首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The abscission zone in tomato (Lycopersicon esculentum (L.) Mill. flower pedicels is morphologically distinguishable prior to separation and is delineated by an indentation of the epidermis. Exposure of excised pedicels with the flower attached to ethylene results in abscission within 12 h and this can be accelerated by flower removal. Abscission of excised pedicels with the flower removed takes place in the absence of exogenous ethylene but this is delayed by pretreatment with aminoethoxyvinyl glycine, an inhibitor of ethylene biosynthesis. The data presented support the hypothesis that flower tissue is the source of an abscission inhibitor.Abbreviations AVG aminoethoxyvinyl glycine - IAA indole-3-acetic acid  相似文献   

2.
Inconsistency of cropping is an important problem for UK sweet cherry production. Premature fruit abscission in Prunus can reduce yields severely, however, the environmental cues and hormonal signals that trigger abscission have not been identified. Auxin (IAA) is known to delay abscission by reducing the sensitivity of cells in the abscission zone to ethylene, a promoter of abscission. Therefore, the capacity for polar auxin transport (PAT) through sweet cherry pedicels was examined in relation to fruit abscission. Cherry ‘spurs’ (short shoots) with similar leaf areas and different fruit numbers were phloem-girdled to restrict assimilate movement. Abscission from spurs with many fruit (eight or more) occurred within 14 days of girdling, whereas abscission from spurs with few (two) fruit was minimal. The pedicels’ capacity for PAT in spurs with different fruit numbers was determined 1, 3 and 9 days after girdling (DAG). Fruit were analysed for endogenous IAA concentration 3, 5, 7 and 9 DAG. PAT inhibitors 2,3,5-triiodobenzoic acid or 1-N-naphthylphtalamic acid were applied to pedicels of fruit not expected to abscise, i.e. on spurs with few fruit. The effect of these inhibitors on fruit abscission was determined 14 DAG. The proportion of the transported [3H]-IAA was lower from the outset in pedicels from spurs with many fruit. By 9 DAG, symptoms of fruit abscission were apparent and 40% less [3H] -IAA was transported through pedicels on spurs with many fruit. Fruit endogenous IAA concentrations were similar in the two groups of spurs. Application of PAT inhibitors shortly after girdling increased fruit abscission by 30%. The results suggest that although a decline in PAT is not the only cause of fruit abscission, the maintenance of PAT contributes to fruit retention.  相似文献   

3.
Ethylene-induced abscission in flower pedicels of Nicotiana tabacum L. cv. Little Turkish causes a progressive increase in peroxidase activity during the first 4 hours of a 5-hour time course ethylene treatment period, with decrease in peroxidase activity occurring between 4 hours and 5 hours, when the supernatant extracts of abscission zone segments are tested spectrophotometrically for peroxidase activity, using guaiacol and hydrogen peroxide. Nonethylene-treated tissue has a much lower level of peroxidase activity over the same time course period. In ethylene-treated tissue the decline in break-strength correlates with the beginning of increase in peroxidase activity (3 hours). When the abscission zone area of the pedicel is further divided into proximal, abscission zone, and distal portions, respectively, the ethylene-treated tissue has the highest peroxidase activity in the abscission zone portion, with the maximum peak occurring at 4 hours and decreasing between 4 hours and 5 hours. Acrylamide gel electrophoresis of enzyme breis from ethylene-treated aand nonethylene-treated plants reveals that no new peroxidase isozymes are formed in response to ethylene, indicating an increase in the amount of one or in both of the two already existing isozyme banding patterns. The measurement of protein in the proximal, abscission zone, and distal segments, over a 5-hour ethylene treatment period, indicates that it is being translocated in a distal to proximal direction in the abscission zone pedicel. The possible participatory role for peroxidase in ethylene-induced tobacco flower pedicel abscission are discussed.  相似文献   

4.
Hormonal Regulation of Pedicel Abscission in Begonia Flower Buds   总被引:1,自引:0,他引:1  
In order to analyse the hormonal regulation of flower bud shedding in Begonia, levels of indoleacetic acid (IAA), abscisic acid (ABA) and ethylene were determined in buds and pedicels. The translocation and metabolism of 14C-labeled IAA in pedicel segments were also studied. In a monoecious Begonia fuchsioides hybrid, abscising male flower buds contain about 1% of the IAA present in non-abscising female flowers. In a male Begonia davisii hybrid, the seasonal variation in bud drop coincides with changes in the IAA content of the buds, while also the release of IAA from the bud to the pedicel is hampered. Abscission zones of these pedicels always contain abscission promoting ethylene concentrations. The tissue is prevented from responding with abscission by IAA from the flower buds. The buds also contain ABA but without influencing abscission considerably. Pretreatment with ethylene or ABA does not affect IAA transport in pedicel segments. The rate of this transport is 4–6 mm × h–1:; the capacity increases with the transverse area. In young segments, IAA is decarboxylated and also otherwise metabolized.  相似文献   

5.
In vitro cultivated pear, Pyrus communis L. cv. Beurré Hardy, pedicels cut above their primary abscission layer can form a secondary abscission layer, especially under the influence of auxins or cytokinins in the culture medium. The maximum percentage of abscission reached by auxin application was always higher than that by cytokinin. The presence of the flower was of no consequence to the abscission. Characteristic differences in abscission were observed between pear and apple pedicels. In contrast to apple (1) secondary abscission in pear could also be induced by cytokinins, and (2) the site of abscission in pear was dependent on the auxin concentration. At lower auxin concentrations abscission was induced in the basal parts of the pedicels inserted in the medium, whereas at higher auxin concentrations the abscission layer was formed in the terminal parts of the pedicels above the culture medium. A clear effect of gibberellins, ABA and CEPA could not be detected.  相似文献   

6.
The role of ethylene-mediated reduction of auxin transport in natural and ethylene-induced leaf abscission was studied in the cotton (Gossypium hirsutum L., cv. Stoneville 213) cotyledonary leaf system. The threshold level of ethylene required to cause abscission of intact leaves was between 0.08 and 1 μl/l with abscission generally occurring 12 to 24 hours following ethylene fumigation. The threshold level of ethylene required to reduce the auxin transport capacity in the cotyle-donary petiole paralleled that required for stimulation of abscission. In plants where cotyledons are allowed to senesce naturally there is a decline in auxin transport capacity of petioles and increase in ethylene synthesis of cotyledons. The visible senescence process which precedes abscission requires up to 11 days, and increases in ethylene production rates and internal levels were detected well before abscission. Ethylene production rates for entire cotyledons rose to 2.5 mμ1 g−1 hr−1 and internal levels of 0.7 μl/l were observed. These levels appear to be high enough to cause the observed decline in auxin transport capacity. These findings, along with those of others, indicate that ethylene has several roles in abscission control (e.g., transport modification, enzyme induction, enzyme secretion). The data indicate that ethylene modification of auxin transport participates in both natural abscission and abscission hastened by exogenous ethylene.  相似文献   

7.
Effects of exogenous application of auxin, GA3, abscisic acid, ethrel, methionine and α-alanine to the cut ends of the pedicels of flower buds, flowers and fruits on their abscission behaviour were studied. Fruit pedicels required more time for abscission compared with flower and flower bud pedicels. NAA inhibited abscission of all types of pedicels and the inhibition was maximum in matured fruit pedicels and minimum in flower bud pedicels. Flower pedicels were more sensitive towards the abscission promotive effects of GA3, abscisic acid and ±-alanine and the flower bud pedicels towards ethrel and methionine. The duration of Stage-I of abscission was maximum in cut pedicels of fruit and minimum in those of flower buds. Biochemical analyses revealed greater quantities of endogenous amino acids in the epicalyx of flowers with the exception of methionine and aspartic acid which were found to be present in higher quantities in the epicalyx of flower buds. Levels of IAA-like compounds were maximum in the epioalyx of flower buds and minimum in the epicalyx of flowers. Higher levels of abscisic acid were found in the epicalyx of matured fruits and the epicalyx of flower buds showed a minimum amount of abscisic acid-like compound.  相似文献   

8.
Prevention of ethylene- and shipping-induced flower abscission is necessary to maintain the quality of both cut flowers and potted plants during handling, transport and retail display. The aims of the present work were to determine the sensitivity of Plectranthus cultivars to applied ethylene, to alleviate ethylene- and shipping-induced flower abscission in intact potted plants using 1-methylcyclopropene (1-MCP), and to investigate the possible causes of dark-induced flower abscission. All cultivars were sensitive to ethylene in a concentration-dependent manner, and complete abscission occurred within 24 h with 1 and 2 μl l 1 ethylene. Unopened buds were more sensitive to applied ethylene, and exhibited greater abscission than open flowers. Ethylene synthesis remained below detection limits at all time points under control and continuous dark conditions. Dark treatment significantly increased flower abscission in Plectranthus cultivars, and like ethylene-induced flower abscission, this could be prevented by continuous 1-MCP treatment. Gene expression of ethylene biosynthetic enzymes ACS and ACO was examined as possible causes for the accelerated flower abscission observed in plants kept in continuous darkness. Expression patterns of ACS and ACO varied between different cultivars of Plectranthus. In some cases, increased expression of ACS and ACO led to increased flower abscission. Gene expression was higher in open flowers when compared to unopened flowers suggesting a cause for the observed preferential shedding of open flowers in some cultivars. Although the cause of dark-induced abscission in Plectranthus remains elusive, it can be effectively controlled by treatment with 1-MCP.  相似文献   

9.
Suttle JC 《Plant physiology》1985,78(2):272-276
The effect of the defoliant thidiazuron (N-phenyl-N′-1,2,3-thiadiazol-5-ylurea) on endogenous ethylene evolution and the role of endogenous ethylene in thidiazuron-mediated leaf abscission were examined in cotton (Gossypium hirsutum L. cv Stoneville 519) seedlings. Treatment of 20- to 30-day-old seedlings with thidiazuron at concentrations equal to or greater than 10 micromolar resulted in leaf abscission. At a treatment concentration of 100 micromolar, nearly total abscission of the youngest leaves was observed. Following treatment, abscission of the younger leaves commenced within 48 hours and was complete by 120 hours. A large increase in ethylene evolution from leaf blades and abscission zone explants was readily detectable within 24 hours of treatment and persisted until leaf fall. Ethylene evolution from treated leaf blades was greatest 1 day posttreatment and reached levels in excess of 600 nanoliters per gram fresh weight per hour (26.7 nanomoles per gram fresh weight per hour). The increase in ethylene evolution occurred in the absence of increased ethane evolution, altered leaf water potential, or decreased chlorophyll levels. Treatment of seedlings with inhibitors of ethylene action (silver thiosulfate, hypobaric pressure) or ethylene synthesis (aminoethoxyvinylglycine) resulted in an inhibition of thidiazuron-induced defoliation. Application of exogenous ethylene or 1-aminocyclopropane-1-carboxylic acid largely restored the thidiazuron response. The results indicate that thidiazuron-induced leaf abscission is mediated, at least in part, by an increase in endogenous ethylene evolution. However, alterations of other phytohormone systems thought to be involved in regulating leaf abscission are not excluded by these studies.  相似文献   

10.
Stamen abscission and water balance in Metrosideros flowers   总被引:2,自引:0,他引:2  
Cymules (3-flowered units borne on single pedicels) were cut from inflorescences of Metrosideros collina J.R. & G. Forst. cv. Tahiti and used to test the effects of ethephon and ethylene on stamen abscission in the presence of silver thiosulphate (STS) and 1-methylcyclopropene (1-MCP), and to test the effects of holding solutions on cymule water balance and the progression of floral development. Flower bud and stamen abscission occurred in response to 0.5–5.0 and 0.1 μl l−1 ethylene, respectively. Ethylene effects were partially negated by scrubbing exogenous ethylene, and more completely negated by STS (2.0 m M ). 1-MCP caused greater ethylene production and inhibited stamen abscission for only 1–2 days after treatment. Ethephon (10-10 000 mg l−1) induced stamen wilting rather than abscission, an effect that was not negated by STS. Stamen wilting was negatively correlated with stamen relative water content, and the increase in stamen wilting was generally reduced by treatments that enhanced cymule mass. Stamen wilting was least using a 100 g l−1 sucrose pulse or holding solutions containing 30–40 g l−1 sucrose, with hydroxyquinoline citrate (200 mg l−1) maintained at pH 5. Our results indicate that 1-MCP may be relatively ineffective in blocking the effects of ethylene on the abscission of organs, such as the stamens of M . collina , which are highly sensitive to this hormone.  相似文献   

11.
The effect of water stress and subsequent rehydration on 1-aminocyclopropane-1-carboxylic acid (ACC) content, ACC synthase activity, ethylene production, and leaf abscission was studied in Cleopatra mandarin (Citrus reshni Hort. ex Tan.) seedlings. Leaf abscission occurred when drought-stressed plants were allowed to rehydrate, whereas no abscission was observed in plants under water stress conditions. In roots of water-stressed plants, a high ACC accumulation and an increase in ACC synthase activity were observed. Neither increase in ACC content nor significant ethylene production were detected in leaves of water-stressed plants. After rehydration, a sharp rise in ACC content and ethylene production was observed in leaves of water-stressed plants. Content of ACC in xylem fluid was 10-fold higher in plants rehydrated for 2 h after water stress than in nonstressed plants. Leaf abscission induced by rehydration after drought stress was inhibited when roots or shoots were treated before water stress with aminooxyacetic acid (AOA, inhibitor of ACC synthase) or cobalt ion (inhibitor of ethylene-forming enzyme), respectively. However, AOA treatments to shoots did not suppress leaf abscission. The data indicate that water stress promotes ACC synthesis in roots of Cleopatra mandarin seedlings. Rehydration of plants results in ACC transport to the shoots, where it is oxidized to ethylene. Subsequently, this ethylene induces leaf abscission.  相似文献   

12.
Very low ethylene production rates were measured in nonpollinated Cyclamen persicum Mill flowers, and no change in production was observed during the whole life span of the flower until death. Normal senescence was accompanied by a gradual discoloration and loss of turgor followed by wilting. Pollination induced a dramatic increase in ethylene evolution, culminating in a peak 4 days after pollination, and abscission of the corolla on that day. Silver-thiosulfate, an inhibitor of ethylene action, had no effect on longevity of unpollinated flowers, but completely nullified the effect of pollination on corolla abscission. Exposing unpollinated flowers to very high ethylene concentrations (50 microliters per liter) for 48 hours did not promote corolla abscission or senescence. 1-Aminocyclopropane-1-carboxylic acid, the immediate precursor of ethylene, increased ethylene production by unpollinated flowers more than 100-fold, but did not promote corolla abscission. 1-Aminocyclopropane-1-carboxylic acid did enhance corolla abscission of pollinated flowers. It is concluded that the main effect of pollination in inducing corolla abscission of cyclamen is by rendering the tissue sensitive to ethylene, apart from the promotion of ethylene production.  相似文献   

13.
Guinn G 《Plant physiology》1982,69(2):349-352
The relationships of fruit age, abscisic acid (ABA) concentration, ethylene evolution, and abscission rates were studied in an effort to determine why cotton (Gossypium hirsutum L., cv. Deltapine 16) fruits rarely abscise more than 15 days after anthesis. Because abscission of cotton fruits is increased by conditions that limit photosynthesis, greenhouse-grown plants with fruits of various ages were placed in dim light for 3 days to induce high rates of fruit abscission. Abscission rates, ABA concentrations, and ethylene evolution rates were determined for fruits of various ages. Almost all of the young fruits abscised, but abscission rate declined with age until almost no abscission was observed in fruits that were 15 or more days past anthesis.  相似文献   

14.
The relationship between abscission and the evolution of ethylene and CO2 was examined in explants and explant segments of cotton seedlings (Gossypium hirsutum L. cv. Acala SJ-1) under both static and flow system conditions, and in the presence and absence of mercuric perchlorate. Explant excision was immediately followed by increased ethylene evolution (wound ethylene); senescence was also accompanied by increased ethylene evolution (senescence ethylene). One or two ethylene peaks were found to interrupt the low background rate of ethylene evolution during the period between excision and senescence. The first intermediate ethylene peak coincided with a rise in CO2 evolution; however, precedence could not be established. No statistical correlations were discovered between either intermediate ethylene peak and abscission. The best statistical correlation was found between wound ethylene and abscission at 12 hr after excision. No positive correlations were found between senescence ethylene and abscission. Implications of these results for the understanding of the role of ethylene in explant abscission are discussed.  相似文献   

15.
Three types of whole plant experiments are presented to substantiate the concept that an important function of ethylene in abscission is to reduce the transport of auxin from the leaf to the abscission zone. (a) The inhibitory effect of ethylene on auxin transport, like ethylene-stimulated abscission, persists only as long as the gas is continuously present. Cotton (Gossypium hirsutum L. cv. Stoneville 213) and bean (Phaseolus vulgaris L. cv. Resistant Black Valentine) plants placed in 14 μl/l of ethylene for 24 or 48 hours showed an increase in leaf abscission and a reduced capacity to transport auxin; but when returned to air, auxin transport gradually increased and abscission ceased. (b) Ethylene-induced abscission and auxin transport inhibition show similar sensitivities to temperature. A 24-hour exposure of cotton plants to 14 μl/l of ethylene at 8 C resulted in no abscission and no significant inhibition of auxin transport. Increasing the temperature during ethylene treatment resulted in a progressively greater reduction in auxin transport with abscission occurring at [unk]27 C where auxin transport was inhibited over 70%. (c) Auxin pretreatment reduced both ethylene-induced abscission and auxin transport inhibition. No abscission occurred, and auxin transport was inhibited only 18% in cotton plants which were pretreated with 250 mg/l of naphthalene acetic acid and then placed in 14 μl/l of ethylene for 24 hours. In contrast, over 30% abscission occurred, and auxin transport was inhibited 58% in the corresponding control plants.  相似文献   

16.
In vitro cultivated apple pedicels without a primary abscission layer can form a secondary (adventitious) abscission layer, especially under the influence of auxins. In the apple cv. Cox's Orange Pippin abscission can only be induced by auxins, while the site of the abscission layer, a few millimetres from the basal ends of the pedicels, is fixed and independent of the auxin concentration. The auxin treatment has to last at least 5–6 days to induce abscission, which is not affected by the presence of a flower. A secondary layer does not occur when pedicels are placed inverted on the media. Although abscission occurs both in light and in darkness, it is strongly promoted by light. Abscission is also accelerated by raising the temperature from 9°C to 21–25°C. High concentrations of 2,3,5-triiodobenzoic acid reduce the percentage of auxin-induced abscission. Sugar is required, but the presence of macro-elements is not essential.  相似文献   

17.
Abeles FB  Holm RE 《Plant physiology》1966,41(8):1337-1342
Ethylene stimulated RNA and protein synthesis in bean (Phaseolus vulgaris L. var. Red Kidney) abscission zone explants prior to abscission. The effect of ethylene on RNA synthesis and abscission was blocked by actinomycin D. Carbon dioxide, which inhibits the effect of ethylene on abscission, also inhibited the influence of ethylene on protein synthesis. An aging period appears to be essential before bean explants respond to ethylene. Stimulation of protein synthesis by ethylene occurred only in receptive or senescent explants. Treatment of juvenile explants with ethylene, which has no effect on abscission also has no effect on protein synthesis. Evidence in favor of a hormonal role for ethylene during abscission is discussed.  相似文献   

18.
Ethylene can induce abscission of leaves and other plant organs. Increased ethylene production by plant tissues can occur after invasion by microorganisms. The fungus Cercospora arachidicola Hori, attacks peanut leaflets and causes defoliation. Our objective was to determine if ethylene was involved in this defoliation. Leaves of three peanut, Arachis sp., genotypes were inoculated with C. arachidicola. Two genotypes, `Tamnut 74' and PI 109839, produced ethylene and were defoliated. The third genotype, PI 276233, a wild species, did not produce ethylene above control levels and was not defoliated. Increase in ethylene production by Tamnut 74 and PI 109839 coincided with appearance of disease symptoms. Tamnut 74 produced the most ethylene, but PI 109839 was equally defoliated. Thus, less overall ethylene production did not necessarily indicate a more resistant genotype in this system unless ethylene production remained at control levels, as it did for PI 276233. Ethylene sufficient to initiate abscission could have been produced by the seventh day after inoculation when it was similar for both Tamnut 74 and PI 109839, but 3 to 4 times control amounts. This occurred before the rapid increase in ethylene production and before disease symptoms were visible. Silver ion, a potent inhibitor of ethylene action, was sprayed at three concentrations on intact Tamnut 74 plants. All rates reduced abscission and 150 mg/liter Ag(I) decreased abscission to below 10%. The data indicate that ethylene produced by peanut leaves in response to C. arachidicola infection initiates abscission and that ethylene action can be blocked by Ag(I) in such a host-pathogen interaction.  相似文献   

19.
20.
The cytokinin 6-benzylaminopurine (BAP) increases pod set of soybean Glycine max (L.) Merr. This study was performed to determine the effect of site and method of BAP application on pedicel abscission and the accompanying changes in rachis anatomy. Spraying racemes with BAP in solution, or applying in a lanolin suspension to proximal nodes on a rachis where proximal pedicels had been excised, delayed pedicel abscission at distal nodes. Applying BAP in lanolin to distal pedicels following flower excision failed to delay their abscission. BAP caused rachis swelling only when pods were present, but BAP could delay pedicel abscission either in the presence or absence of pods. These results suggest that rachis swelling following BAP treatment does not have a causal relationship to a delay or decrease of pedicel abscission.Alabama Agricultural Experiment Station Journal No. 6-912843P.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号