首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expression of transfected genes in mammalian cells is rapidly repressed by epigenetic mechanisms such that, within a matter of weeks, only a fraction of the cells in most clonal populations still exhibit detectable expression. This problem can become prohibitive when one wants to express two ectopically introduced genes, as is necessary to establish cell lines that harbor genes regulated by the tetracycline‐controlled transactivators. We describe an approach to establish Chinese hamster ovary (CHO) cell lines that stably induce a tet‐responsive reporter gene in all cells of a transfected clonal population. Screening of more than 100 colonies resulting from a standard co‐transfection of the tetracycline transactivator (tTA) with a green fluorescent protein (GFP) reporter plasmid failed to identify a single colony that could induce GFP in more than 20% of cells. The presence of chromatin insulator sequences, previously shown to protect some transfected genes from epigenetic silencing, moderately improved stability but was not sufficient to produce homogeneous transformants. However, when cell lines were first established in which selection could be maintained either for the expression of tTA activity (co‐transfection with a tTA‐responsive selectable marker) or the presence of tTA mRNA (bicistronic message encoding a selectable marker), these cell lines could be subsequently transfected with the GFP reporter construct, and nearly 10% of the resulting colonies exhibited stable homogeneous tet‐responsive GFP expression in 100% of the expanded clonal cell population. J. Cell. Biochem. 76:280–289, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

2.
3.
Baccam M  Huberman E 《BioTechniques》2003,34(6):1220-2, 1224, 1226 passim
Stable cell transfection is used for the expression of exogenous genes or cDNAs in eukaryotic cells. Selection of these transfectants requires a dominant selectable marker. A variety of such markers has been identified and is currently in use. However, many of these are not suitable for all cell types or require unique conditions. Here we describe a simple and versatile dominant selectable marker that involves bacterial IMP dehydrogenase (IMPDH), an enzyme essential for the replication of mammalian and bacterial cells. Although IMPDH is evolutionarily conserved, the bacterial enzyme is orders of magnitude more resistant to the toxic effect of the drug mycophenolic acid, which is an IMPDH inhibitor. We have demonstrated that transfection of human, monkey or Chinese hamster cell lines with an expression vector containing bacterial IMPDH and mycophenolic acid treatment resulted in the selection of colonies with a strikingly increased resistance to mycophenolic acid toxicity. Analysis of cells derived from these colonies indicated that the acquisition of this resistance was associated with bacterial IMPDH protein expression. As a proof of principle, we showed that mammalian cell transfection with a bicistronic IMPDH/GFP expression vector and mycophenolic acid treatment can be used to successfully select transfectants that express the fluorescent protein. These results indicate that bacterial IMPDH is a practical dominant selectable marker that can be used for the selection of transfectants that express exogenous genes or cDNAs in mammalian cells.  相似文献   

4.
Transfected mammalian cells can be used for the production of fully processed recombinant proteins for medical and industrial purposes. However, the isolation of high-producing clones is traditionally time-consuming. Therefore, we developed a high-throughput screening method to reduce the time and effort required to isolate high-producing cells. This involved the construction of an expression vector containing the amplifiable gene metallothionein (MT), fused in-frame to green fluorescent protein (GFP). The fusion gene (MTGFP) confers metal resistance similar to that of the wild-type metallothionein and expression can be monitored using either flow cytometry or a fluorometer to measure green fluorescence. Expression of MTGFP acted as a dominant selectable marker allowing rapid and more efficient selection of clones at defined metal concentrations than with the antibiotic G418. Cells harboring MTGFP responded to increasing metal concentrations with a corresponding increase in fluorescence. There was also a corresponding increase in recombinant protein production, indicating that MTGFP could be used as a selectable and amplifiable gene for the coexpression of foreign genes. Using our expression vector encoding MTGFP, we demonstrate a high-throughput clonal selection protocol for the rapid isolation of high-producing clones from transfected CHO cells. We were able to isolate cell lines reaching specific productivities of >10 microg hGH/10(6) cells/day within 4 weeks of transfection. The advantage of this method is that it can be easily adapted for automated procedures using robotic handling systems.  相似文献   

5.
This study was conducted to establish and characterize the clonal‐cell lines from Siberian sturgeon Acipenser baerii head‐kidney tissues and to evaluate its applicability as a research tool. From the culture of A. baerii head‐kidney derived cells, 10 cell lines were established first and then eight clonal‐cell lines were derived from clonal growth and colony expansion of two cell lines that showed significant high colony‐forming ability. All eight clonal‐cell lines were morphologically similar and grew stably under monolayer culture but their growth rates were significantly different. They possessed diploid DNA contents, expressed epithelial cell‐related genes and showed strong anchorage dependency to substrates. When a clonal‐cell line was transfected separately with three plasmid vectors including fluorescent reporter genes driven by cytomegalovirus, marine medaka Oryzias dancena β‐actin or A. baerii β‐actin promoter, the cell lines expressed fluorescent signals regardless of promoter types. The cells harbouring foreign genes could be expanded to stable cell lines under drug selection and then they additionally could form the extensively proliferating colonies at low‐density culture. Finally, the clonal‐cell lines showed the susceptibility to viral haemorrhagic septicaemia virus (VHSV). Collectively, the clonal‐cell lines from A. baerii head kidney were established and these cell lines will be able to provide an excellent in vitro system for various biological studies in this fish species.  相似文献   

6.
A general purpose transformation vector, designated pPha-T1, was constructed for use with the diatom Phaeodactylum tricornutum Bohlin. This vector harbors the sh ble cassette for primary selection on medium containing the antibiotic zeocin, and a multiple cloning site flanked by the P. tricornutum fcp A promoter. pPha-T1 was used to establish the utility of three selectable marker genes and two reporter genes for P. tricornutum transformation. The nat and sat-1 genes confer resistance to the antibiotic nourseothricin, and npt II confers resistance to G418. Each of these genes was effective as a selectable marker for identifying primary transformants. These markers could also be used for dual selections in combination with the sh ble gene. The reporter genes uid A and gfp were also introduced into P. tricornutum using pPha-T1. Gus expression in some transformants reached 15 μg·μg−1 of total soluble protein and permitted excellent cell staining, while GFP fluorescence was readily visible with standard fluorescence microscopy. The egfp gene, which has optimal codon usage for expression in human cells, was the only version of gfp that produced a strong fluorescent signal in P. tricornutum. The codon bias of the egfp gene is similar to that of P. tricornutum genes. This study suggests that codon usage has a significant effect on the efficient expression of reporter genes in P. tricornutum. The results presented here demonstrate that a variety of selectable markers and reporter genes can be expressed in P. tricornutum , enhancing the potential of this organism for exploring basic biological questions and industrial applications.  相似文献   

7.
Expression of cloned genes at desired levels in cultured mammalian cells is essential for studying protein function. Controlled levels of expression have been difficult to achieve, especially for cell lines with low transfection efficiency or when expression of multiple genes is required. An internal ribosomal entry site (IRES) has been incorporated into many types of expression vectors to allow simultaneous expression of two genes. However, there has been no systematic quantitative analysis of expression levels in individual cells of genes linked by an IRES, and thus the broad use of these vectors in functional analysis has been limited. We constructed a set of retroviral expression vectors containing an IRES followed by a quantitative selectable marker such as green fluorescent protein (GFP) or truncated cell surface proteins CD2 or CD4. The gene of interest is placed in a multiple cloning site 5' of the IRES sequence under the control of the retroviral long terminal repeat (LTR) promoter. These vectors exploit the approximately 100-fold differences in levels of expression of a retrovirus vector depending on its site of insertion in the host chromosome. We show that the level of expression of the gene downstream of the IRES and the expression level and functional activity of the gene cloned upstream of the IRES are highly correlated in stably infected target cells. This feature makes our vectors extremely useful for the rapid generation of stably transfected cell populations or clonal cell lines expressing specific amounts of a desired protein simply by fluorescent activated cell sorting (FACS) based on the level of expression of the gene downstream of the IRES. We show how these vectors can be used to generate cells expressing high levels of the erythropoietin receptor (EpoR) or a dominant negative Smad3 protein and to generate cells expressing two different cloned proteins, Ski and Smad4. Correlation of a biologic effect with the level of expression of the protein downstream of the IRES provides strong evidence for the function of the protein placed upstream of the IRES.  相似文献   

8.
Enrichment of cells exhibiting tetracycline regulated gene expression   总被引:1,自引:0,他引:1  
Nahreini P  Hanson AJ  Prasad KN 《BioTechniques》2003,34(5):958-62, 964, 966 passim
  相似文献   

9.
10.
11.
Establishing cells with an exogenously introduced gene of interest under the inducible control of tetracycline (Tc) initially requires clonal cell lines stably expressing the tetracycline activator (tTA or rtTA). The originally described plasmid vectors expressing tTA/rtTA are driven by the cytomegalovirus (CMV) immediate early (IE) promoter-enhancer, known for its robust activity in a wide spectrum of cell types. While many reports testify to the utility and efficacy of this construct, instances of inexplicable failure to establish cell lines having inducible expression of the cDNA under study are encountered. Spontaneous extinction of CMV promoter activity in cells has been observed in a temporal and cell type-dependent manner. This could be a contributing factor in the failure to establish Tc-responsive cell lines. We here report that a change of the expression cassette to the human elongation factor-1alpha (EF-1alpha) promoter has permitted successful establishment of several inducible cell lines from diverse human tumor tissue origins. We interpret these results to imply that extinction of rtTA (or tTA) expression might be a significant factor in the lack of success in establishing Tc-inducible cell lines. Moreover, the present findings have general relevance to experiments requiring the use of stable cell lines.  相似文献   

12.
Baumann RP  Sherman DH  Sartorelli AC 《BioTechniques》2002,32(5):1030, 1032, 1034 passim
The availability of selectable markers suitable for use in mammalian cells has permitted the analysis of the influence of the stable overexpression of single or multiple genes on specific cell properties. This powerful technique has led directly to many fundamental advances in molecular biology and increased our overall understanding of cell growth and regulatory events. Although a variety of selectable markers are currently available, some cell lines continue to be naturally resistant to certain markers, making direct selection difficult or not feasible. Thus, the characterization of additional cell selectable markers continues to be of interest. We have developed a novel selectable marker based on mitomycin C resistance that is suitable for stable transfection of mammalian cells. This system is based on the ability of the mcrA gene, isolatedfrom Streptomyces lavendulae, to confer mitomycin C resistance to both bacterial and mammalian cells by expression of the MCRA protein. Here we demonstrate that mcrA can be used as a selectable gene marker in Chinese hamster ovary cells when cells transfected with the mcrA gene are either pulsed or cultured continuously with mitomycin C This unique selection system may be of use for transfection of cells that are resistant to currently available selectable markers.  相似文献   

13.
14.
合成基序为LLLRRRDNEY*FY*VRRLL的短肽(pSP),其中含有两个可被JaK2蛋白激酶磷酸化的酪氨酸残基.将此短肽与壳聚糖(CS)相偶联,体外磷酸化及DNA释放实验检测哺乳动物细胞裂解液对短肽的磷酸化及pSP-CS/DNA复合物中DNA释放的影响.放射性标记DNA转移实验验证pSP-CS/DNA复合物的入胞能力后,将荷荧光素酶或GFP报告基因的质粒与pSP-CS制成pSP-CS/DNA复合物,转染体外培养的C2C12小鼠成肌细胞,观察GFP的分布及细胞裂解液中的荧光素酶活性以表征转染效率.继而进行多种细胞系的转染,衡量pSP偶联的壳聚糖对不同种属细胞的转染效率.结果表明,哺乳动物细胞裂解液可有效地使短肽发生磷酸化,并藉此促进DNA与壳聚糖载体的解离.以pSP修饰的壳聚糖进行转染时,细胞裂解液的荧光素酶活性可达普通壳聚糖转染的两倍,细胞中GFP的含量也明显增加.据此推论,短肽被磷酸化后产生电荷属性的改变,促进DNA与壳聚糖载体的解离从而显著提高壳聚糖的转染效率.  相似文献   

15.
Selection markers are common genetic elements used in recombinant cell line development. While several selection systems exist for use in mammalian cell lines, no previous study has comprehensively evaluated their performance in the isolation of recombinant populations and cell lines. Here we examine four antibiotics, hygromycin B, neomycin, puromycin, and Zeocin™, and their corresponding selector genes, using a green fluorescent protein (GFP) as a reporter in two model cell lines, HT1080 and HEK293. We identify Zeocin™ as the best selection agent for cell line development in human cells. In comparison to the other selection systems, Zeocin™ is able to identify populations with higher fluorescence levels, which in turn leads to the isolation of better clonal populations and less false positives. Furthermore, Zeocin™-resistant populations exhibit better transgene stability in the absence of selection pressure compared to other selection agents. All isolated Zeocin™-resistant clones, regardless of cell type, exhibited GFP expression. By comparison, only 79% of hygromycin B-resistant, 47% of neomycin-resistant, and 14% of puromycin-resistant clones expressed GFP. Based on these results, we rank Zeocin™ > hygromycin B ∼ puromycin > neomycin for cell line development in human cells. Furthermore, this study demonstrates that selection marker choice does indeed impact cell line development.  相似文献   

16.
17.
The clonal rat calvaria cell line RCJ3.1C5.18 (RCJ) undergoes chondrogenic differentiation after long-term culture post confluence. To allow flexible genetic manipulation, a tetracycline-regulated gene expression system was established in this cell line. Treatment with tetracycline in operational doses does not affect the differentiation of RCJ cells with respect to the markers tested. After stable transfection with pUHD15.1 containing the tetracycline transactivator (tTA) in the presence of pTK-hyg for hygromycin selection, 28 clones were isolated and characterized for alcian blue staining of cartilage-specific proteoglycans and for collagen type II expression. Clone R-tTA-24 was selected on the basis of phenotype and displayed tetracycline-dependent downregulation of luciferase activity (tet-OFF system) by two orders of magnitude (57–149-fold) after stable transfection with the reporter gene pBI-EGFP/luc. The novel, chondrogenic cell line R-tTA-24 may be stably transfected with various genes of interest for tetracycline- regulated gene expression using neomycin selection and may be a valuable tool to study the process of chondrogenic differentiation in vitro. Accepted: 30 November 1999  相似文献   

18.
Human embryonic stem (ES) cells are pluripotent cell lines that have been derived from the inner cell mass (ICM) of blastocyst stage embryos [1--3]. They are characterized by their ability to be propagated indefinitely in culture as undifferentiated cells with a normal karyotype and can be induced to differentiate in vitro into various cell types [1, 2, 4-- 6]. Thus, human ES cells promise to serve as an unlimited cell source for transplantation. However, these unique cell lines tend to spontaneously differentiate in culture and therefore are difficult to maintain. Furthermore, colonies may contain several cell types and may be composed of cells other than pluripotent cells [1, 2, 6]. In order to overcome these difficulties and establish lines of cells with an undifferentiated phenotype, we have introduced a reporter gene that is regulated by a promoter of an ES cell-enriched gene into the cells. For the introduction of DNA into human ES cells, we have established a specific transfection protocol that is different from the one used for murine ES cells. Human ES cells were transfected with enhanced green fluorescence protein (EGFP), under the control of murine Rex1 promoter. The transfected cells show high levels of GFP expression when in an undifferentiated state. As the cells differentiate, this expression is dramatically reduced in monolayer cultures as well as in the primitive endoderm of early stage (simple) embryoid bodies (EBs) and in mature EBs. The undifferentiated cells expressing GFP can be analyzed and sorted by using a Fluorescence Activated Cell Sorter (FACS). Thus, we have established lines of human ES cells in which only undifferentiated cells are fluorescent, and these cells can be followed and selected for in culture. We also propose that the pluripotent nature of the culture is made evident by the ability of the homogeneous cell population to form EBs. The ability to efficiently transfect human ES cells will provide the means to study and manipulate these cells for the purpose of basic and applied research.  相似文献   

19.
Here we report the generation of stable, selectable Drosophila S2 cell lines using the UAS-GAL4 system. Cloning of the hygromycin resistance gene into the pUAST vector and cotransfection with other pUAST constructs in S2 cells results in coexpression of up to four different proteins under hygromycin selection. Protein expression is driven by the ubiquitous Actin5C-GAL4 driver and cell cultures are maintained in hygromycin-supplemented, serum-free media to ensure constitutive protein production. Visual comparison of cells cotransfected with GFP and RFP demonstrates a uniform cell population expressing both markers simultaneously, while Western blot analysis shows concurrent expression of MYC3-tagged proteins. In addition, fluorescent cell sorting (FACS) analysis shows that 80% of the total cell population express the GFP marker. Our data indicate that using this technique it is possible to establish stable, selectable cell lines that provide a pool of readily accessible protein. This facilitates protein-based studies and abolishes the need to carry out time-consuming and expensive transfections.  相似文献   

20.
Human immunodeficiency virus type 1-based lentivirus vectors containing the green fluorescent protein (GFP) gene were used to transduce murine Lin(-) c-kit(+) Sca1(+) primitive hematopoietic progenitor cells. Following transduction, the cells were plated into hematopoietic progenitor cell assays in methylcellulose and the colonies were scored for GFP positivity. After incubation for 20 h, lentivirus vectors transduced 27.3% +/- 6.7% of the colonies derived from unstimulated target cells, but transduction was more efficient when the cells were supported with stem cell factor (SCF) alone (42. 0% +/- 5.5%) or SCF, interleukin-3 (IL-3), and IL-6 (53.3 +/- 1.8%) during transduction. The, vesicular stomatitis virus glycoprotein-pseudotyped MGIN oncoretrovirus control vector required IL-3, IL-6, and SCF for significant transduction (39.3 +/- 9.4%). Interestingly, only a portion of the progeny cells within the lentivirus-transduced methylcellulose colonies expressed GFP, in contrast to the homogeneous expression in oncoretrovirus-transduced colonies. Secondary plating of the primary GFP(+) lentivirus vector-transduced colonies revealed vector PCR(+) GFP(+) (42%), vector PCR(-) GFP(-) (46%), and vector PCR(+) GFP(-) (13%) secondary colonies, indicating true genetic mosaicism with respect to the viral genome in the progeny cells. The degree of vector mosaicism in individual colonies could be reduced by extending the culture time after transduction and before plating into the clonal progenitor cell assay, indicating a delay in the lentiviral integration process. Furthermore, supplementation with exogenous deoxynucleoside triphosphates during transduction decreased mosaicism within the colonies. Although cytokine stimulation during transduction correlates with higher transduction efficiency, rapid cell division after transduction may result in loss of the viral genome in the progeny cells. Therefore, optimal transduction may require activation without promoting intense cell proliferation prior to vector integration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号