首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human T cell clones contain enzymes that can cleave the substrate N-alpha-benzyloxycarbonyl-L-lysine thiobenzyl ester (BLT). All CTL clones tested in this study secreted BLT-serine esterase activity, whereas only one of three tested non-cytolytic T cell clones secreted this enzymatic activity upon Ag-specific activation. BLT-serine esterase secretion could also be induced by the Fc gamma+ target cell Daudi in the presence of mAb specific for the TCR/CD3 complex, CD2, or the T cell activation Ag Tp 103. In addition, anti-CD3 and a mitogenic combination of anti-CD2 mAb, induced secretion of BLT-serine esterase in the absence of target cells, whereas anti-Tp 103 failed to do so. The secreted BLT-serine esterase activity induced by the various ligands was inhibited by the serine esterase inhibitors PMSF and m-ABA, but not by N-alpha-p-tosyl-L-lysine chloromethyl ketone. Significant BLT-serine esterase activity was induced by target cells or soluble anti-CD3 in the absence of extracellular Ca2+ ions, provided that extracellular Mg2+ ions were present. The cytotoxic activities by the human CTL clones were completely blocked under these conditions. All ligands that induced BLT-serine esterase secretion in the absence of extracellular Ca2+, induced a transient rise of intracellular Ca2+. Soluble anti-CD3 mAb did not induce a transient rise in intracellular Ca2+ or secretion of BLT serine esterase in CTL preincubated for 2 h with 5 mM EGTA. These findings indicate that mobilization of intracellular Ca2+ in human CTL clones is required for induction of secretion of BLT-serine esterase.  相似文献   

2.
Evidence for control of mast cell granule protease in situ by low pH   总被引:1,自引:0,他引:1  
The second order rate constant, k2, for the inhibition of mast cell protease I by phenylmethanesulfonyl fluoride (PMSF) is lower for intact mast cells and isolated granules with intact membranes than for granules stripped of their membranes and suspended in medium at pH 7.1. In order to test the hypothesis that the decreased activity of the protease in intact granules is attributable to low pH, two agents capable of lowering pH in intracellular compartments similar to mast cell granules were tested. Ammonium chloride increased k2 of the protease in isolated granules with intact membranes and mast cells and wash out of the salt partially reversed this effect. Treatment of cells with nigericin also substantially increased the rate of protease inactivation by PMSF. These results are consistent with the proposal that the observed k2 is determined in whole or part by a low pH of the granule in situ or isolated with intact membranes. If the low k2 in situ is solely dependent on low pH, then the rate of protease inhibition can be utilized as an endogenous probe of granule pH. On this basis we have estimated the pH of the intracellular granule as 5.2 and that of the isolated granule with its membrane intact as 6.0. The value for the pH of granules in situ is lower than that previously estimated, and we have considered possible bases for this discrepancy.  相似文献   

3.
The mechanism of lysis by in vivo-induced cytotoxic T lymphocytes (CTL) was examined with virus-specific CTL from mice infected with lymphocytic choriomeningitis virus (LCMV). LCMV-induced T cells were shown to have greater than 10 times the serine esterase activity of T cells from normal mice, and high levels of serine esterase were located in the LCMV-induced CD8+ cell population. Serine esterase was also induced in purified T-cell preparations isolated from mice infected with other viruses (mouse hepatitis, Pichinde, and vaccinia). In contrast, the interferon inducer poly(I.C) only marginally enhanced serine esterase in T cells. Serine esterase activity was released from the LCMV-induced T cells upon incubation with syngeneic but not allogeneic LCMV-infected target cells. Both cytotoxicity and the release of serine esterase were calcium dependent. Serine esterase released from disrupted LCMV-induced T cells was in the form of the fast-sedimenting particles, suggesting its inclusion in granules. Competitive substrates for serine esterase blocked killing by LCMV-specific CTL, but serine esterase-containing granules isolated from LCMV-induced CTL, in contrast to granules isolated from a rat natural killer cell tumor line, did not display detectable hemolytic activity. Fragmentation of target cell DNA was observed during the lytic process mediated by LCMV-specific CTL, and the release of the DNA label [125I]iododeoxyuridine from target cells and the accompanying fragmentation of DNA also were calcium dependent. These data support the hypothesis that the mechanism of killing by in vivo-induced T cells involves a calcium-dependent secretion of serine esterase-containing granules and a target cell death by a process involving nuclear degradation and DNA fragmentation.  相似文献   

4.
Protein kinase C required for cytotoxic T lymphocyte triggering   总被引:9,自引:0,他引:9  
The role of protein kinase C (PK-C) in triggering the lytic response of cytotoxic T lymphocytes (CTL) has been examined. Both target cell lysis and the release of CTL-associated serine esterase (SE), a marker for cytotoxic granules, were used as indicators of the CTL lytic response. We found triggering of the CTL lytic response occurred when both a PK-C activator, phorbol 12-myristate 13-acetate (PMA), and a calcium ionophore, ionomycin, were added to CTL. The previously described inactivation of the CTL lytic response by long term treatment (24 hr) with PMA was also investigated. CTL cultured with PMA for 24 hr were unable to mediate target cell lysis or release SE; this inability to respond correlated with an absence of PK-C activity. Incubation of the PMA-treated CTL in the absence of PMA for an additional 24 hr resulted in recovery of PK-C activity, SE release, and the lytic response. These experiments strongly suggest that PK-C is involved with the transmembrane signaling required for SE release which is a necessary event in CTL-mediated target cell lysis.  相似文献   

5.
To evaluate the role of NK cell granules in the lytic activity of NK cells, cytoplasmic granules of rat NK tumors were purified by centrifugation of the cell homogenates in a Percoll gradient. Analysis of such gradients showed a band of light-scattering material near the bottom of the tube; assay of gradient fractions for lytic activity against SRBC showed a potent lytic activity giving a sharp peak in this region. Complete lysis of SRBC was achieved with less than 1 microgram/ml protein of the most active fractions. Examination in the electron microscope showed that a pool of fractions containing lytic activity consisted of pure cytoplasmic granules showing similar morphology to those found in the LGL tumors. The lytic band was associated with a peak in the activity of four different lysosomal enzymes. Analysis of Percoll gradient fractions showed that marker enzymes for mitochondria, plasma membrane, and cytosol were well separated from this activity peak. Analysis of the Percoll gradient fractions by SDS gel electrophoresis showed that this granule fraction was free of contamination of proteins from other parts of the gradient. The granules contained major protein bands of 62, 58, 30, 29, and 28 kilodaltons. In addition to protein, the purified granule fractions contain hexose and uronic acid, but no nucleic acids or phospholipids were detected in chemical assays. Major amounts of chymotryptic, tryptic, and elastase activities were not present, nor were peroxidase or lysozyme activities detectable in substantial amounts. These data show that NK tumor cell cytoplasmic granules contain a potent lytic activity and have biochemical properties that distinguish them from granules present in granulocytes and mast cells.  相似文献   

6.
The specific activity of a neutral protease (assayed at pH 8, using azocasein as substrate) in Tetrahymena doubled or tripled within a few hours after the onset of shaking of statically grown, stationary phase cultures. The increase occurred during a period when several peroxisomal enzymes were decreasing. The increase was prevented by actinomycin D or cycloheximide, both of which also prevented the decrease in peroxisomal enzymes. Protease activity towards hemoglobin at pH 3.6 increases during this period, but to a lesser extent, while activity towards BANA (α-N-benzoyl-d,l-arginine 2-naphthylamide) was almost unchanged. The three protease activities have been partially purified by gel filtration and affinity chromatography, and are indistinguishable on this basis. Chromatography on DEAE-Sephadex yields three peaks having activity towards BANA but not towards hemoglobin and azocasein, and two peaks having activity towards all three substrates. The activities towards azocasein and hemoglobin are also indistinguishable on the basis of sensitivity to a variety of inhibitors, to temperature, and chromatography on CM Sephadex. The partially purified protease has an absolute sulfhydryl requirement when azocasein is used as substrate and is inhibited by leupeptin, chymostatin, TLCK, TPCK, and iodacetamide but not by pepstatin or PMSF. Activity towards BANA is much more susceptible to these inhibitors than is that towards azocasein. About half of the activity towards azocasein sediments with the large particle (40,000g-min) fraction. The distribution between two components of this fraction resembles that of a lysosomal marker. However, the activity did not follow the distribution of marker enzymes of any of the typical cell organelles when either subfraction was centrifuged through a sucrose density gradient, nor did it follow; the distribution pattern of the other two protease activities. Much of the activity, in fact, remained at the top of the gradient, even after repeated washings of the particulate fraction or fractionation in the presence of a membrane-stabilizing agent or a protease inhibitor. The protease or proteases appears to be in part responsible for the rapid loss of enzyme activity that is characteristic of Tetrahymena homogenates. The existence of a protease that can attack cellular enzymes at physiological pH suggests that extralysosomal breakdown of proteins can occur in a eukaryotic cell and may be of importance in the regulation of cellular enzyme levels.  相似文献   

7.
Based on substrate specificity, an alkaline pH optimum, sensitivity to selected proteinase inhibitors, and molecular analysis, we provide evidence for the presence of a trypsin-like serine proteinase in the salivary gland complex (SGC) of the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois) (Heteroptera: Miridae). The predominant activity in extracts of the SGC against N(2)-benzoyl-L-arginine-p-nitroanilide (L-BApNA) was at pH 10, but a minor peak of activity also occurred at pH 5. The major BApNAase activity focused at 10.4 during preparative isoelectric focusing and was eluted with an apparent molecular weight of 23,000 from a calibrated gel filtration column. The BApNAase fraction gave a single major band when analyzed on a casein zymogram. The activity was completely suppressed by the serine protease inhibitors, phenylmethylsulfonyl fluoride (PMSF) and lima bean trypsin inhibitor. A cDNA coding for a trypsin-like protein in the salivary glands of L. lineolaris was cloned and sequenced. The 971bp cDNA contained an 873-nucleotide open reading frame encoding a 291-amino acid trypsin precursor. The encoded protein included amino acid sequence motifs that are conserved with four homologous serine proteases from other insects. Typical features of the putative trypsin-like protein from L. lineolaris included the serine protease active site (His(89), Asp(139), Ser(229)), conserved cysteine residues for disulfide bridges, the residues (Asp(223), Gly(252), Gly(262)) that determine trypsin specificity, and both zymogen signal and activation peptides. Cloning and sequencing of a trypsin-like precursor cDNA provided additional direct evidence for trypsin like enzymes in the salivary glands of L. lineolaris.  相似文献   

8.
During many insemination interventions semen coagulates already within the insemination needle, which considerably lengthens the duration of inseminating a single queen bee. Considering this, the authors decided to determine the type and activity of proteases and their inhibitors in normal and coagulated sperm. The samples were collected from mature and old drones. The sperm proteins were isolated in 1% Triton X-100. The samples containing isolated proteins were tested as follows: protein concentration assay by the Lowry method; proteolytic activity in relation to various substrates (gelatine, haemoglobin, ovoalbumin, albumin, cytochrome C, casein) by the modified Anson method; proteolytic activity in relation to diagnostic inhibitors of proteolytic enzymes (pepstatin A, PMSF, iodoacetamide, o-phenantrolin), using the Lee & Lin method; acidic, neutral and basic protease activity by means of the modified Anson method; electrophoretic analysis of proteins in a polyacrylamide gel for protease detection with the Laemmli method; the activity of aspartic and serine protease inhibitors by the Lee and Lin method; electrophoretic analysis of proteins in a polyacrylamide gel for protease inhibitor activity detection by means of the modified Felicioli method. The mixing of non-coagulated semen from different drones increased protein concentration. The activities of proteases were decreased in normal sperm samples as compared with a corresponding rise in the sperm mixture from many drones. The non-coagulated sperm samples were found to contain aspartic and serine proteases. Additionally, thiolic and metallic proteases were also found in the coagulated sperm samples. There was a rise in protease inhibitor activity at pH 3.0 and 12.0, and a fall at pH 7.0 after mixing the sperm samples collected from numerous drones. Oscillation in these activities stemmed from sperm coagulation.  相似文献   

9.
Exocytosis of cytolysin-containing granules from cytotoxic T lymphocytes (CTL) was studied with the use of granule enzyme (BLT esterase) as a convenient biochemical marker. Using cloned CTL, we demonstrate here that BLT esterase secretion into the supernatant is specifically triggered by antigen-bearing target cells and that this secretion is inhibited by soluble monoclonal antibodies against the antigen-specific T cell receptor (TcR). Immobilized anti-receptor antibodies induced efficient enzyme secretion in the absence of target cells, thus implying a direct involvement of TcR complex in triggering exocytosis of granules. These results support the role of the granule exocytosis in CTL functions and provide a quantitative and direct assay of a rapid CTL functional response to antigenic stimulation.  相似文献   

10.
Two proteases isolated from senescent oat (Avena sativa) leaves have been subjected to further study. One of these, an acid protease active at pH 4.2, is inhibited by phenylmethylsulfonyl fluoride (PMSF) but not by iodoacetamide (IAc). The other, active at pH 6.6, is inhibited by both PMSF and IAc. These results, together with previously reported evidence that mercaptoethanol stimulates the activity of only the neutral protease, are taken to indicate that the acid protease is probably of the serine type, whereas the neutral enzyme is of the sulfhydryl type. Both enzymes are inhibited by irradiation in the presence of rose bengal, a selective histidine modification reagent. The acid protease was completely unaffected by chelators, but data on the neutral protease were equivocal.

All protein substrates tested were attacked by both enzymes, though at strikingly different rates. Characterization of the digestion products, with denatured hemoglobin as substrate, indicated that the acidic enzyme is an endoprotease, while the neutral one is an exoprotease. Evidence is presented that these proteases undergo autolysis in vitro.

  相似文献   

11.
To clarify the possible conversion of prorenin in renin granules where conversion reportedly occurred, we investigated whether the renin granule fraction of the kidney could activate prorenin to the active form. Renin granules were isolated from the dog kidney cortex by discontinuous sucrose density gradient centrifugation. Human active renin was quantified by immunoradiometric assay which could detect only the human active renin but not the inactive human renin or dog renin. Inactive renin from human amniotic fluid was incubated with the subcellular fraction of the dog kidney cortex. The renin granule fraction that showed the highest renin activity stimulated the inactive renin to become the active form. The membrane preparation obtained from the renin granule fraction by freezing and thawing the fraction in low osmolarity retained the activity of renin activation. Other subcellular fractions showed less renin activation. The optimal pH for renin activation by the membrane was pH 5.0 to 6.0. The activation depended on the time of incubation and concentration. The activation was inhibited by N-ethylmaleimide but not by EDTA or serine protease inhibitors. These results suggest that renin is processed by a membrane bound protease in renin granules.  相似文献   

12.
Extracellular proteases produced by Scytalidium thermophilum, grown on microcrystalline cellulose, were most active at pH 6.5–8 and 37–45 °C when incubated for 60 min. Highest protease activity was at day 3 where endoglucanase activity was low. Protease activity measurements with and without the protease inhibitors, p-chloromercuribenzoate, PMSF, antipain, E-64, EDTA and pepstatin A, suggest production of thiol-containing serine protease and serine proteases. Endoglucanase and Avicel-adsorbable endoglucanase activity in culture medium was not significantly affected by protease inhibitors.  相似文献   

13.
An assay for the detection of yeast (Saccharomyces cerevisiae) protease activity, using partially purified yeast-derived recombinant hepatitis B surface antigen (rHBsAg) as substrate, was developed to monitor proteolysis of rHBsAg that may occur through fermentation and isolation. The method consists of incubating small amounts of yeast lysate (protease source) with the substrate at 35 degrees C for about 16 h. Substrate proteolysis is assessed by subjecting the incubation mixtures to SDS-PAGE followed by silver-staining. The type of protease responsible for particular cleavages can be identified by treating the yeast lysates with specific protease inhibitors prior to incubation with substrate. The treatment of lysates with PMSF indicated that while many lysates possessed only serine protease activity (Protease B), some possessed proteolytic activity that could not be quenched with high levels of PMSF or other serine protease inhibitors. The use of the aspartyl protease inhibitor Pepstatin A in conjunction with PMSF virtually eliminated all proteolytic activity in these lysates, indicating that an aspartyl protease (Protease A) is expressed under some fermentation conditions. The relative amount of each protease in a lysate can be determined semiquantitatively by scanning the SDS gels densitometrically and plotting the ratio of degradates to intact antigen in the presence and absence of protease inhibitors. This method was used successfully to monitor the time-dependent expression of these proteases throughout production-scale fermentations. The impact of fermentation and purification changes on those proteases specifically responsible for the rHBsAg degradation can be easily evaluated.  相似文献   

14.
A trypsin-like enzyme (tryptase) has been purified to homogeneity from the granules of a human cytolytic lymphocyte (CTL) line, Q31, by a three-step procedure. By including 0.3% (v/v) Triton X-100 and 1 mg/ml heparin in purification buffers, near total yields of tryptase activity were obtained during the purification. The enzyme, referred to as Q31 tryptase, migrated in polyacrylamide gels with sodium dodecyl sulfate at a position corresponding to 28 kDa with and to 45 kDa without 2-mercaptoethanol. It had an amino-terminal sequence identical to a previously reported human CTL tryptase at 20 of 22 positions identified. It hydrolyzed N alpha-carbobenzyloxy-L-lysyl-thiobenzyl ester (BLT), and this BLT esterase activity was most efficient at slightly alkaline pH and was relatively more active near neutral pH than mouse CTL tryptase. Human alpha 1-protease inhibitor, human antithrombin III, phenylmethanesulfonyl fluoride, and p-aminobenzamidine inhibited the Q31 tryptase. The inhibition by human antithrombin III was rapid enough to be of physiological significance. A survey of oligopeptide p-nitroanilides found that the best substrate for human Q31 tryptase is H-D-(epsilon-carbobenzyloxy)Lys-L-Pro-L-Arg-p-nitroanilide. The Q31 tryptase appears to have broad specificity for amino acid residues at P2 and P3, i.e. at 2 and 3 residues amino-terminal to the scissile bond.  相似文献   

15.
Extracellular and membrane-bound proteases from Bacillus subtilis.   总被引:8,自引:5,他引:3       下载免费PDF全文
Bacillus subtilis YY88 synthesizes increased amounts of extracellular and membrane-bound proteases. More than 99% of the extracellular protease activity is accounted for by an alkaline serine protease and a neutral metalloprotease. An esterase having low protease activity accounts for less than 1% of the secreted protease. These enzymes were purified to homogeneity. Molecular weights of approximately 28,500 and 39,500 were determined for the alkaline and neutral proteases, respectively. The esterase had a molecular weight of approximately 35,000. Amino-terminal amino acid sequences were determined, and the actions of a number of inhibitors were examined. Membrane vesicles contained bound forms of alkaline and neutral proteases and a group of previously undetected proteases (M proteases). Membrane-bound proteases were extracted with Triton X-100. Membrane-bound alkaline and neutral proteases were indistinguishable from the extracellular enzymes by the criteria of molecular weight, immunoprecipitation, and sensitivity to inhibitors. The M protease fraction accounted for approximately 7% of the total activity in Triton X-100 extracts of membrane vesicles. The M protease fraction was partially fractionated into four species (M1 through M4) by ion-exchange chromatography. Immunoprecipitation and sensitivity to inhibitors distinguished membrane-bound alkaline and neutral proteases from M proteases. In contrast to alkaline and neutral proteases, proteases M2 and M3 exhibited exopeptidase activity.  相似文献   

16.
In previous studies, we demonstrated that NK cells and lymphokine-activated killer cells were inactivated early in the lytic process by susceptible but not by resistant target cells (TC). We examined the functional status of human MHC-restricted CTL, after interaction with sensitive TC. Two CTL lines were generated in vitro by stimulation with irradiated PAMO, an EBV-transformed cell line. CTL were incubated for up to 4 h with an equal number of PAMO, then separated by a SRBC rosette assay. CTL lost greater than 60% of their lytic activity during the first 30 min of incubation, and greater than 90% by 4 h as assessed by their inability to lyse fresh TC. Inactivated CTL had 35% less serine esterase activity than did control CTL. IL-2 restored the lytic potential and serine esterase activity to normal values within 72 h. Exposure of CTL to PAMO for 4 h induced the modulation of 22 to 44% of TCR/CD3, CD4/CD8, and class I Ag from the cell surface. In contrast, the expression of CD69, and class II Ag increased and there was no change in the expression of CD2, CD28, or LFA-1 Ag. Furthermore, early metabolic events that usually follow CTL-ligand interaction such as phosphatidylinositol metabolism and transient increase in intracellular calcium, did not occur in inactivated CTL upon challenge with PAMO. PMA and the calcium ionophore A23187, restored cytolytic activity, indicating that protein kinase C can be activated and translocated in inactivated CTL. Our data suggest that TC-induced inactivation of CTL may be due to the modulation of key membrane molecules and the lack of certain secondary messengers involved in signal transduction.  相似文献   

17.
To kill other cells, lymphocytes can exocytose granules that contain serine proteases and pore-forming proteins (perforins). We report that mechanism-based isocoumarin inhibitors inhibited the proteases and inactivated lysis. When inhibited proteases were restored, lysis was also restored, indicating that the proteases were essential for lysis. We found three new lymphocyte protease activities, "Asp-ase,"Met-ase," and "Ser-ase," which in addition to ly-tryptase and ly-chymase, comprise five different protease activities in rat RNK-16 granules. The general serine protease inhibitor 3,4-dichloroisocoumarin (DCI) inhibited all five protease activities. Essentially all protease molecules were inactivated by DCI before lysis was reduced, as determined from DCI's second order inhibition rate constants for the proteases, the DCI concentrations, and the times of pretreatment needed to block lysis. The pH favoring DCI inhibition of lysis was the pH optimum for protease activity. Isocoumarin reagents acylate, and may sometimes secondarily alkylate, serine protease active sites. Granule proteases, inhibited by DCI acylation, were deacylated with hydroxylamine, restoring both the protease and lytic activities. Hydroxylamine does not restore alkylated proteases and did not restore the lytic activities after inhibition with 4-chloro-7-guanidino-3-(2-phenylethoxy)-isocoumarin, a more alkylating mechanism-based inhibitor designed to react with tryptases. It is improbable that isocoumarin reagents directly inactivated pore-forming proteins because 1) these reagents require protease activation, 2) their nonspecific effects are alkylating, and 3) alkylated proteins are not restored by hydroxylamine. We conclude that serine proteases participate in lysis when lysis is mediated by the complete assembly of granule proteins.  相似文献   

18.
The profile of sedimentation on a 4-20% (w/v) linear sucrose gradient of the digestive juice of the mollusk Archachatina ventricosa revealed the presence of at least four specific proteases. A first peak, corresponding to a sedimentation coefficient of 3.9 S, contained two endoproteases that could be assayed, one with Leu-pNA and the other with Met-pNA. Their activity was maximal at pH 8.0 and increased in the presence of Ca(2+) ions. Both enzymes were inhibited by the chelating agent 1,10-phenanthroline but their thermal inactivation kinetics were different. A second protease peak was observed at 6.8 S and corresponded to a metallo-endoprotease that hydrolyzed with a maximal activity at pH 8.0 only the amide bonds of peptide substrates having a threonine residue at the P1' position. A last protease peak identified at 9.0 S contained a protease that preferentially acted on tripeptides, such as Val-Pro-Leu (diprotin B) and Thr-Val-Leu, releasing the C-terminal residue. Unlike the proteases identified in the two other peaks, its activity was maximal at acid pH (5.0) and was inhibited by the serine protease inhibitors. Together these results show the potential of A. ventricosa as a source of specific proteases.  相似文献   

19.
Inhibition of the lytic activity of perforin by lipoproteins   总被引:2,自引:0,他引:2  
Cytoplasmic granules isolated from cytolytic T lymphocytes (CTL) lyse red blood cells or tumor cell lines in a nonspecific manner. The activity of highly purified granules was inhibited by human or rabbit serum at dilutions as high as 1/10,000. The main inhibitory activity of human serum was isolated by chromatography and was determined to be high density lipoprotein (HDL). HDL not only inhibited at a concentration of 70 ng/ml the lytic activity of isolated granules, but also of the purified, pore-forming protein perforin present in the granules. Purified low density lipoprotein was equally active. Because the CTL granule activity was inhibited by pure egg lecithin vesicles at a concentration equivalent to the phospholipid content of lipoproteins, the lipid portion of lipoproteins is the likely candidate for granule inactivation. Lipoproteins also decreased in a dose-dependent manner the cytotoxic activity of intact cytolytic T cells. However, cytotoxicity was not completely suppressed, and only in the case of CTL exhibiting low efficiency in killing their targets. It is proposed that lipoproteins inactivate perforin and may thereby inhibit a possible lysis of innocent bystander cells.  相似文献   

20.
Asif-Ullah M  Kim KS  Yu YG 《Phytochemistry》2006,67(9):870-875
Kachri fruit, Cucumis trigonus Roxburghi, contains high protease activity and has been used as meat tenderizer in the Indian subcontinent. A 67 kDa serine protease from Kachri fruit was purified by DEAE-Sepharose and CM-Sepharose chromatography, whose optimum activity was at pH 11 and 70 degrees C. Its activity was strongly inhibited by PMSF, but not by EDTA, pepstatin, or cysteine protease inhibitors. The substrate specificity of the purified protease towards synthetic peptides was comparable to cucumisin, the first characterized subtilisin class plant protease from the sarcocarp of melon fruit (Cucumis melo). These characteristics, along with the N-terminal amino acid sequence, indicated that the isolated protease from Cucumis trigonus Roxburghi is a cucumisin homologue, which belongs to the serine protease family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号