首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of virus-specific cytotoxic T lymphocytes (CTL) in Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease, a viral model for multiple sclerosis, is not yet clear. To investigate the specificity and function of CTL generated in response to TMEV infection, we generated a panel of overlapping 20-mer peptides encompassing the entire capsid and leader protein region of the BeAn strain of TMEV. Binding of these peptides to H-2K(b) and H-2D(b) class I molecules of resistant mice was assessed using RMA-S cells. Several peptides displayed significant binding to H-2K(b), H-2D(b), or both. However, infiltrating cytotoxic T cells in the central nervous system of virus-infected mice preferentially lysed target cells pulsed with VP2(111-130/121-140) or VP2(121-130), a previously defined CTL epitope shared by the DA strain of TMEV and other closely related cardioviruses. In addition, at a high effector-to-target cell ratio, two additional peptides (VP2(161-180) and VP3(101-120)) sensitized target cells for cytolysis by infiltrating T cells or splenic T cells from virus-infected mice. The minimal epitopes within these peptides were defined as VP2(165-173) and VP3(110-120). Based on cytokine profiles, CTL specific for these subdominant epitopes are Tc2, in contrast to CTL for the immunodominant epitope, which are of the Tc1 type. Interestingly, CTL function towards both of these subdominant epitopes is restricted by the H-2D molecule, despite the fact that these epitopes bind both H-2K and H-2D molecules. This skewing toward an H-2D(b)-restricted response may confer resistance to TMEV-induced demyelinating disease, which is known to be associated with the H-2D genetic locus.  相似文献   

2.
Lymphocytic choriomeningitis virus infection of H-2(b) mice generates a strong CD8(+) CTL response mainly directed toward three immunodominant epitopes, one of which, gp33, is presented by both H-2D(b) and H-2K(b) MHC class I molecules. This CTL response acts as a selective agent for the emergence of viral escape variants. These variants generate altered peptide ligands (APLs) that, when presented by class I MHC molecules, antagonize CTL recognition and ultimately allow the virus to evade the cellular immune response. The emergence of APLs of the gp33 epitope is particularly advantageous for LCMV, as it allows viral escape in the context of both H-2D(b) and H-2K(b) MHC class I molecules. We have determined crystal structures of three different APLs of gp33 in complex with both H-2D(b) and H-2K(b). Comparison between these APL/MHC structures and those of the index gp33 peptide/MHC reveals the structural basis for three different strategies used by LCMV viral escape mutations: 1) conformational changes in peptide and MHC residues that are potential TCR contacts, 2) impairment of APL binding to the MHC peptide binding cleft, and 3) introduction of subtle changes at the TCR/pMHC interface, such as the removal of a single hydroxyl group.  相似文献   

3.
Intracerebral inoculation of Theiler's murine encephalomyelitis virus into susceptible strains of mice produces chronic demyelinating disease in the central nervous system characterized by persistent viral infection. Immunogenetic data suggest that genes from both major histocompatibility complex (MHC) and non-MHC loci are important in determining susceptibility or resistance to demyelination. The role of the MHC in determining resistance or susceptibility to disease can be interpreted either as the presence of antigen-presenting molecules that confer resistance to viral infection or as the ability of MHC products to contribute to pathogenesis by acting as viral receptors or by mediating immune attack against virally infected cells. These alternatives can be distinguished by determining whether the contribution of the MHC to resistance is inherited as a recessive or dominant trait. Congenic mice with different MHC haplotypes on identical B10 backgrounds were crossed and quantitatively analyzed for demyelination, infectious virus, and local virus antigen production. F1 hybrid progeny derived from resistant B10 (H-2b), B10.D2 (H-2d), or B10.K (H-2k) and susceptible B10.R111 (H-2r), B10.M (H-2f), or B10.BR (H-2k) parental mice exhibited no or minimal demyelination, indicating that on a B10 background, resistance is inherited as a dominant trait. Although infectious virus, as measured by viral plaque assay, was cleared inefficiently from the central nervous systems of resistant F1 hybrid progeny mice, we found a direct correlation between local viral antigen production and demyelination. These data are consistent with our hypothesis that the immunological basis for resistance is determined by efficient presentation of the viral antigen to the immune system, resulting in local virus clearance and absence of subsequent demyelination.  相似文献   

4.
DNA vaccination against persistent viral infection.   总被引:13,自引:5,他引:8       下载免费PDF全文
This study shows that DNA vaccination can confer protection against a persistent viral infection by priming CD8+ cytotoxic T lymphocytes (CTL). Adult BALB/c (H-2d) mice were injected intramuscularly with a plasmid expressing the nucleoprotein (NP) gene of lymphocytic choriomeningitis virus (LCMV) under the control of the cytomegalovirus promoter. The LCMV NP contains the immunodominant CTL epitope (amino acids 118 to 126) recognized by mice of the H-2d haplotype. After three injections with 200 micrograms of NP DNA, the vaccinated mice were challenged with LCMV variants (clones 13 and 28b) that establish persistent infection in naive adult mice. Fifty percent of the DNA-vaccinated mice were protected, as evidenced by decreased levels of infectious virus in the blood and tissues, eventual clearance of viral antigen from all organs tested, the presence of an enhanced LCMV-specific CD8+ CTL response, and maintenance of memory CTL after clearance of virus infection. However, it should be noted that protection was seen in only half of the vaccinated mice, and we were unable to directly measure virus-specific immune responses in any of the DNA-vaccinated mice prior to LCMV challenge. Thus, at least in the system that we have used, gene immunization was a suboptimal method of inducing protective immunity and was several orders of magnitude less efficient than vaccination with live virus. In conclusion, our results show that DNA immunization works against a persistent viral infection but that efforts should be directed towards improving this novel method of vaccination.  相似文献   

5.
Three H-2-linked genes, Rmv1, Rmv2, and Rmv3 control the resistance of mice against Moloney virus (MLV)-induced leukemias. It has been shown previously that they function as immune response (Ir) genes regulating the level of antivirus antibodies. In the present experiments, the cell-mediated anti-tumor response has been studied in a series of inbred strains selected for their resistance or sensitivity to the MLV-induced disease. We failed to detect any relationship between resistance and sensitivity and the ability to produce cytolytic T lymphocytes (CTL) directed against the virus-induced FMR cell surface antigen. Furthermore, the role of each Rmv gene has been studied separately using congenic pairs of mice differing at only one of these loci: we failed to evidence any influence of these genes in the cell-mediated antitumor reactions as measured by the ability to lyse syngeneic FMR(+) target cells. Nevertheless a gene mapping in the D region of the MHC but probably different from Rmv3 controls the response of a subset of anti-FMR CTL restricted by the H-2Kk antigens, with higher response in H-2Dd than in H-2Db animals. This observation confirms the existence of H-2D region associated Ir genes regulating the CTL-mediated antitumor immune responses by choosing the subset of responder CTL, and suggests that a fourth H-2-linked gene plays some role in the genetic control of the anti-FMR immune response.  相似文献   

6.
Recombinant vaccinia viruses containing the 22-kilodalton protein (matrixlike or 22K protein) or phosphoprotein gene from respiratory syncytial virus were constructed. These recombinant viruses expressed proteins which were immunoprecipitated by appropriate respiratory syncytial virus antibodies and comigrated with authentic proteins produced by respiratory syncytial virus infection. The new recombinant viruses (and others previously described containing the attachment glycoprotein, fusion, or nucleoprotein genes of respiratory syncytial virus) were used to infect target cells for cultured polyclonal cytotoxic T lymphocytes generated from the spleens of BALB/c or DBA/2 mice primed by intranasal infection with respiratory syncytial virus. Respiratory syncytial virus-specific cytotoxic T lymphocytes (CTL) showed strong Kd (but not Dd)-restricted recognition of the 22K protein. As previously reported, the fusion protein and nucleoprotein were both seen by CTL, but recognition of these proteins was comparatively weak. There was no detectable recognition of other respiratory syncytial virus proteins tested (including phosphoprotein). 22K protein-specific splenic memory CTL persisted for at least 11 months after infection of BALB/c mice. Priming BALB/c mice with recombinant vaccinia virus containing the 22K protein gene induced respiratory syncytial virus-specific memory CTL at lower levels than that previously reported following infection with a similar recombinant containing the fusion protein gene. These data identify the 22K protein as a major target antigen for respiratory syncytial virus-specific CTL from H-2d mice primed by respiratory syncytial virus infection.  相似文献   

7.
Infection of certain strains of mice with Theiler's murine encephalomyelitis virus results in persistence of virus and an immune-mediated primary demyelination in the central nervous system that resembles multiple sclerosis. Because susceptibility/resistance to demyelination in B10 congeneic mice maps strongly to class I MHC genes (D region) we tested whether expression of a human class I MHC gene (HLA-B27) would alter susceptibility to Theiler's murine encephalomyelitis virus-induced demyelination. Transgenic HLA-B27 mice were found to co-express human and endogenous mouse class I MHC genes by flow microfluorimetry analysis of PBL. In the absence of the human transgene, H-2stf, or v mice but not H-2b mice had chronic demyelination and persistence of virus at 45 days after infection. No difference in degree of demyelination, meningeal inflammation, or virus persistence was seen between transgenic HLA-B27 and nontransgenic littermate mice of H-2f or H-2v haplotype. In contrast, H-2s (HLA-B27+) mice showed a dramatic decrease in extent of demyelination and number of virus-Ag+ cells in the spinal cord compared with H-2s (HLA-B27-) littermate mice. In addition, none of the eight H-2s mice homozygous for HLA-B27 gene had spinal cord lesions even though infectious virus was isolated chronically from their central nervous system. Expression of HLA-B27 transgene did not interfere with the resistance to demyelination normally observed in B10 (H-2b) mice. These experiments demonstrate that expression of a human class I MHC gene can modulate a virus-induced demyelinating disease process in the mouse.  相似文献   

8.
Jessen B  Faller S  Krempl CD  Ehl S 《Journal of virology》2011,85(19):10135-10143
Susceptibility to respiratory syncytial virus (RSV) infection in mice is genetically determined. While RSV causes little pathology in C57BL/6 mice, pulmonary inflammation and weight loss occur in BALB/c mice. Using major histocompatibility complex (MHC)-congenic mice, we observed that the H-2(d) allele can partially transfer disease susceptibility to C57BL/6 mice. This was not explained by altered viral elimination or differences in the magnitude of the overall virus-specific cytotoxic T lymphocyte (CTL) response. However, H-2(d) mice showed a more focused response, with 70% of virus-specific CTL representing Vβ8.2(+) CTL directed against the immunodominant epitope M2-1 82, while in H-2(b) mice only 20% of antiviral CTL were Vβ9(+) CTL specific for the immunodominant epitope M187. The immunodominant H-2(d)-restricted CTL lysed target cells less efficiently than the immunodominant H-2(b) CTL, probably contributing to prolonged CTL stimulation and cytokine-mediated immunopathology. Accordingly, reduction of dominance of the M2-1 82-specific CTL population by introduction of an M187 response in the F1 generation of a C57BL/6N × C57BL/6-H-2(d) mating (C57BL/6-H-2(dxb) mice) attenuated disease. Moreover, disease in H-2(d) mice was less pronounced after infection with an RSV mutant failing to activate M2-1 82-specific CTL or after depletion of Vβ8.2(+) cells. These data illustrate how the MHC-determined diversity and functional avidity of CTL responses contribute to disease susceptibility after viral infection.  相似文献   

9.
Previous study demonstrated that anti-H-43a cytotoxic T lymphocyte (CTL) response of H-43b CWB (H-2b) stain carrying non-major histocompatability complex (MHC) genes of C3H and F1 strains raised by crossing CWB with various H-43b strains was restricted exclusively by self H-2Kb (Kb). In the present study, newly produced C3W strain (H-2k, H-43b), which is H-43-congenic to C3H/HeN (H-2k, H-43a), was used as H-43b mice, and possibility of immunodominance of Kb was examined. No anti-H-43a CTL response could be induced in C3W strain and F1 strains raised by crossing C3W with other H-43b strains not carrying Kb. Thus, the possibility of immunodominance of Kb over the other MHC class I alleles could not be supported. We also examined possibility of epistatic effect of I region genes and non-MHC genes on the Kb restriction. (C3W x C57BL/6)F1(I-Ak/b) and (C3W x B6.CH-2bm12)F1(I-Ak/bm12)mice showed equally anti-H-43a CTL response restricted exclusively by self Kb, and (C3W x B10.MBR)F1(Ik/k) mice also showed anti-H-43a CTL response restricted solely by self Kb. Cold target competition experiments demonstrated that H-43b C57BL/10 or A.BY mice, which do not have non-MHC genes of C3H mounted anti-H-43a CTL response restricted solely by self Kb. Thus, no relation of I region genes or non-MHC genes to the Kb restriction was shown. All the results indicate that H-43b mouse strains, including F1, can not achieve anti-H-43a CTL response unless they carry Kb allele. Notably, (C3W x C57BL/6)F1 mice mounted self Kb-restricted anti-H-43a CTL response, whereas (C3W x B6.CH-2bm1)F1 mice carrying mutated Kb could not mount anti-H-43a CTL response at all. These findings indicate strongly that Kb itself is classical Ir gene of anti-H-43a CTL response and directs self Kb restriction of the response.  相似文献   

10.
H-2k mice generate a secondary in vitro cytotoxic T lymphocyte response to Sendai virus 20- to 100-fold weaker than those of other haplotypes tested (H-2b,d,q,s). This immune response defect maps to both H-2K and H-2D. H-2k x H-2d F1 mice (responder x nonresponder) only lyse targets that have the d allele at H-2K and/or H-2D. H-2k targets are equally lysable with anti-Sendai antibody. Furthermore, H-2k mice demonstrate normal antibody and T cell proliferation responses to Sendai virus. The Ir gene defect therefore appears to be limited to the generation of the cytotoxic T lymphocytes.  相似文献   

11.
Previous studies demonstrated that the pulmonary resistance to respiratory syncytial virus (RSV) challenge induced by immunization with a recombinant vaccinia virus expressing the M2 protein of RSV (vac-M2) was significantly greater 9 days after immunization than at 28 days and was mediated predominantly by CD8+ T cells. In this study, we have extended these findings and sought to determine whether the level of CD8+ cytotoxic T-lymphocyte (CTL) activity measured in vitro correlates with the resistance to RSV challenge in vivo. Three lines of evidence documented an association between the presence of pulmonary CTL activity and resistance to RSV challenge. First, vac-M2 immunization induced pulmonary CD8+ CTL activity and pulmonary resistance to RSV infection in BALB/c (H-2d) mice, whereas significant levels of pulmonary CTL activity and resistance to RSV infection were not seen in BALB.K (H-2k) or BALB.B (H-2b) mice. Second, pulmonary CD8+ CTL activity was not induced by infection with other vaccinia virus-RSV recombinants that did not induce resistance to RSV challenge. Third, the peak of pulmonary CTL activity correlated with the peak of resistance to RSV replication (day 6), with little resistance being observed 45 days after immunization. An accelerated clearance of virus was not observed when mice were challenged with RSV 45 days after immunization with vac-M2. The results indicate that resistance to RSV induced by immunization with vac-M2 is mainly mediated by primary pulmonary CTLs and that this resistance decreases to very low levels within 2 months following immunization. The implications for inclusion of CTL epitopes into RSV vaccines are discussed in the context of these observations.  相似文献   

12.
Infection with virus variants exhibiting changes in the peptide sequences defining immunodominant determinants that abolish recognition by antiviral cytotoxic T cells (CTL) presents a considerable challenge to the antiviral T-cell immune system and may enable some viruses to persist in hosts. The potential importance of such variants with respect to mechanisms of viral persistence and disease pathogenesis was assessed by infecting adult mice with variants of lymphocytic choriomeningitis virus (LCMV) strain WE. These variants were selected in vivo or in vitro for resistance to lysis by CD8+ H-2b-restricted antiviral CTL. The majority of anti-LCMV CTL in infected H-2b mice recognize epitopes defined by residues 32 to 42 and 275 to 289 (epitopes 32-42 and 275-289) of the LCMV glycoprotein or 397 to 407 of the viral nucleoprotein. The 8.7 variant exhibits a change in the epitope 32-42 (Val-35-->Leu), and variant CL1.2 exhibits a change in the epitope 275-289 (Asn-280-->Asp) of the wild-type LCMV-WE. The double-mutated 8.7-B23 variant had the variation of 8.7 and an additional change located in the epitope 275-289 (Asn-280-->Ser). The 8.7 variant peptide with unchanged anchor positions bound efficiently to H-2Db and H-2Kb molecules but induced only a very weak CTL response. CTL epitope 275-289 of CL1.2 and 8.7-B23 altered at predicted anchor residues were unable to bind Db molecules and were also not recognized by antiviral CTL. Infection of C57BL/6 mice (H-2b) with the variants exhibiting mutations of one of the CTL epitopes, i.e., 8.7 or CL1.2, induced CTL responses specific for the unmutated epitopes comparable with those induced by infection with WE, and these responses were sufficient to eliminate virus from the host. In contrast, infection with the double-mutated variant 8.7-B23 induced CTL activity that was reduced by a factor of about 50-fold compared with wild-type LCMV. Consequently, high doses (10(7) PFU intravenously) of this virus were eliminated slowly and only by about day 100 after infection. 8.7-B23 failed to cause lethal lymphocytic choriomeningitis after intracerebral infection with a dose of > 10(4) PFU in C57BL/6 mice (but not in mice of nonselecting H-2d haplotype); with the other variants or wild-type LCMV, doses greater than 10(6) to 10(7) PFU were necessary to avoid lethal choriomeningitis.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Two genes, Rfv-1 and Rfv-2, that influence recovery from Friend virus leukemia have been identified within or adjacent to the mouse major histocompatibility gene complex (H-2). Rfv-1 was determined to be in the H-2G or H-2D regions by testing of mice with recombinations both to the left and right of these regions. Rfv-2 was located either in the H-2K or H-2I regions or in the Tla region. The Rfv-2 effect was not seen in the high recovery H-2D(Rfv-1)b/b mice. This could be an indication that this gene is weaker than Rfv-1 in its influence on leukemia. The influence of H-2 on recovery from leukemia appeared to operate in a gene-dose fashion (H-2b/b greater than H-2a/b greater than H-2a/a).  相似文献   

14.
We evaluated the role of gamma interferon (IFN-gamma) in protecting neurons from virus-induced injury following central nervous system infection. IFN-gamma(-/-) and IFN-gamma(+/+) mice of the resistant major histocompatibility complex (MHC) H-2(b) haplotype and intracerebrally infected with Theiler's murine encephalomyelitis virus (TMEV) cleared virus infection from anterior horn cell neurons. IFN-gamma(+/+) H-2(b) mice also cleared virus from the spinal cord white matter, whereas IFN-gamma(-/-) H-2(b) mice developed viral persistence in glial cells of the white matter and exhibited associated spinal cord demyelination. In contrast, infection of IFN-gamma(-/-) mice of the susceptible H-2(q) haplotype resulted in frequent deaths and severe neurologic deficits within 16 days of infection compared to the results obtained for controls. Morphologic analysis demonstrated severe injury to spinal cord neurons in IFN-gamma(-/-) H-2(q) mice during early infection. More virus RNA was detected in the brain and spinal cord of IFN-gamma(-/-) H-2(q) mice than in those of control mice at 14 and 21 days after TMEV infection. Virus antigen was localized predominantly to anterior horn cells in infected IFN-gamma(-/-) H-2(q) mice. IFN-gamma deletion did not affect the humoral response directed against the virus. However, the level of expression of CD4, CD8, class I MHC, or class II MHC in the central nervous system of IFN-gamma(-/-) H-2(q) mice was lower than those in IFN-gamma(+/+) H-2(q) mice. Finally, in vitro analysis of virus-induced death in NSC34 cells and spinal motor neurons showed that IFN-gamma exerted a neuroprotective effect in the absence of other aspects of the immune response. These data support the hypothesis that IFN-gamma plays a critical role in protecting spinal cord neurons from persistent infection and death.  相似文献   

15.
Four genetic loci were tested for linkage with loci that control genetic resistance to lethal ectromelia virus infection in mice. Three of the loci were selected because of concordance with genotypes assigned to recombinant inbred (RI) strains of mice derived from resistant C57BL/6 and susceptible DBA/2 (BXD) mice on the basis of their responses to challenge infection. Thirty-six of 167 male (C57BL/6 x DBA/2)F1 x DBA/2 backcross (BC) mice died (22%), of which 27 (75%) were homozygous for DBA/2 alleles at Hc and H-2D. Twenty-eight percent of sham-castrated and 6% of sham-ovariectomized BC mice were susceptible to lethal mousepox, whereas 50% of gonadectomized mice were susceptible. There was no linkage evident between Hc or H-2D and loci that controlled resistance to lethal ectromelia virus infection in 44 castrated BC mice. Mortality among female mice of BXD RI strains with susceptible or intermediate male phenotypes was strongly correlated (r = 0.834) with male mortality. Gonadectomized C57BL/6 mice were as resistant as intact mice to lethal ectromelia virus infection. These results indicate that two gonad-dependent genes on chromosomes 2 and 17 and one gonad-independent gene control resistance to mousepox virus infection, that males and females share gonad-dependent genes, and that the gonad-independent gene is fully protective.  相似文献   

16.
We have compared the relatedness of five different strains of lymphocytic choriomeningitis virus (LCMV) as assessed by LCMV-specific cytotoxic T lymphocytes (CTL). Several different mouse strains were injected with each of the five LCMV strains, and the cross-reactivity of virus-specific CTL generated during the acute infection was tested by killing on a panel of target cells infected with the various LCMV strains. We found that the cross-reactivity pattern of LCMV-specific CTL generated in mice of H-2d haplotype (BALB/c WEHI and DBA/2) was strikingly different from that in mice of H-2b haplotype (C57BL/6 and C3H.Sw/Sn), suggesting that the fine specificity of LCMV-specific CTL is a function of the H-2 region. The characteristic cross-reactivity patterns were also observed in (C57BL/6 X DBA/2)F1 mice, demonstrating that the repertoire of the H-2b- and H-2d-restricted LCMV-specific CTL is not changed as a result of complementation by gene products of the other major histocompatibility haplotype. Studies with congenic BALB.B10 and (BALB.B10 X BALB/c)F1 mice firmly established that the characteristic cross-reactivity patterns of LCMV-specific CTL map to the H-2 region and are not influenced by background genes outside the major histocompatibility locus. These results suggest that LCMV determinants seen in the context of H-2d-restricting elements are different from those seen in the context of H-2b-restricting elements. Moreover, our studies show that CTL can be used as probes for dissecting differences among various LCMV strains, but the degree of relatedness between the different LCMV strains is not absolute when measured by CTL recognition. Since the H-2 region regulates the fine specificity of CTL generated during LCMV infection in its natural host, the degree of cross-protective immunity developed during a viral infection apparently depends on the major histocompatibility haplotype. The importance of these findings lies in understanding susceptibility or resistance of various host populations to viral infections and in designing vaccination programs to provide immunity.  相似文献   

17.
To assess whether the presence of a responder H-2b haplotype would be sufficient to allow mice of nonresponder "high leukemic" phenotype to generate syngeneic anti-AKR/Gross virus cytolytic T lymphocytes (CTL), the AKR.H-2b strain was examined. Although capable of mounting vigorous apparent anti-minor histocompatibility-specific CTL responses, AKR.H-2b mice failed to produce anti-viral CTL after a variety of stimulation protocols. In contrast, the "doubly congenic" AKR.H-2b:Fv-1b strain was able to respond with substantial levels of H-2-restricted anti-AKR/Gross virus CTL activity. These results indicated that Fv-1n alleles could exert negative epistatic control over responder H-2b-encoded gene(s). Because the B6.Fv-1n congenic was also able to generate anti-viral CTL indistinguishable from the prototype B6 strain, however, it was apparent that other genes of AKR background were required for the Fv-1n-mediated inhibition in AKR.H-2b mice. The mechanism by which Fv-1 intereacted with other genes to override positive H-2b control appeared to be related to the expression of the CTL-defined, virus-associated antigens by normal AKR.H-2b cells. Thus, AKR.H-2b spleen cells but not thymus cells were able to stimulate the production of B6 anti-AKR/Gross virus CTL and were recognized as target cells by such anti-viral CTL. In contrast, both spleen cells and thymocytes from AKR.H-2b:Fv-1b mice were negative when tested as stimulator or target cells in these assays. In addition, AKR.H-2b but not AKR.H-2b:Fv-1b spleen cells were shown to display serologically defined gp70 determinants and the Gross cell surface antigen. Taking these data together, it appeared that the inhibition of anti-viral CTL responsiveness might be due to tolerance induced by the cell surface expression of virus-associated antigens by normal AKR.H-2b cells. Widespread display of viral antigens, in turn, may have been due to the permissive effects of Fv-1n on the spread of the early arising N-ecotropic, endogenous AKR leukemia virus controlled by other background genes. In this context, the implications of the multi-gene control of anti-AKR/Gross virus CTL production are discussed with respect to the induction of spontaneous leukemia in the high incidence AKR strain.  相似文献   

18.
Kang BS  Lyman MA  Kim BS 《Journal of virology》2002,76(13):6577-6585
Theiler's virus infection of the central nervous system (CNS) induces an immune-mediated demyelinating disease in susceptible mouse strains, such as SJL/J, and serves as a relevant infectious model for human multiple sclerosis. It has been previously suggested that susceptible SJL/J mice do not mount an efficient cytotoxic T-lymphocyte (CTL) response to the virus. In addition, genetic studies have shown that resistance to Theiler's virus-induced demyelinating disease is linked to the H-2D major histocompatibility complex class I locus, suggesting that a compromised CTL response may contribute to the susceptibility of SJL/J mice. Here we show that SJL/J mice do, in fact, generate a CD8(+) T-cell response in the CNS that is directed against one dominant (VP3(159-166)) and two subdominant (VP1(11-20) and VP3(173-181)) capsid protein epitopes. These virus-specific CD8(+) T cells produce gamma interferon (IFN-gamma) and lyse target cells in the presence of the epitope peptides, indicating that these CNS-infiltrating CD8(+) T cells are fully functional effector cells. Intracellular IFN-gamma staining analysis indicates that greater than 50% of CNS-infiltrating CD8(+) T cells are specific for these viral epitopes at 7 days postinfection. Therefore, the susceptibility of SJL/J mice is not due to the lack of an early functional Theiler's murine encephalomyelitis virus-specific CTL response. Interestingly, T-cell responses to all three epitopes are restricted by the H-2K(s) molecule, and this skewed class I restriction may be associated with susceptibility to demyelinating disease.  相似文献   

19.
Early region E3 of adenovirus (Ad) appears to encode proteins involved in the interaction of the virus with the host immune system. The E3 region 19-kDa glycoprotein (gp19K) binds to class I MHC Ag in the endoplasmic reticulum and inhibits their transport to the cell surface; it has been proposed that this protects virus infected cells from lysis by CTL. We have found that the E3 14.7-kDa protein (14.7K) inhibits lysis of infected cells by TNF, and here we show that it also protects cells from lysis by lymphotoxin, which has been implicated as a mediator of CTL lysis. We have developed a method for producing CTL specific for human Ad2 and Ad5 in mice, in order to test directly which of the genes in the E3 region protect infected cells from lysis by virus specific CTL. The presence of the E3 region inhibits both the induction of Ad-specific CTL in culture and the lysis of infected target cells by these CTL. The inhibition varies between different mouse strains, with almost complete inhibition in C57BL/10 (H-2b) mice, partial inhibition with BALB/c (H-2d) and little or no inhibition with C3H (H-2k); results were similar for Ad2 and Ad5. By using a panel of E3 deletion mutants, inhibition of target cell lysis by Ad5 specific CTL was mapped exclusively to the gp19K gene. The 14.7K gene had no effect on CTL lysis despite its ability to protect cells against lysis by lymphotoxin. gp19K was synthesized abundantly in mouse cells by mutants retaining the gp19K gene; some mutant forms of the protein were synthesized but were nonfunctional. These data support the hypothesis that gp19K can protect Ad infected cells against lysis by virus specific CTL.  相似文献   

20.
Previously, we reported that the generation of cytolytic T lymphocytes (CTL) specific for syngeneic tumors induced by AKR/Gross leukemia viruses was under multi-gene control. Thus, although carrying the required immune response gene(s) encoded by the H-2b haplotype and characteristic of responder strains such as C57BL/6, AKR.H-2b congenic mice failed to mount antiviral CTL responses. Young adult AKR.H-2b:Fv-1b "doubly congenic" mice, however, were able to generate specific anti-AKR/Gross virus CTL activity. These results demonstrated that the positive effect of MHC-encoded immune response gene control could be overcome by the action of the Fv-1n allele. The responder status of the B6.Fv-1n congenic, however, indicated that this Fv-1n-mediated inhibition was dependent on the interaction of Fv-1n with another gene(s) encoded by the AKR background. The results of experiments performed with AKXL recombinant inbred mice further suggested that a single additional genetic locus, encoding the Akv-1 provirus, was necessary along with Fv-1n to cause inhibition of antiviral CTL generation. Here we show that the responsiveness of AKR.H-2b:Fv-1b mice is dependent on their age. Thus, with moderate aging these doubly congenic mice converted to a nonresponder status with respect to anti-AKR/Gross virus CTL production: 85% of mice less than or equal to 9 wk of age responded compared with 0% of mice greater than 9 wk old. As with nonresponder AKR.H-2b mice, an inverse correlation was observed between CTL responsiveness and the expression of CTL-defined viral antigens by normal cells. Namely, spleen cells from young AKR.H-2b:Fv-1b mice showed little or no expression of such viral antigens, whereas with moderate aging there was a steady increase in their display. These results are discussed with reference to possible mechanisms of unresponsiveness of AKR.H-2b vs moderately aged AKR.H-2b:Fv-1b mice, and with respect to the utility of this system as a model for naturally occurring retrovirus infections and the interactions of retroviruses with the immune system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号