首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Arabidopsis thaliana, 1-aminocyclopropane-1-carboxylate synthase (ACS) is encoded by a multigene family consisting of at least five members whose expression is induced by hormones, developmental signals, and protein synthesis inhibition. Li+, known to interfere with the phosphoinositide (PI) second messenger system by inhibiting the activity of inositol-phosphate phosphatases, is one of the strongest inducers of ACC synthase activity in plants. Treatment of etiolated Arabidopsis seedlings with LiCl results in a rapid induction of the ACS5 gene. Also, LiCl represses the cycloheximide (CHX)-induced accumulation of the ACS2 mRNA. The effects of Li+ on the expression of ACS5 and ACS2 are specific, dose-dependent, and can be reversed by Ca2+ and mimicked by the protein kinase inhibitor K-252a. The results suggest that the regulation of some ACS genes by various inducers may involve protein kinase activity, which in turn may be controlled through an inositol 1,4,5-triphosphate (IP3)-mediated Ca2+ mobilization. Since plants contain no Li+, the cation appears to unmask pre-existing biochemical capacity that may be utilized by various unknown transducers during plant growth and development.  相似文献   

2.
3.
Four Na+/H+ antiporters, Mrp, TetA(L), NhaC, and MleN have so far been described in Bacillus subtilis 168. We identified an additional Na+/H+ antiporter, YvgP, from B. subtilis that exhibits homology to the cation: proton antiporter-1 (CPA-1) family. The yvgP-dependent complementation observed in a Na+(Ca2+)/H+ antiporter-defective Escherichia coli mutant (KNabc) suggested that YvgP effluxed Na+ and Li+. In addition, effects of yvgP expression on a K+ uptake-defective mutant of E. coli indicated that YvgP also supported K+ efflux. In a fluorescence-based assay of everted membrane vesicles prepared from E. coli KNabc transformants, YvgP-dependent Na+ (K+, Li+, Rb+)/H+ antiport activity was demonstrated. Na+ (K+, Li+)/H+ activity was higher at pH 8.5 than at pH 7.5. Mg2+, Ca2+ and Mn2+ did not serve as substrates but they inhibited YvgP antiport activities. Studies of yvgP expression in B. subtilis, using a reporter gene fusion, showed a significant constitutive level of expression that was highest in stationary phase, increasing as stationary phase progressed. In addition, the expression level was significantly increased in the presence of added K+ and Na+.  相似文献   

4.
In this study we investigated the role of external monovalent cations, and of intracellular Ca2+ concentration ([Ca2+]i) in polarized and depolarized rat cerebral cortex synaptosomes on the release of [3H]--aminobutyric acid (3H-GABA). We found that potassium-depolarization, in the absence of Ca2+, of synaptosomes loaded with3H-GABA releases 7.4±2.1% of the accumulated neurotransmitter, provided that the external medium contains Na+, and an additional 19.0±2.5% is released upon adding 1.0 mM CaCl2 to the exterior. The Ca2+-independent release component does not occur in a choline medium and it is only 3.4±0.8% of the3H-GABA accumulated in a Li+ medium, but both ions support the Ca2+-dependent release of3H-GABA (13.4±0.6% in choline and 15.4±1.5% in Li+), which suggests that the exocytotic release is independent of the external monovalent cation present, whereas the carrier-mediated release specifically requires Na+ outside. Furthermore, previous release of the cytosolic3H-GABA due to predepolarization in the absence of Ca2+ does not influence the amount of3H-GABA subsequently released by exocytosis due to Ca2+ addition (19.1±2.5% or 19.1±1.1%, respectively). In choline or Li+ medium, the value of the [Ca2+]i is raised by Na+/Ca2+ exchange to 663±75 nM or 782±54 nM, respectively, within three minutes after adding 1.0 mM Ca2+, in the absence of depolarization, and parallel release experiments show no release of3H-GABA in the choline medium, but a substantial release (7.1±2.1%) of3H-GABA occurs in the Li+ medium without depolarization. Subsequent K+-depolarization shows normal Ca2+-dependent release of3H-GABA in the choline medium (14.1±2.0%) but only 8.6±1.1% release in the Li+ medium, which suggests that raising the [Ca2+]i by Na+/Ca2+ exchange, without depolarization, supports some exocytotic release in Li+, but not in choline media. The role of [Ca2+]i and of membrane depolarization in the release process is discussed on the basis of the results obtained and other relevant observations which suggest that both Ca2+ and depolarization are essential for optimal exocytotic release of GABA.Special issue dedicated to Dr. Santiago Grisolia.  相似文献   

5.
6.
The gene for a putative cation calcium exchanger (CCX) from Arabidopsis thaliana, AtCCX5, was cloned and its function was analyzed in yeast. Green fluorescent protein-tagged AtCCX5 expressed in yeast was localized in the plasma membrane and nuclear periphery. The yeast transformants expressing AtCCX5 were created and their growth in the presence of various cations (K+, Na+, Ca2+, Mg2+, Fe2+, Cu2+, Co2+, Cd2+, Mn2+, Ba2+, Ni2+, Zn2+, and Li+) were analyzed. AtCCX5 expression was found to affect the response to K+ and Na+ in yeast. The AtCCX5 transformant also showed a little better growth to Zn2+. The yeast mutant 9.3 expressing AtCCX5 restored growth of the mutant on medium with low K+ (0.5 mM), and also suppressed its Na+ sensitivity. Ion uptake experiments showed that AtCCX5 mediated relatively high-affinity K+ uptake and was also involved in Na+ transport in yeast. Taken together, these findings suggest that the AtCCX5 is a novel transport protein involves in mediating high-affinity K+ uptake and Na+ transport in yeast.  相似文献   

7.
Summary The outer membranes of plant cells contain channels which are highly selective for K+. However, many of their properties and their similarities to K+ channels found in animal cells had not previously been established. The channels open when the cells are depolarized in solutions with a high K+/Ca2+ ratio. In this work, the pharmacology of a previously identified plant K+ channel was examined. This survey showed that the channels have many properties which are similar to those of high-conductance Ca2+-activated K+ channels (highG K+(Ca2+)). K+ currents inChara were reduced by TEA+, Na+, Cs+, Ba2+, decamethonium and quinine, all inhibitors of, among other things, highG K+(Ca2+) channels. Tetracaine also inhibited K+ currentsChara, but its effect on most types of K+ channels in animal tissues is unknown. The currents were not inhibited by 4-aminopyridine (4AP), caffeine, tolbutamide, dendrotoxin, apamin or tubocurarine, which do not inhibit highG K+(Ca2+) channels, but affect other classes of K+ channels. The channels were locked open by 4AP, in a remarkably similar manner to that reported for K+(Ca2+) channels of a molluscan neuron. No evidence for the role of the inositol cycle in channel behavior was found, but its role in K+ channel control in animal cells is obscure. Potassium conductance was slightly decreased upon reduction of cytoplasmic ATP levels by cyanide + salicylhydroxamic acid (SHAM), consistent with channel control by phosphorylation. The anomalously strong voltage dependence of blockade by some ions (e.g. Cs+) is consistent with the channels being multiion pores. However, the channels also demonstrate some differences from the highG K+(Ca2+) channels found in animal tissues. The venom of the scorption,Leiurus quinquestriatus (LQV), and a protein component, charybdotoxin (CTX), an apparently specific inhibitor of highG K+(Ca2+) channels in various animal tissues, had no effect on the K+ channels in theChara plasmalemma. Als,, pinacidil, an antihypertensive drug which may increase highG K+(Ca2+) channel activity had no effect on the channels inChara. Although the described properties of theChara K+ channels are most similar to those of high conductance K+(Ca2+) in animal cells, the effects of CTX and pinacidil are notably different; the channels are clearly of a different structure to those found in animal cells, but are possibly related.  相似文献   

8.
Inhibition of ethylene production by cobaltous ion   总被引:10,自引:13,他引:10       下载免费PDF全文
Lau OL  Yang SF 《Plant physiology》1976,58(1):114-117
The effect of Co2+ on ethylene production by mung bean (Phaseolus aureus Roxb.) and by apple tissues was studied. Co2+, depending on concentrations applied, effectively inhibited ethylene production by both tissues. It also strongly inhibited the ethylene production induced by IAA, kinetin, IAA plus kinetin, Ca2+, kinetin plus Ca2+, or Cu2+ treatments in mung bean hypocotyl segments. While Co2+ greatly inhibited ethylene production, it had little effect on the respiration of apple tissue, indicating that Co2+ does not exert its inhibitory effect as a general metabolic inhibitor. Ni2+, which belongs to the same group as Co2+ in the periodic table, also markedly curtailed both the basal and the induced ethylene production by apple and mung bean hypocotyl tissues.  相似文献   

9.
Summary The relative contributions of the Na+/Ca2+ exchange and the plasma membrane Ca2+ pump to active Ca2+ efflux from stimulated rat pancreatic acini were studied. Na+ gradients across the plasma membrane were manipulated by loading the cells with Na+ or suspending the cells in Na+-free media. The rates of Ca2+ efflux were estimated from measurements of [Ca2+] i using the Ca2+-sensitive fluorescent dye Fura 2 and45Ca efflux. During the first 3 min of cell stimulation, the pattern of Ca2+ efflux is described by a single exponential function under control, Na+-loaded, and Na+-depleted conditions. Manipulation of Na+ gradients had no effect on the hormone-induced increase in [Ca2+] i . The results indicate that Ca2+ efflux from stimulated pancreatic acinar cells is mediated by the plasma membrane Ca2+ pump. The effects of several cations, which were used to substitute for Na+, on cellular activity were also studied. Choline+ and tetramethylammonium+ (TMA+) released Ca2+ from intracellular stores of pancreatic acinar, gastric parietal and peptic cells. These cations also stimulated enzyme and acid secretion from the cells. All effects of these cations were blocked by atropine. Measurements of cholecystokinin-octapeptide (CCK-OP)-stimulated amylase release from pancreatic acini, suspended in Na+, TMA+, choline+, or N-methyl-d-glucamine+ (NMG+) media containing atropine, were used to evaluate the effect of the cations on cellular function. NMG+, choline+, and TMA+ inhibited amylase release by 55, 40 and 14%, respectively. NMG+ also increased the Ca2+ permeability of the plasma membrane. Thus, to study Na+ dependency of cellular function, TMA+ is the preferred cation to substitute for Na+. The stimulatory effect of TMA+ can be blocked by atropine.  相似文献   

10.
It was shown before (Wooten, D. C., and Dilley, R. A. (1993) J. Bioenerg. Biomembr. 25, 557–567; Zakharov, S. D., Li, X., Red'ko, T. P., and Dilley, R. A. (1996) J. Bioenerg. Biomembr. 28, 483–493) that pH dependent reversible Ca2+ binding near the N- and C-terminal end of the 8 kDa subunit c modulates ATP synthesis driven by an applied pH jump in chloroplast and E. coli ATP synthase due to closing a proton gate proposed to exist in the F0 H+ channel of the F0F1 ATP synthase. This mechanism has further been investigated with the use of membrane vesicles from mutants of the cyanobacterium Synechocystis 6803. Vesicles from a mutant with serine at position 37 in the hydrophilic loop of the c-subunit replaced by the charged glutamic acid (strain plc 37) has a higher H+/ATP ratio than the wild type and therefore shows ATP synthesis at low values of H +. The presence of 1 mM CaCl2 during the preparation and storage of these vesicles blocked acid–base jump ATP formation when the pH of the acid side (inside) was between pH 5.6 and 7.1, even though the pH of the acid–base jump was thermodynamically in excess of the necessary energy to drive ATP formation at an external pH above 8.28. That is, in the absence of added CaCl2, ATP formation did occur under those conditions. However, when the base stage pH was 7.16 and the acid stage below pH 5.2, ATP was formed when Ca2+ was present. This is consistent with Ca2+ being displaced by H+ ions from the F0 on the inside of the thylakoid membrane at pH values below about 5.5. Vesicles from a mutant with the serine of position 3 replaced by a cysteine apparently already contain some bound Ca2+ to F0. Addition of 1 mM EGTA during preparation and storage of those vesicles shifted the otherwise already low internal pH needed for onset of ATP synthesis to higher values when the external pH was above 8. With both strains it was shown that the Ca2+ binding effect on acid–base induced ATP synthesis occurs above an internal pH of about 5.5. These results were corroborated by 45Ca2+- ligand blot assays on organic solvent soluble preparations containing the 8 kDa F0 subunit c from the S-3-C mutant ATP synthase, which showed 45Ca2+ binding as occurs with the pea chloroplast subunit III. The phosphorylation efficiency (P/2e), at strong light intensity, of Ca2+ and EGTA treated vesicles from both strains were almost equal showing that Ca2+ or EGTA have no other effect on the ATP synthase such as a change in the proton to ATP ratio. The results indicate that the Ca2+ binding to the F0 H+ channel can block H+ flux through the channel at pH values above about 5.5, but below that pH protons apparently displace the bound Ca2+, opening the CF0 H+ channel between the thylakoid lumen and H+ conductive channel.  相似文献   

11.
K. R. Robinson 《Planta》1977,136(2):153-158
The effect of external calcium and sodium ion concentrations on the calcium fluxes on the Pelvetia fastigiata De Toni egg was measured. Decreasing external [Ca2+] greatly increased the permeability of the eggs to Ca2+; at 1 mM external Ca2+ this permeability was 60 times as great as it was at the normal [Ca2+] of 10 mM. Lowering the external [Na+] also increased Ca2+ influx; at 2 mM Na+, the Ca2+ influx was 2–3 times as great as it was at the normal [Na+] if choline was used as a Na+ substitute. Lithium was less effective as a Na+ substitute in increasing Ca2+ influx. The extra Ca2+ influx in low [Na+] seemed to be dependent on internal [Na+]. The Ca2+ efflux increased transiently and then declined in low Na+ media.  相似文献   

12.
We have previously shown that vacuolar H+-ATPase subcomplex Vo from mung bean contains subunit d, however, its sequence and function were unknown. In the present study, we report the cloning and recombinant over expression of subunit d from mung bean in E. coli. To study the function of subunit d, two vacuolar H+-ATPase subcomplexes Vo from mung bean were purified-one containing subunits a and c(c’,c”) and the other containing subunits a, c(c’,c”) and d. After reconstitution of the purified Vo subcomplexes into liposomes, the proton translocation was studied. Our results show that the Vo subcomplex in the absence of subunit d is a passive proton channel, while the Vo subcomplex in the presence of the subunit d is not. Taken together, our data supports the conclusion that the subunit d of the plant vacuolar H+-ATPase from mung bean is positioned at the central stalk and involved in the proton translocation across the tonoplast membrane.  相似文献   

13.
Summary Activators of protein kinase C (PKC) stimulate Na transport (J Na) across frog skin. We have examined the effect of Ca2+ on PKC stimulation ofJ Na. Both the phorbol ester 12-O-tetradecanoylglycerol (DiC8) were used as PKC activators. Blocking Ca2+ entry into the cytosol (either from external or internal stores) reduced the subsequent natriferic effect of the PKC activators. This negative interaction did not simply reflect saturation of activation of the apical Na+ channels, since the stimulations produced by blocking Ca2+ entry and adding cyclic AMP were simply additive.The Ca2+ dependence of the natriferic effect could have reflected either a direct action of cytosolic Ca2+ on PKC or an indirect action on the final receptor site (the Na+ channel). To distinguish between these possibilities, the TPA- and phospholipid-dependent kinase activity of broken-cell preparations was assayed. The kinase activity was not stimulated by physiological levels of Ca2+, and in fact was inhibited at millimolar concentrations of Ca2+.We conclude that the effects of Ca2+ on the natriferic response to PKC activators are indirect. Reducing cytosolic uptake of Ca2+ may have stimulated Na+ transport by a chemical modification of the apical channels observed in other tight epithelia. The usual stimulation of Na+ transport produced by PKC activators in frog skin may reflect the operation of a nonconventional form of PKC. This enzyme is Ca2+ independent and seems related to thenPKC or PKC observed in other systems.  相似文献   

14.
The effect of the putative K+/H+ ionophore, nigericin on the internal Na+ concentration ([Na i ]), the internal pH (pH i ), the internal Ca2+ concentration ([Ca i ]) and the baseline release of the neurotransmitter, GABA was investigated in Na+-binding benzofuran isophtalate acetoxymethyl ester (SBFIAM), 2′,7′-bis(carboxyethyl)-5(6) carboxyfluorescein acetoxymethyl ester (BCECF-AM), fura-2 and [3H]GABA loaded synaptosomes, respectively. In the presence of Na+ at a physiological concentration (147 mM), nigericin (0.5 μM) elevates [Na i ] from 20 to 50 mM, increases thepH i , 0.16 pH units, elevates four fold the [Ca i ] at expense of external Ca2+ and markedly increases (more than five fold) the release of [3H]GABA. In the absence of a Na+ concentration gradient (i.e. when the external Na+ concentration equals the [Na i ]), the same concentration (0.5 μM) of nigericin causes the opposite effect on thepH i (acidifies the synaptosomal interior), does not modify the [Na i ] and is practically unable to elevate the [Ca i ] or to increase [3H]GABA release. Only with higher concentrations of nigericin than 0.5 μM the ionophore is able to elevate the [Ca i ] and to increase the release of [3H]GABA under the conditions in which the net Na+ movements are eliminated. These results clearly show that under physiological conditions (147 mM external Na+) nigericin behaves as a Na+/H+ ionophore, and all its effects are triggered by the entrance of Na+ in exchange for H+ through the ionophore itself. Nigericin behaves as a K+/H+ ionophore in synaptosomes just when the net Na+ movements are eliminated (i.e. under conditions in which the external and the internal Na+ concentrations are equal). In summary care must be taken when using the putative K+/H+ ionophore nigericin as an experimental tool in synaptosomes, as under standard conditions (i.e. in the presence of high external Na+) nigericin behaves as a Na+/H+ ionophore.  相似文献   

15.
Pea root elongation was strongly inhibited in the presence of a low concentration of Al (5 μM). In Al-treated root, the epidermis was markedly injured and characterized by an irregular layer of cells of the root surface. Approximately 30% of total absorbed Al accumulated in the root tip and Al therein was found to cause the inhibition of whole root elongation. Increasing concentrations of Ca2+ effectively ameliorated the inhibition of root elongation by Al and 1 mM of CaCl2 completely repressed the inhibition of root elongation by 50 μM Al. The ameliorating effect of Ca2+ was due to the reduction of Al uptake. H+-ATPase and H+-PPase activity as well as ATP and PPidependent H+ transport activity of vacuolar membrane vesicles prepared from barley roots increased to a similar extent by the treatment with 50 μM AlCl3. The rate of increase of the amount of H+-ATPase and H+-PPase was proportional to that of protein content measured by immunoblot analysis with antibodies against the catalytic subunit of the vacuolar H+-ATPase and H+-PPase of mung bean. The increase of both activities was discussed in relation to the physiological tolerance mechanism of barley root against Al stress.  相似文献   

16.
Summary Measurements of unidirectional calcium fluxes in stripped intestinal epithelium of the tilapia,Oreochromis mossambicus, in the presence of ouabain or in the absence of sodium indicated that calcium absorption via the fish intestine is sodium dependent. Active Ca2+ transport mechanisms in the enterocyte plasma membrane were analyzed. The maximum capacity of the ATP-dependent Ca2+ pump (V m :0.63 nmol·min–1 mg–1,K m : 27nm Ca2+) is calculated to be 2.17 nmol·min–1·mg–1, correcting for 29% inside-out oriented vesicles in the membrane preparation. The maximum capacity of the Na+/Ca2+ exchanger with high affinity for Ca2+ (V m :7.2 nmol·min–1·mg–1,K m : 181nm Ca2+) is calculated to be 13.6 nmol·min–1·mg–1, correcting for 53% resealed vesicles and assuming symmetrical behavior of the Na+/Ca2+ exchanger. The high affinity for Ca2+ and the sixfold higher capacity of the exchanger compared to the ATPase suggest strongly that the Na+/Ca2+ exchanger will contribute substantially to Ca2+ extrusion in the fish enterocyte. Further evidence for an important contribution of Na+/Ca2+ exchange to Ca2+ extrusion was obtained from studies in which the simultaneous operation of ATP-and Na+-gradient-driven Ca2+ pumps in inside-out vesicles was evaluated. The fish enterocyte appears to present a model for a Ca2+ transporting cell, in which Na+/Ca2+ exchange activity with high affinity for Ca2+ extrudes Ca2+ from the cell.  相似文献   

17.
Summary Micromolar concentrations of silver ion activate large Ca2+ fluxes across the plasma membrane of intact rod outer segments isolated from bovine retinas (intact ROS). The rate of Ag+-induced Ca2+ efflux from intact ROS depended on the Ag+ concentration in a sigmoidal manner suggesting a cooperative mechanism with a Hill coefficient between 2 and 3. At a concentration of 50 m Ag+ the rate of Ca2+ efflux was 7×106 Ca2+/outer segment/sec; this represents a change in total intracellular Ca2+ by 0.7mm/outer segment/sec. Addition of the nonselective ionophore gramicidin in the absence of external alkali cations greatly reduced the Ag+-induced Ca2+ efflux from intact ROS, apparently by enabling internal alkali cations to leak out. Adding back alkali cations to the external medium restored Ag+-induced Ca2+ efflux when gramicidin was present. In the presence of gramicidin, Ag+-induced Ca2+ efflux from intact ROS was blocked by 50 m tetracaine orl-cis diltiazem, whereas without gramicidin both blockers were ineffective. Bothl-cis diltiazem and tetracaine are blockers of one kinetic component of cGMP-induced Ca2+ flux across ROS disk membranes. The ion selectivity of the Ag+-induced pathway proved to be broad with little discrimination between the alkali cations Li+, Na+, K+, and Cs+ or between Ca2+ and Mg2+. The properties of the Ag+-induced pathway(s) suggest that it may reflect the cGMP-dependent conductance opened in the absence of cGMP by silver ions.  相似文献   

18.
Summary In rabbit ileum, Ca2+/calmodulin (CaM) appears to be involved in physiologically inhibiting the linked NaCl absorptive process, since inhibitors of Ca2+/CaM stimulate linked Na+ and Cl absorption. The role of Ca2+/CaM-dependent phosphorylation in regulation of the brush-border Na+/H+ antiporter, which is believed to be part of the neutral linked NaCl absorptive process, was studied using purified brush-border membrane vesicles, which contain both the Na+/H+ antiporter and Ca2+/CaM-dependent protein kinase(s) and its phosphoprotein substrates. Rabbit ileal villus cell brush-border membrane vesicles were prepared by Mg precipitation and depleted of ATP. Using a freezethaw technique, the ATP-depleted vesicles were loaded with Ca2+, CaM, ATP and an ATP-regenerating system consisting of creatine kinase and creatine phosphate. The combination of Ca2+/CaM and ATP inhibited Na+/H+ exchange by 45±13%. This effect was specific since Ca2+/CaM and ATP did not alter diffusive Na+ uptake, Na+-dependent glucose entry, or Na+ or glucose equilibrium volumes. The inhibition of the Na+/H+ exchanger by Ca2+/CaM/ATP was due to an effect on theV max and not on theK m for Na+. In the presence of CaM and ATP, Ca2+ caused a concentration-dependent inhibition of Na+ uptake, with an effect 50% of maximum occurring at 120nm. This Ca2+ concentration dependence was similar to the Ca2+ concentration dependence of Ca2+/CaM-dependent phosphorylation of specific proteins in the vesicles. The Ca2+/CaM/ATP-inhibition of Na+/H+ exchange was reversed by W13, a Ca2+/CaM antagonist, but not by a hydrophobic control, W12, or by H-7, a protein kinase C antagonist. we conclude that Ca2+, acting through CaM, regulates ileal brush-border Na+/H+ exchange, and that this may be involved in the regulation of neutral linked NaCl absorption.  相似文献   

19.
A method is described for the extraction of microsomal ouabain-sensitive (Na+ + K+)-activated ATPase from separated frog skin epithelium. The method yields a microsomal fraction containing (Na+ + K+)-stimulated activity in the range of 30–40 nmol · mg−1 · min−1 at 26 °C. This portion, which is also ouabain sensitive, is about half of the total activity in media containing Mg2+, Na+ and K+. These preparations also contain Mg2+-dependent or Ca2+-dependent activities which are not additive and which are not significantly affected by ouabain, Na+, K+ or Li+.The activations of the ouabain-sensitive ATPase activity by Mg2+, Na+, and K+ are similar to those described in other tissues. It is found that Li+ does not substitute for Na+ as an activator but in high concentrations does produce partial activation in the presence of Na+ with no K+. These results are pertinent to the reported observations of ouabain-sensitive Li+ flux across frog skin. It is concluded that this flux is not apparently due to a direct activating effect of Li+ on the sodium pump.  相似文献   

20.
Na+-H+ exchange and passive Na+ flux were investigated in cardiac sarcolemmal vesicles as a function of changing the ionic composition of the reaction media. The inclusion of EGTA in the reaction medium resulted in a potent stumulation of Na+ uptake by Na+-H+ exchange. It was found that millimolar concentrations of Mg2+ and Li+ were capable of inhibiting Na+-H+ exchange by 80%. One mechanism by which these ions may inhibit intravesicular Na+ accumulation by Na+-H+ exchange is via an increase in Na+ efflux. An examination of Na+ efflux kinetics from vesicles pre-loaded with Na+ revealed that Na+, Ca2+, Mg2+ and Li+ could stimulate Na+ efflux. Na+-H+ exchange was potently inhibited by an organic divalent cation, dimenthonium, which screens membrane surface charge. This would suggest that Na+-H+ exchange occurs in the diffuse double layer region of cardiac sarcolemma and this phenomenon is distinctly different from other Na+ transport processes. The results in this study indicate that in addition to a stimulation of Na+ efflux, the inhibitory effects of Mg2+, Ca2+ and Li+ on Na+-H+ exchange may also involve a charge dependent screening of Na+ interactions with the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号