation of the GPIIb-IIIa complex since preincubation of the membranes with a monoclonal antibody to the GPIIb-IIIa complex (AP-2) could protect the channel activities from the effect of EGTA. Thrombasthenic platelets, which lack the GPIIb-IIIa complex, showed impaired channel activities characterized by decreased open probability and lowered conductance states. Furthermore, when platelets were stimulated by thrombin in the presence of EGTA, AP2, or the synthetic peptide RGDS, to prevent fibrinogen binding to the GPIIb-IIIa complex, open probabilities of the channel currents in these membrane vesicles were also decreased. These results suggest that the GPIIb-IIIa complex is involved in platelet Ca2+ channel activation and that ligand binding to the complex during platelet activation may modify the activation of Ca2+ channels.  相似文献   

5.
Fibronectin binds to specific receptors on the surface of washed, thrombin-activated platelets. Evidence suggests that these receptors are closely associated with the platelet glycoprotein IIb-IIIa complex (GP IIb-IIIa). To determine whether GP IIb-IIIa itself can form a platelet receptor for fibronectin, we used a filtration assay to examine the interaction of purified fibronectin with purified GP IIb-IIIa incorporated into phospholipid vesicles. 125I-Fibronectin binding to the phospholipid vesicles required the presence of incorporated GP IIb-IIIa and was specific, time-dependent, reversible, saturable, and divalent cation-dependent (Mg2+ greater than Ca2+). The dissociation constant for 125I-fibronectin binding to the GP IIb-IIIa-containing vesicles in the presence of 2 mM MgCl2 was 87 nM. Proteins or peptides that inhibit 125I-fibronectin binding to whole platelets also inhibited 125I-fibronectin binding to the GP IIb-IIIa vesicles. Thus, specific 125I-fibronectin binding was inhibited by excess unlabeled fibrinogen or fibronectin, the anti-GP IIb-IIIa monoclonal antibody 10E5, the decapeptide from the carboxyl terminus of the fibrinogen gamma-chain, and the tetrapeptide Arg-Gly-Asp-Ser from the cell-binding domain of fibronectin. In contrast to results obtained using whole platelets, unlabeled fibronectin inhibited 125I-fibronectin binding to the GP IIb-IIIa vesicles. These results show that 125I-fibronectin binds directly to purified GP IIb-IIIa with most of the previously reported properties of 125I-fibronectin binding to washed, thrombin-stimulated platelets. Thus, GP IIb-IIIa has the potential to function as a platelet receptor for fibronectin as well as for fibrinogen.  相似文献   

6.
Platelet glycoproteins IIb and IIIa function as a fibrinogen receptor on the activated platelet. We have shown that these glycoproteins can be incorporated onto the surface of phosphatidylcholine vesicles with retention of fibrinogen and antibody binding properties and can permit Ca2+ transit across the phospholipid bilayer. In the current study we demonstrate that this apparent Ca2+ channel function is specifically inhibited by the synthetic analogue of the fibrinogen gamma COOH-terminal peptide, His-His-Leu-Gly-Gly-Ala-Lys-Gln-Ala-Gly-Asp-Val (His-12-Val), but not by the adhesive protein sequence Arg-Gly-Asp-Ser (RGDS). Prior incubation of IIb-IIIa liposomes with RGDS prevented Ca2+ transit inhibition by 25 microM His-12-Val, analogous to RGDS inhibition of His-12-Val binding to platelets. His-12-Val inhibited a minor component of transmembrane Ca2+ influx into ADP and thrombin-activated human platelets but had no effect on steady-state platelet 45Ca flux. These data indicate that ligand binding may exert a regulatory influence on transmembrane Ca2+ influx into activated platelets. The difference in inhibitory potency of the peptides studied may be related to differences in conformational changes in the glycoprotein IIb-IIIa complex induced by His-12-Val and RGDS, steric considerations, or differences in interactions with glycoprotein IIb Ca2+ binding domains.  相似文献   

7.
《The Journal of cell biology》1990,111(6):3117-3127
Treatment of platelets with thrombin was shown previously to induce rapid changes in tyrosine phosphorylation of several platelet proteins. In this report, we demonstrate that a variety of agonists which induce platelet aggregation also stimulate tyrosine phosphorylation of three proteins with apparent molecular masses of 84, 95, and 97 kD. Since platelet aggregation requires the agonist-induced activation of an integrin receptor (GP IIb-IIIa) as well as the binding of fibrinogen to this receptor, we examined the relationship between tyrosine phosphorylation and the function of GP IIb-IIIa. When platelets were examined under conditions that either precluded the activation of GP IIb-IIIa (prior disruption of the complex by EGTA at 37 degrees C) or the binding of fibrinogen (addition of RGDS or an inhibitory mAb), tyrosine phosphorylation of the 84-, 95-, and 97-kD proteins was not observed. However, although both GP IIb-IIIa activation and fibrinogen binding were necessary for tyrosine phosphorylation, they were not sufficient since phosphorylation was observed only under conditions in which the activated platelets were stirred and allowed to aggregate. In contrast, tyrosine phosphorylation was not dependent on another major platelet response, dense granule secretion. Furthermore, granule secretion did not require tyrosine phosphorylation of this set of proteins. These experiments demonstrate that agonist-induced tyrosine phosphorylation is linked to the process of GP IIb-IIIa-mediated platelet aggregation. Thus, tyrosine phosphorylation may be required for events associated with platelet aggregation or for events that follow aggregation.  相似文献   

8.
Triflavin, an antiplatelet peptide containing Arg-Gly-Asp, purified from Trimeresurus flavoviridis venom, inhibits aggregation of human platelets stimulated by a variety of agonists. It blocks aggregation through interference with fibrinogen binding to its specific receptor on the platelet surface membrane in a competitive manner, but it has no apparent effect on intracellular events, such as thromboxane B2 formation, phosphoinositides breakdown and intracellular Ca2+ mobilization of thrombin-activated platelets. In this study, we determined the complete sequence of triflavin, which is composed of a single polypeptide chain of 70 amino acids. Its sequence is rich in cysteine and contains Arg-Gly-Asp at residues 49-51 in the carboxy-terminal domain. Triflavin shows about 68% identity of amino acid sequence with trigramin, which is a specific antagonist of the fibrinogen receptor associated with glycoprotein IIb/IIIa complex. [125I]Triflavin binds to unstimulated and ADP-stimulated platelets in a saturable manner and its Kd values are estimated to be 76 and 74 nM, respectively; the corresponding numbers of binding sites are 31,029 and 34,863 per platelet, respectively. [125I]Triflavin binding is blocked by Gly-Arg-Gly-Asp-Ser in a competitive manner. EDTA, the Arg-Gly-Asp-containing peptides (including naturally occurring polypeptides, trigramin and rhodostomin), and monoclonal antibody, 7E3, raised against GP IIb/IIIa complex, inhibit [125I]triflavin binding to unstimulated and ADP-stimulated human platelets. In conclusion, triflavin specifically binds to fibrinogen receptor associated with GP IIb/IIIa complex and its binding site is located at or near GP IIb/IIIa complex, overlapping with those of 7E3 and another Arg-Gly-Asp-containing polypeptide, rhodostomin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The platelet integrin, glycoprotein IIb-IIIa (GPIIb-IIIa), is a calcium-dependent heterodimer that binds fibrinogen, von Willebrand factor, and fibronectin after platelet activation. We examined GPIIb-IIIa alone and bound to these ligands by electron microscopy after rotary shadowing with platinum/tungsten. We found, as observed previously, that in the presence of detergent and 2 mM Ca2+, GPIIb-IIIa consists of an 8 x 12-nm globular head with two 18-nm flexible tails extending from one side. We also found that in the presence of EDTA, GPIIb-IIIa dissociates into two similar comma-shaped subunits, each containing a portion of the globular head and a single tail. Using monoclonal antibodies to GPIIb, GPIIIa, and the GPIIb-IIIa heterodimer, we found that the tails contained the carboxyl termini of each subunit, while the nodular head was composed of amino-terminal segments of both subunits. Electron microscopy of GPIIb-IIIa bound to fibrinogen revealed a highly specific interaction of the nodular head of GPIIb-IIIa with the distal end of the trinodular fibrinogen molecule and with the tails of GPIIb-IIIa extended laterally at an angle of approximately 98 degrees with respect to the long axis of fibrinogen. When a GPIIb-IIIa was bound to each end of a single fibrinogen, the tails were oriented to opposite sides of fibrinogen, enabling fibrinogen to bridge two adjacent platelets. Electron microscopy of GPIIb-IIIa bound to fibronectin revealed GPIIb/IIIa-binding sites approximately two-thirds of the distance from the amino terminus of each end of the fibronectin molecule, while GPIIb-IIIa was found to bind to von Willebrand factor protomers along a rod-like region near the central nodule of the molecule.  相似文献   

10.
Glycoprotein IIb-IIIa is an abundant platelet receptor of the integrin family that plays a primary role in platelet aggregation. It exists on the platelet surface predominantly in a resting or inactive conformation that is converted to an active binding competent conformation upon platelet activation. There is much interest in studying the difference between active and inactive GP IIb-IIIa, developing therapeutic agents targeted towards GP IIb-IIIa and developing diagnostic assays for antibodies that recognize epitopes on GP IIb-IIIa. We present here the development of a large-scale process for purifying active GP IIb-IIIa from human platelets. The procedure results in 25mg batch sizes of high purity and activity. Additionally, the effects of detergent concentration and impurities such as IgG on ELISA assays are examined.  相似文献   

11.
A murine monoclonal antibody (MoAb) VM16a specifically binding to human platelets has been produced. Approximately 56,000 molecules of VM16a bound per platelet at saturation (Kd = 7.9 nM) but no binding to platelets from Glanzmann's thrombasthenia patients was detected. VM16a precipitated two proteins with molecular masses corresponding to those of glycoproteins (GP) IIb and IIIa from solubilized surface-labelled platelets. However, after dissociation of the GPIIb--IIIa complex with EDTA VM16a did not bind to platelets and precipitated nothing from their lysate, thus evidencing that its determinant is complex-dependent. VM16a had no effect on ADP-, thrombin- and ristocetin-induced platelet aggregation but inhibited the aggregation induced by collagen. This inhibitory effect was more pronounced in the presence of plasma. VM16a completely blocked the Fc-receptor-mediated aggregation induced by aggregated human IgG, aggregated murine IgG1 and the previously described MoAb VM58. F(ab')2 fragments of VM16a were also able to inhibit this aggregation by decreasing the rate of aggregation induced by aggregated IgG and by extending the lag phase of VM58-induced aggregation. These results suggest that the platelet Fc-receptor may be topographically associated with the GPIIb-IIIa complex.  相似文献   

12.
Several lines of evidence indicate that the platelet membrane glycoprotein IIb-IIIa complex (GP IIb-IIIa) is necessary for the expression of platelet fibrinogen receptors. The purpose of the present study was to determine whether purified GP IIb-IIIa retains the properties of the fibrinogen receptor on platelets. Glycoprotein IIb-IIIa was incorporated by detergent dialysis into phospholipid vesicles composed of 30% phosphatidylcholine and 70% phosphatidylserine. 125I-Fibrinogen binding to the GP IIb-IIIa vesicles, as measured by filtration, had many of the characteristics of 125I-fibrinogen binding to whole platelets or isolated platelet plasma membranes: binding was specific, saturable, reversible, time dependent, and Ca2+ dependent. The apparent dissociation constant for 125I-fibrinogen binding to GP IIb-IIIa vesicles was 15 nM, and the maximal binding capacity was 0.1 mol of 125I-fibrinogen/mol of GP IIb-IIIa. 125I-Fibrinogen binding was inhibited by amino sugars, the GP IIb and/or IIIa monoclonal antibody 10E5, and the decapeptide from the carboxyl terminus of the fibrinogen gamma chain. Furthermore, little or no 125I-fibrinogen bound to phospholipid vesicles lacking protein or containing proteins other than GP IIb-IIIa (i.e. bacteriorhodopsin, apolipoprotein A-I, or glycophorin). Also, other 125I-labeled plasma proteins (transferrin, orosomucoid) did not bind to the GP IIb-IIIa vesicles. These results demonstrate that GP IIb-IIIa contains the platelet fibrinogen receptor.  相似文献   

13.
Evidence is presented that the IIb-IIIa glycoprotein complex, which functions as the receptor for fibrinogen on platelets and is central to platelet aggregation, is expressed on the surface of leukocytes where it may function as a receptor for fibronectin. F(ab')2 fragments of a monoclonal antibody, 25E11, raised against activated large granular lymphocytes, inhibited killing by natural killer cells, blocked the binding of fibronectin-coated particles by monocytes, and stimulated neutrophils to exhibit increased antibody-dependent killing. Immunoprecipitation studies of leukocytes and platelets, and the ability of 25E11 to inhibit platelet aggregation, identified the antigen as an epitope on the IIb-IIIa complex. This glycoprotein thus constitutes the first example of a receptor mediating both platelet aggregation and leukocyte adhesion.  相似文献   

14.
Platelet membrane glycoproteins (GP) IIb and IIIa have been identified as platelet aggregation sites. These glycoproteins form a heterodimer complex (GP IIb-IIIa) in the presence of Ca2+. To study the morphology of this glycoprotein complex in membranes, we incorporated GP IIb-IIIa into artificial phospholipid vesicles using a detergent (octyl glucoside) dialysis procedure. Phosphatidylserine-enriched vesicles (70% phosphatidylserine, 30% phosphatidylcholine) incorporated approximately 90% of the GP IIb-IIIa as determined by sucrose flotation. Glycoprotein IIb-IIIa incorporation into the vesicles was unaffected by ionic strength, suggesting a hydrophobic interaction between the glycoprotein and the phospholipid. In both intact platelets or phospholipid vesicles, GP IIb was susceptible to neuraminidase hydrolysis, indicating that most of the glycoprotein complexes were oriented toward the outside of the platelets or vesicles. The morphology of GP IIb-IIIa in the phospholipid vesicles was observed by negative staining electron microscopy. Individual GP IIb-IIIa complexes appeared as spikes protruding as much as 20 nm from the vesicle surface. Each spike consisted of a GP IIb "head," which was distal to the vesicle and was supported by the GP IIIa "tails." The GP IIb-IIIa complex appeared to be attached to the vesicle membrane by the tips of the GP IIIa tails. Treatment of vesicles with EGTA dissociated the GP IIb-IIIa complex. The dissociated glycoproteins remained attached to the phospholipid vesicles, indicating that both GP IIb and GP IIIa contain membrane-attachment sites. These data suggest a possible structural arrangement of the GP IIb-IIIa complex in whole platelets.  相似文献   

15.
Binding of the adhesive ligand fibrinogen and the monoclonal antibody PAC1 to platelet glycoprotein (GP) IIb-IIIa is dependent on cell activation and inhibited by Arg-Gly-Asp (RGD)-containing peptides. Previously, we identified a sequence in a hypervariable region of PAC1 (mu-CDR3) that mimics the activity of the antibody. Here we examine whether monoclonal antibodies to this idiotypic determinant in PAC1 can mimic GP IIb-IIIa by binding to fibrinogen. Mice were immunized with a peptide derived from the mu-CDR3 of PAC1. Four antibodies were obtained that recognized fibrinogen as well as a recombinant form of the variable region of PAC1. However, they did not bind to other RGD-containing proteins, including von Willebrand factor, fibronectin, and vitronectin. Several studies suggested that these anti-PAC1 peptide antibodies were specific for GP IIb-IIIa recognition sites in fibrinogen. Three such sites have been proposed: two RGD-containing regions in the A alpha chain, and the COOH terminus of the gamma chain (gamma 400-411). Two of the antibodies inhibited fibrinogen binding to activated platelets, and all four antibodies bound to the fibrinogen A alpha chain on immunoblots. Antibody binding to immobilized fibrinogen was partially inhibited by monoclonal antibodies specific for the two A alpha chain RGD regions. However, the anti-PAC1 peptide antibodies also bound to plasmin-derived fibrinogen fragments X and D100, which contain gamma 400-411 but lack one or both A alpha RGD regions. This binding was inhibited by an antibody specific for gamma 400-411. When fragment D100 was converted to D80, which lacks gamma 400-411, antibody binding was reduced significantly (p less than 0.01). Electron microscopy of fibrinogen-antibody complexes confirmed that each antibody could bind to sites on the A alpha and gamma chains. These studies demonstrate that certain anti-PAC1 peptide antibodies mimic GP IIb-IIIa by binding to platelet recognition sites in fibrinogen. Furthermore, they suggest that the gamma 400-411 region of fibrinogen may exist in a conformation similar to that of an A alpha RGD region of the molecule.  相似文献   

16.
We have applied the principle of complementary hydropathy to the prediction of the binding site for fibronectin (FN) and for the alpha-chain of fibrinogen in the platelet receptor complex glycoprotein (GP) IIb-IIIa. Since both ligands bind to it through their respective RGDS (Arg-Gly-Asp-Ser) domains and since both have been cloned, we were able to deduce the amino acid sequence of the binding site from the nucleotide sequence coding for RGDS in both proteins. The deduced peptides were very similar. Antibodies raised against a synthetic peptide WTVPTA (Trp-Thr-Val-Pro-Thr-Ala) deduced from the cloned rat FN RGDS domain block ADP-mediated platelet aggregation; this block can be overcome by additional fibrinogen. In Western blots of whole cell platelet extracts run under reducing conditions, this antibody binds to a 108-kDa band. It also binds to affinity-purified GP IIIa. Furthermore, it reacts strongly with GP IIIa immunoprecipitated by a commercially available anti-GP IIb-IIIa monoclonal antibody. Binding of affinity-purified GP IIb-IIIa complex to fibronectin is inhibited by the 110-kDa FN fragment. Similar inhibitions can be effected by WTVPTA (Trp-Thr-Val-Pro-Thr-Ala) and GAVSTA (Gly-Ala-Val-Ser-Thr-Ala) predicted from the rat and human fibronectin nucleotide sequences, respectively. GAGSTA (Gly-Ala-Gly-Ser-Thr-Ala) and GARSTA (Gly-Ala-Arg-Ser-Thr-Ala) related to the human peptide but with discrepant hydropathies are noninhibitory.  相似文献   

17.
Platelet membrane glycoprotein IIb-IIIa exists as a calcium-dependent complex of two large peptides (designated IIb and IIIa) in Triton X-100 solutions, but it remains unknown if these peptides are subunits of one glycoprotein or are actually two individual glycoproteins in the intact platelet membrane. We used crossed immunoelectrophoresis to define the epitopes of two monoclonal antibodies to IIb-IIIa, then used these antibodies to study the structural and functional organization of IIb and IIIa in the platelet membrane. Human platelets solubilized in Triton X-100 were electrophoresed through an intermediate gel containing 125I-monoclonal IgG, then into an upper gel containing rabbit anti-human platelet antibodies. Our previously characterized antibody. Tab, and a new monoclonal antibody, T10, both bound to the immunoprecipitate corresponding to the IIb-IIIa complex. When platelets were electrophoresed after solubilization in 5 mM EDTA, 125I-Tab bound to the dissociated IIb polypeptide, but not to IIIa. In contrast, 125-I-T10 did not react with either IIb or IIIa. Thus, Tab recognizes a determinant on IIb, while T10 recognizes a determinant created only after the association of IIb and IIIa. Gel-filtered platelets from six normal donors bound 50,600 +/- 5,600 125I-T10 molecules/platelet and 47,800 +/- 11,200 125I-Tab molecules/platelet, consistent with IIb-IIIa being a heterodimer. 125I-T10 binding was identical in unactivated platelets and platelets stimulated with 10 microM ADP. However, platelets did not aggregate or bind 125I-fibrinogen until ADP was added. T10, but not Tab or nonimmune mouse antibody, inhibited ADP-induced platelet aggregation and 125I-fibrinogen binding. Our findings suggest that IIb and IIIa exist as subunits of a single membrane glycoprotein in unstimulated platelets. Fibrinogen binding appears to require not only the interaction of IIb and IIIa, but also some additional change occurring after platelet activation.  相似文献   

18.
The platelet membrane glycoproteins IIb and IIIa normally exist as a complex which forms a predominant immunoprecipitate after crossed immunoelectrophoresis of Triton-X-100-solubilized platelets. Dissociation of the complex occurs by solubilization in the presence of EDTA or EGTA at pH 8.7 and is readily verified by crossed immunoelectrophoresis. Incubations of isolated membranes with EDTA or EGTA at various pH levels were performed. Removal of the chelators and solubilization showed no dissociation of the glycoprotein IIb-IIIa complex in membranes incubated at pH below 8.0. At pH above 8.0 a dissociation which increased with increasing pH was seen. Under these conditions, dissociation appears to take place already in the intact membranes. The tendency of the glycoprotein IIb-IIIa complex to become dissociated with EDTA or EGTA at increasing pH seems to be due to increased chelating capacity of the chelators concomitant with a decreased chelating capacity of glycoprotein IIb and IIIa. The divalent cations Ca2+ and Mg2+, but not Cu2+, Zn2+, Mn2+ or Sr2+, in molar concentrations below that of EGTA were able to prevent the dissociation of the glycoprotein IIb-IIIa complex by the chelator at pH 9.0, indicating that Ca2+ as well as Mg2+ can be used to keep the complex together. In some experiments it was possible to reverse the dissociation in the membranes after removal of EDTA. At pH 7.5 reassociation occurred within 15 min whether divalent cations were added or not. At pH 9.0. reassociation occurred within 2 h provided Ca2+ was present. The tendency of glycoprotein IIb and IIIa to form a complex thus appeared to be most pronounced over the physiological pH range and to be a rapid process in platelet membranes under such conditions.  相似文献   

19.
Platelet activation is accompanied by the appearance on the platelet surface of approximately 45,000 receptor sites for fibrinogen. The binding of fibrinogen to these receptors is required for platelet aggregation. Although it is established that the fibrinogen receptor is localized to a heterodimer complex of the membrane glycoproteins, IIb and IIIa, little is known about the changes in this complex during platelet activation that result in the expression of the receptor. In the present studies, we have developed and characterized a murine monoclonal anti-platelet antibody, designated PAC-1, that binds to activated platelets, but not to unstimulated platelets. PAC-1 is a pentameric IgM that binds to agonist-stimulated platelets with an apparent Kd of 5 nM. Binding to platelets is dependent on extracellular Ca2+ (KCa = 0.4 microM) but is not dependent on platelet secretion. Platelets stimulated with ADP or epinephrine bind 10,000-15,000 125I-PAC-1 molecules/platelet while platelets stimulated with thrombin bind 20,000-25,000 molecules/platelet. Several lines of evidence indicate that PAC-1 is specific for the glycoprotein IIb.IIIa complex. First, PAC-1 binds specifically to the IIb.IIIa complex on Western blots. Second, PAC-1 does not bind to thrombasthenic platelets or to platelets preincubated with ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid at 37 degrees C, both of which lack the intact IIb.IIIa complex. Third, PAC-1 competitively inhibits the binding of 125I-A2A9, and IgG monoclonal antibody that is specific for the IIb.IIIa complex. Fourth, the antibody inhibits fibrinogen-mediated platelet aggregation. These data demonstrate that PAC-1 recognizes an epitope on the IIb.IIIa complex that is located near the platelet fibrinogen receptor. Platelet activation appears to cause a Ca2+-dependent change involving the glycoprotein IIb.IIIa complex that exposes the fibrinogen receptor and, at the same time, the epitope for PAC-1.  相似文献   

20.
The biochemical responses of intact human platelets to the monoclonal antibody (mAb) AG-1 were investigated. AG-1 is a murine IgG mAb that recognizes a series of platelet membrane glycoproteins (Gp) from M(r) 21,000 to 29,000, one of which is the M(r) 24,000 (p24) receptor for anti-CD9 mAbs. AG-1 causes platelet aggregation and secretion. Platelets binding AG-1 demonstrate a dose- and time-dependent breakdown of phosphatidylinositol 4,5-bisphosphate (PIP2), production of diacylglycerol, and generation of phosphatidic acid (PA). These events are associated with the activation of protein kinase C (PKC), an increase in intracellular calcium, and fibrinogen binding. Platelet PA generation and PKC activation in response to AG-1 are inhibited by mAbs to platelet GpIIb-IIIa or by extracellular EGTA, but not by a mAb to platelet GpIb or by inhibiting platelet Na+/H+ exchange with 5-(N-ethyl-N-isopropyl)amiloride. Platelet cytoplasmic free calcium ([Ca2+]i) is elevated in response to AG-1, and this elevation is inhibited by mAbs to GpIIb-IIIa, an RGDS peptide or by chelating extracellular calcium. These results suggest that AG-1 binding to a unique platelet-surface glycoprotein initiates platelet responses through the activation of PIP2-specific phospholipase C, and that this occurs through a signal pathway that is dependent on GpIIb-IIIa and extracellular calcium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号