首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of a glycopeptide isolated from the yeast cell wall   总被引:21,自引:8,他引:13       下载免费PDF全文
1. Glycopeptides containing mannose were extracted from isolated yeast cell walls by ethylenediamine and purified by treatment with Pronase and fractionation on a Sephadex column. 2. A glycopeptide that appeared homogeneous on electrophoresis and ultracentrifugation had a molecular weight of 76000, and contained a high-molecular-weight mannan and approx. 4% of amino acids. 3. The amino acid composition of the peptide was determined. It was rich in serine and threonine and also contained glucosamine. No cystine and methionine were detected. 4. The glycopeptide underwent a beta-elimination reaction when treated with dilute alkali at low temperatures. The reaction resulted in the release of mannose, mannose disaccharides and possibly other low-molecular-weight mannose oligosaccharides. During the beta-elimination reaction the dehydro derivatives of serine and threonine were formed. One of the linkages between carbohydrate and amino acids in the glycopeptide is an O-mannosyl bond from mannose and mannose oligosaccharides to serine and threonine. 5. After the beta-elimination reaction the bulk of the mannose in the form of the large mannan component was still covalently linked to the peptide. This polysaccharide was therefore attached to the amino acids by a linkage different from the O-mannosyl bonds to serine and threonine that attach the low-molecular-weight sugars. 6. Mannan was prepared from the glycopeptide and from the yeast cell wall by treatment of the fractions with hot solutions of alkali. The mannan contained aspartic acid and glucosamine and some other amino acids. The aspartic acid and glucosamine were present in equimolar amounts; the aspartic acid was the only amino acid present in an amount equivalent to that of glucosamine. Thus there is the possibility of a linkage between the mannan and the peptide via glucosamine and aspartic acid. 7. Mannose 6-phosphate was shown to be part of the mannan structure. Information about the structure of the mannan and the linkage of the glucosamine was obtained by periodate oxidation studies. 8. The glucosamine present in the glycopeptide could not be released by treatment with an enzyme preparation obtained from the gut of Helix pomatia. This enzyme released glucosamine from the intact cell wall. Thus there are probably at least two polymers containing glucosamine in the cell wall. 9. The biosynthesis of the mannan polymer in the yeast cell wall is discussed with regard to the two types of carbohydrate-amino acid linkages found in the glycoprotein.  相似文献   

2.
We have obtained evidence for two structurally and antigenically different Saccharomyces cerevisiae cell wall mannans. One, which occurs widely and is found in S. cerevisiae strain 238C, is already known to be a neutral mannan which yields mannose, mannobiose, mannotriose, and mannotetraose on acetolysis of the (1 --> 6)-linked backbone. The other, which was found in S. cerevisiae brewer's strains, is a phosphomannan with a structure very similar to that of Kloeckera brevis mannan. S. cerevisiae (brewer's yeast strain) was agglutinated by antiserum prepared against Kloeckera brevis cells. The mannan, isolated from a proteolytic digest of the cell wall of the former, did not react with S. cerevisiae 238C antiserum, whereas it cross-reacted strongly with K. brevis antiserum. Controlled acetolysis cleaved the (1 --> 6)-linkages in the polysaccharide backbone and released mannose, mannobiose, mannotriose, and mannotriose phosphate. Mild acid treatment of the phosphomannan hydrolyzed the phosphodiester linkage, yielding phosphomonoester mannan and mannose. The resulting phosphomonoester mannan reacted with antiserum prepared against K. brevis possessing monoester phosphate groups on the cell surface. alpha-d-Mannose-1-phosphate completely inhibited the precipitin reaction between brewer's yeast mannan and the homologous antiserum. Flocculent and nonflocculent strains of this yeast were shown to have similar structural and immunological properties.  相似文献   

3.
Exocellular phosphomannans produced by four strains of Hansenula yeast were examined as to their interferon-inducing activities in rabbits employing the assay system consisting of vesicular stomatitis virus and primary suckling rabbit kidney cells. The phosphomannan of Hansenula holstii NRRL Y-2155 was shown to be the most potent inducer, and the interferon induced was highly host species-specific, preventing viral cytopathic effects only in the homologous cells. The biological and chemical characteristics of the interferon closely resembled those of endotoxin-induced interferon.  相似文献   

4.
Two intracellular RNases which were easily separated by fractionation on strong anion- or cation-exchange resins were identified from Bacillus subtilis. One cleaved any phosphodiester bond, while the second cleaved only pyrimidine-N bonds. The enzyme with pyrimidine-N specificity was approximately 15 kDa, had a pH optimum of approximately 6.2, degraded C-C bonds approximately 10 times faster than U-U bonds, and was completely inactive against single-stranded DNA. The enzyme is called RNase C and may be the first reported broad-specificity endoribonuclease from B. subtilis.  相似文献   

5.
1. The yeast Hansenula holstii NCYC 560 produced invertase and an inducible acid phosphatase located betweent the cytoplasmic membrane and the yeast cell wall. 2. These enzymes were also found in the culture medium outside the cell boundaries. 3. The amount of cell wall mannan in cells grown in phosphate-limited medium decreased in comparison with that of cells grown in phospahte-rich medium. 4. It is proposed that the mannan in this yeast is a loose and highly permeable structure, allowing external enzymes to leave the cell boundaries.  相似文献   

6.
Purification of Phosphomannanase and Its Action on the Yeast Cell Wall   总被引:8,自引:2,他引:6  
An improved assay for phosphomannanase (an enzyme required for the preparation of yeast protoplasts) has been developed based on the release of mannan from yeast cell walls. A procedure for the growth of Bacillus circulans on a large scale for maximal production of the enzyme is described. The culture medium containing the secreted enzyme was concentrated, and the enzyme was purified by protamine sulfate treatment, ammonium sulfate fractionation, gel filtration on P-100, and isoelectric density gradient electrophoresis. Although the enzyme was purified to apparent homogeneity, it still contained laminarinase activity which could not be separated by size or charge. The two enzymatic activities also exhibited two isoelectric points (pH 5.9 and 6.8) on ampholine electrophoresis. The laminarinase was not active on yeast glucan. The enzyme preparation was shown to remove mannan from yeast without removing glucan. Electron microscopic observation supports the idea that this mannan is the outer layer of the yeast wall. Phosphomannanase will produce protoplasts from yeast when supplemented with relatively low amounts of snail enzyme. This activity is present in snail enzyme but appeares to be rate-limiting when snail enzyme alone is used. Phosphomannanase has proven useful for studying the macromolecular organization of polymers in the yeast cell wall.  相似文献   

7.
Zymolyase B decreased the turbidity of a yeast cell wall suspension by about 50% and caused release of peptide-mannan from the cell walls. However cell walls treated with the enzyme still maintained the cell shape. The effect of the enzyme on the cell walls was inhibited by yeast mannan and completely counteracted by treatment of the enzyme with DFP. The activity was not affected by pH, but was considerably reduced by incubation of the enzyme at 55°C for 15 min, a treatment that did not affect the proteolytic activity. Heat-treatment decreased the molecular weight of the enzyme from 29,000 to 22,500 and its sensitivity to yeast mannan. Yeast mannan caused noncompetitive inhibition of the proteolytic activity of the native enzyme and competitive inhibition of that of the heat-treated enzyme. Modification of tryptophan residues of Zymolyase B resulted in decreased sensitivity to yeast mannan and a decrease in the activity of the enzyme on yeast cell walls as well as heat-treatment. On the basis of these results, it is hypothesized that Zymolyase B binds to the cell wall mannans and changes their conformation, making the attached proteins susceptible to proteolysis, and then releases peptide-mannan from the cell walls.  相似文献   

8.
The substrate specificity of Serratia protease was determined using various synthetic substrates. The enzyme did not participate in the hydrolysis of di- and tri-peptides except benzoylglycylleucinamide which was split at a limited rate into hippuric acid and leucinamide. The enzyme action on larger peptides was also studied. The enzyme cleaved the gly-leu bond in eledoisin related peptide and the gly-phe bond in bradykinin. The enzyme split oxidized insulin B-chain at twelve different peptide bonds.  相似文献   

9.
Tip1p is one of the major cell wall mannoproteins of Saccharomyces cerevisiae and is presumed to be synthesized as a glycosylphosphatidylinositol (GPI)-anchored form. We purified Tip1p from a glucanase extract of yeast cell walls and analyzed the sugar chain involved in the cell wall linkage. One mol of glucanase-extracted Tip1p contained 7.5 mol of glucose derived from glucan and 1 mol of ethanolamine, a component of the GPI anchor. One mol of the C-terminal peptide of Tip1p digested with Achromobacter protease I also contained 7.9 mol of glucose and 1 mol of ethanolamine. On the other hand, Tip1p contained no glucosamine, which is a component of the GPI anchor. The glucan-binding sugar chain of Tip1p was released by hydrazinolysis and isolated. This sugar chain contained ethanolamine with a free amino group and a glucose reducing end, but no mannose reducing end. Phosphodiesterase treatment eliminated the free amino group from this sugar chain, suggesting that a phosphodiester bond exists between the ethanolamine and the glucan remnant. These results indicate (1) the glucan-binding sugar chain of Tip1p is a GPI derivative, and (2) the GPI anchor is cleaved at the glycosyl moiety, and the resultant mannose reducing end is probably used to link Tip1p to cell wall glucan.  相似文献   

10.
A small release of Pi from a diphenylamine-formic acid digest of DNA was detected after elimination of interpurine phosphodiester bonds was complete. Minor components in the DNA digest were identified as pyrimidine oligonucleotides which had lost one terminal phosphate. Isolated pyrimidine tracts released Pi on redigestion with the formic acid-diphenylamine reagent in amounts that increased with the number of nucleotides in the oligonucleotide taken. The oligonucleotides were also partially degraded by the formic acid-diphenylamine reagent and the degradation (2-3% of phosphodiester bonds between consecutive nucleotides) was almost independent of chain length. The cleavage was random with no preference for a phosphodiester bond flanked by particular nucleosides. This minor lack of specificity in the formic acid-diphenylamine-catalysed degradation of DNA can, however, account for the low recoveries of long pyrimidine tracts previously reported. Any analysis of pyrimidine tracts in a DNA molecule should make some correction for this small degree of degradation if exact assignments of the numbers of pyrimidine tracts are to be made.  相似文献   

11.
Concatemer DNA duplexes which contain at the EcoRII restriction endonuclease cleavage sites (formula; see text) phosphodiester, phosphoamide or pyrophosphate internucleotide bonds have been synthesized. It has been shown that this enzyme did not cleave the substrate at phosphoamide bond. EcoRII endonuclease catalyzes single-strand cleavages both in dA- and dT-containing strands of the recognition site if the cleavage of the other strand has been blocked by modification of scissile bond or if the other strand has been cleaved. This enzyme interacts with both strands of the DNA recognition site, each of them being cleaved independently on the cleavage of another one. Nucleotide sequences flanking the EcoRII site on both sides are necessary for effective cleavage of the substrate.  相似文献   

12.
Hansenula mrakii secretes extracellularly a killer toxin which kills sensitive Saccharomyces cerevisiae. In protoplasts of this yeast, the killer toxin selectively inhibited the synthesis of alkali-insoluble acid-insoluble polysaccharides consisting mainly of beta-glucan, but did not inhibit either the synthesis of other cell wall polysaccharides, such as mannan, chitin and alkali-insoluble acid-soluble polysaccharides, or the synthesis of protein. Consistent with these results, the toxin was inhibitory to the beta-(1,3)-glucan synthetase activity of a cell-free extract from sensitive S. cerevisiae.  相似文献   

13.
A particulate enzyme fraction isolated from yeast (Hansenula holstii) catalyzes the transfer of mannose from GDPmannose to endogenous lipid acceptors. Kinetic studies are presented which suggest that one of the mannolipids is a precursor to cell wall mannan. The solubility and chromatographic properties, the stability to mild alkali, and the release of mannose by mild acid hydrolysis are characteristic of polyisoprenyl phosphoryl mannose. Addition of dolichol phosphate to the enzyme system stimulates the synthesis of a mannolipid with properties similar to that synthesized from endogenous lipid. That the exogenous dolichol phosphate was acting as a mannosyl acceptor was demonstrated by showing that dolichol [32P]phosphate was converted to dolichol [32P]phosphate mannose.  相似文献   

14.
Isolated cell walls of the yeast Saccharomyces cerevisiae were treated by either chemical (alkali and acid) or enzymatic (protease, mannanase or beta-glucuronidase) processes to yield partially purified products. These products were partially characterized by infrared analysis. They were subsequently reacted with heavy metal cation solutions and the quantity of metal accumulated by the cell wall material determined. The Cu(2+) ion (0.24, 0.36, 1.12, and 0.60 mumol/mg) was accumulated to a greater extent than either Co(2+) (0.13, 0.32, 0.43, and 0.32 mumol/mg) or Cd(2+) (0.17, 0.34, 0.39, and 0.32 mumol/mg) by yeast cell walls, glucan, mannan, and chitin, respectively The isolated components each accumulated greater quantities of the cations than the intact cell wall. Removal of the protein component of the yeast cell walls by Pronase caused a 29.5% decrease in metal accumulation by yeast cell walls per mass, indicating the protein is a heavy metal accumulating component. The data indicate that the outer mannan-protein layer of the yeast cell wall is more important than the inner glucan-chitin layer in heavy metal action accumulation. (c) 1994 John Wiley & Sons, Inc.  相似文献   

15.
A set of DNA duplexes with repeated EcoRII, EcoRI and AluI restriction endonuclease recognition sites in which EcoRII scissile phosphodiester bonds were replaced by phosphoramide or uncleavable pyrophosphate bonds have been synthesized. Endonuclease EcoRII was found not to cleave the substrate at the phosphoramide bond. The substrates containing non-nydrolysable pyrophosphate or phosphoramide bonds in one of the chains of EcoRII recognition sites were used to show that this enzyme is able to catalyze single-strand scissions. These scissions occur both in dA- and dT-containing chains of the recognition site. Endonuclease EcoRII interacts with both strands of the DNA recognition site, each of them being cleaved independently on the cleavage of the other. Synthesized DNA-duplexes are cleaved specifically by EcoRI and AluI endonucleases, this cleavage being retarded if the modified bonds are in the recognition site (EcoRI) or flank it (AluI). For EcoRII and AluI this effect is more pronounced in the case of substrates with pyrophosphate bonds than with the phosphoramide ones.  相似文献   

16.
Yeast and hyphal walls of Candida albicans were extracted with sodium dodecyl sulfate (SDS). Some of the extracted proteins reacted with a specific beta-1,6-glucan antiserum but not with a beta-1,3-glucan antiserum. They lost their beta-1,6-glucan epitope after treatment with ice-cold aqueous hydrofluoric acid, suggesting that beta-1,6-glucan was linked to the protein through a phosphodiester bridge. When yeast and hyphal walls extracted with SDS were subsequently extracted with a pure beta-1,3-glucanase, several mannoproteins that were recognized by both the beta-1,6-glucan antiserum and the beta-1,3-glucan antiserum were released. Both epitopes were sensitive to aqueous hydrofluoric acid treatment, suggesting that beta-1,3-glucan and beta-1,6-glucan are linked to proteins by phosphodiester linkages. The possible role of beta-glucans in the retention of cell wall proteins is discussed.  相似文献   

17.
We have previously demonstrated the ability of human neutrophil myeloperoxidase to bind to cell wall mannan polysaccharide isolated from Candida albicans. This binding capacity provides for association of the enzyme with target yeast which is essential for efficient candidacidal activity. In this report, we further consider the role of the mannan-binding property of myeloperoxidase in the candidacidal activity of the enzyme. Solubilized mannan antagonizes binding of the enzyme to yeast, suggesting that mannan may be a primary component of the fungal cell wall which serves as a target for binding of myeloperoxidase. Myeloperoxidase is shown to form complexes with both solubilized mannan and Candida yeast, with Kds of 0.97 x 10(-5) M and 1.2 x 10(-5) M, respectively. The interaction between myeloperoxidase and mannan does not allow the enzyme to readily dissociate from the surface of target yeast. As a result, the enzyme may be unable to dissociate from dead yeast to become available for binding to additional fungal targets.  相似文献   

18.
We compared the products of autolytic amidase-catalyzed wall degradation in vivo (in penicillin-induced lysis) and in vitro. Pneumococci labeled in their cell wall stem peptides by radioactive lysine were treated with penicillin, and the nature of wall degradation products released to the medium during lysis of the bacteria was determined. At early times of lysis (20% loss of wall label), virtually all the radioactive peptides released (greater than 94%) were of high molecular size and were still attached to glycan and teichoic acid. At times of more extensive bacterial lysis (56%), progressively larger and larger fractions of the released peptides became free, i.e., detached from glycan and teichoic acid. Analysis of the nondegraded residual wall material by high-resolution high-pressure liquid chromatography revealed that this in vivo-triggered autolysis did not involve selective hydrolysis of some of the chemically distinct stem peptides. Parallel in vitro experiments yielded completely different results. Purified pneumococcal cell walls labeled with radioactive lysine were treated in vitro with low concentrations of pure amidase, and the nature of wall degradation products released during limited hydrolysis and after more extensive degradation was determined. In sharp contrast to the in vivo experiments, the main products of in vitro hydrolysis were free peptides. After a short treatment with amidase (resulting in a 20% loss of label), the material released was enriched for the monomeric stem peptides. At all times of hydrolysis (including the time of extensive degradation), only a relatively small fraction of the released wall peptides was covalently attached to glycan and teichoic acid components (17% as compared with 40% in the intact cell wall). We propose that the in vivo-triggered amidase activity first attacks the amide bonds in some strategically located (or unprotected) stem peptides that hold large segments of cell wall material together. The observations indicate that the in vivo activity of the pneumococcal autolysin is under topographic constraints.  相似文献   

19.
Wall mannoproteins of the two (yeast and mycelial) cellular forms of Candida albicans were solubilized by different agents. Boiling in 2% (w/v) SDS was the best method, as more than 70% of the total mannoprotein was extracted. Over 40 different bands (from 15 to 80 kDal) were detected on SDS-polyacrylamide gel electrophoresis of this material. The residual wall mannoproteins were released after enzymic (Zymolyase and endogenous wall beta-glucanases) degradation of wall glucan, suggesting that they are covalently linked to this structural polymer. Four bands (of 160 kDal, 205 kDal and higher molecular mass) were observed in the material released from yeast walls but only the two smaller components were detected in the material obtained from mycelial walls. Moreover, the mannoproteins of high molecular mass, which are covalently linked in walls of normal cells, were not incorporated into walls of regenerating protoplasts, but non-covalently linked mannoproteins were retained from the beginning of the process.  相似文献   

20.
The major exoglucanase (1,3-beta-D-glucan glucanohydrolase, EC 3.2.1.39) secreted by Saccharomyces cerevisiae contains protein, mannose and phosphate in a molar ratio of 1:27:1. When digested with endo-beta-N-acetylglucosaminidase H (EC 3.2.1.96) it sequentially released two asparagine-linked oligosaccharide chains. Oligosaccharides were fractionated into a neutral and acidic component, each one accounting for 50% of the total carbohydrate. The neutral oligosaccharide consisted of a mixture of three homologues ranging from GlcNAc-(Man)12 to GlcNAc-(Man)14. The acidic carbohydrate was, in turn, split into two components. The major one (45% of the initial material) contained a phosphodiester bond and released only mannose when subjected to mild acid hydrolysis. From the filtration pattern, it was shown to be a mixture of oligosaccharides ranging from GlcNAc-(Man)11-P to GlcNAC-(Man)13-P. The minor phosphorylated component, which represented the residual carbohydrate (5%), contained a phosphomonoester bond. It was also heterogeneous in size, the several homologues having one mannose less than their counterparts from the phosphodiester oligosaccharide. These results clearly indicate that the addition of an outer chain of carbohydrate is not a requirement for the externalization of yeast glycoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号