首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vertebrate neurons, axons have a uniform arrangement of microtubules with plus ends distal to the cell body (plus-end-out), and dendrites have equal numbers of plus- and minus-end-out microtubules. To determine whether microtubule orientation is a conserved feature of axons and dendrites, we analyzed microtubule orientation in invertebrate neurons. Using microtubule plus end dynamics, we mapped microtubule orientation in Drosophila sensory neurons, interneurons, and motor neurons. As expected, all axonal microtubules have plus-end-out orientation. However, in proximal dendrites of all classes of neuron, approximately 90% of dendritic microtubules were oriented with minus ends distal to the cell body. This result suggests that minus-end-out, rather than mixed orientation, microtubules are the signature of the dendritic microtubule cytoskeleton. Surprisingly, our map of microtubule orientation predicts that there are no tracks for direct cargo transport between the cell body and dendrites in unipolar neurons. We confirm this prediction, and validate the completeness of our map, by imaging endosome movements in motor neurons. As predicted by our map, endosomes travel smoothly between the cell body and axon, but they cannot move directly between the cell body and dendrites.  相似文献   

2.
Axons and dendrites of neurons differ in the polarity orientation of their microtubules. Whereas the polarity orientation of microtubules in axons is uniform, with all plus ends distal, that in dendrites is nonuniform. The mechanisms responsible for establishment and maintenance of microtubule polarity orientation in neuronal processes remain unclear, however. We previously described a culture system in which dendrites of rat cortical neurons convert to axons. In the present study, we examined changes in microtubule polarity orientation in such dendrites. With the use of the hooking procedure and electron microscopy, we found that microtubule polarity orientation changed from nonuniform to uniform, with a plus end-distal arrangement, in dendrites that gave rise to axons during culture of neurons for 24 h. Microtubule polarity orientation remained nonuniform in dendrites that did not elongate. Axon regeneration at the dendritic tip thus triggered the disappearance of minus end-distal microtubules from dendrites. These minus end-distal microtubules also disappeared from dendrites during axon regeneration in the presence of inhibitors of actin polymerization, suggesting that actin-dependent transport of microtubules is not required for this process and implicating a previously unidentified mechanism in the establishment and maintenance of microtubule polarity orientation in neuronal processes.  相似文献   

3.
Little is known about extensive nervous system growth after axons reach their targets. Indeed, postnatal animals continue to grow, suggesting that axons are stretched to accommodate the expanding body. We have previously shown that axons can sustain stretch-growth rates reaching 1 cm/day; however, it remained unknown whether the ability to transmit active signals was maintained. Here, stretch-growth did not alter sodium channel activation, inactivation, and recovery or potassium channel activation. In addition, neurons generated normal action potentials that propagated across stretch-grown axons. Surprisingly, Na and K channel density increased due to stretch-growth, which may represent a natural response to preserve the fidelity of neuronal signaling.  相似文献   

4.
5.
The generation and refinement of dendrites is essential for normal brain development and function. However, the molecular mechanisms that govern dendritic morphogenesis are poorly understood. Recent studies from the Crabtree laboratory have uncovered a requirement for the neuron-specific chromatin-remodeling enzyme nBAF in dendritic growth and branching in response to neuronal activity. These findings highlight the significance of epigenetic mechanisms in activity-dependent dendritic morphogenesis, with important implications in brain development and plasticity.  相似文献   

6.
This paper develops a model of nanoparticle transport in neurons. It is assumed that nanoparticles are transported inside endocytic vesicles by a combined effect of dynein-driven transport and diffusion. It is further assumed that in axons nanoparticles are internalised only at axon terminals, whereas in dendrites nanoparticles can enter through the entire plasma membrane. This causes differences in transport of nanoparticles in axons and dendrites; these differences are investigated in this paper. Another difference is microtubule (MT) orientation in axons and dendrites; in axons, all MTs have their plus-ends oriented towards the axon terminal; in a proximal region of a dendrite, MTs have mixed orientation, whereas in a distal dendritic region the MT orientation is similar to that in an axon. It is shown that if molecular-motor-driven transport were powered by dynein alone, such MT orientation in a dendrite would result in a region of nanoparticle accumulation located at the border between the proximal and distal dendritic regions.  相似文献   

7.
Developing neurons can change axonal and dendritic fate upon axonal lesion, but it is unclear whether neurons retain such plasticity when they are synaptically interconnected. To address whether polarity is reversible in mature neurons, we cut the axon of GFP-labeled hippocampal neurons in dissociated and organotypic cultures and found that a new axon arose from a mature dendrite. The regenerative response correlated with the length of the remaining stump: proximal axotomies (<35 microm) led to the transformation of a dendrite into an axon (identity change), whereas distal cuts (>35 microm) induced axon regrowth, similar to what is seen in young neurons. Searching for a putative landmark in the distal axon that could determine axon identity, we focused on the stability of microtubules, which regulate initial neuronal polarization during early development. We found that functionally polarized neurons contain a distinctively high proportion of stable microtubules in the distal axon. Moreover, pharmacological stabilization of microtubules was sufficient to induce the formation of multiple axons out of differentiated dendrites. Our data argue that mature neurons integrated in functional networks remain flexible in their polarity and that mechanisms acting during initial axon selection can be reactivated to induce axon growth out of functionally mature dendrites.  相似文献   

8.
This paper develops a model of nanoparticle transport in neurons. It is assumed that nanoparticles are transported inside endocytic vesicles by a combined effect of dynein-driven transport and diffusion. It is further assumed that in axons nanoparticles are internalised only at axon terminals, whereas in dendrites nanoparticles can enter through the entire plasma membrane. This causes differences in transport of nanoparticles in axons and dendrites; these differences are investigated in this paper. Another difference is microtubule (MT) orientation in axons and dendrites; in axons, all MTs have their plus-ends oriented towards the axon terminal; in a proximal region of a dendrite, MTs have mixed orientation, whereas in a distal dendritic region the MT orientation is similar to that in an axon. It is shown that if molecular-motor-driven transport were powered by dynein alone, such MT orientation in a dendrite would result in a region of nanoparticle accumulation located at the border between the proximal and distal dendritic regions.  相似文献   

9.
Leemhuis J  Henle F  Meyer DK 《Peptides》2007,28(9):1700-1705
In neurons from rat hippocampus, VIP induces the elongation of dendrites. In the present study, we have investigated in cultured hippocampal neurons whether VIP changed the actin and tubulin cytoskeleton in dendrites. VIP caused the elongation of dendrites and induced the outgrowth of microtubules, so that they extended up to the tips. In contrast, VIP reduced the F-actin content measured as total pixel after phalloidin staining in dendritic tips. These results suggest that VIP causes dendrite elongation by facilitating the outgrowth of microtubules into the newly formed extensions.  相似文献   

10.
This paper develops a method of calculating the transport of intracellular organelles in neurons with branching neurites which is based on the Smith–Simmons equations of motor-assisted transport. The method is aimed at understanding the effects of microtubule (MT) polarity orientation in branching neurites on transport of organelles at the fundamental level. The method is applied to calculating the organelle transport in axons and dendrites of Drosophila neurons, using the map of MT orientation in such neurons developed by Stone et al. (Mol Biol Cell 19:4122–4129, 2008). The proximal dendrite is assumed to branch and form two distal dendrites. Two different MT polarity arrangements in a proximal dendrite are considered, and implications of these MT arrangements on organelle transport are analysed. It is demonstrated that the MT arrangement found in Drosophila dendrites (MTs have their minus ends out in a proximal dendrite) results in much more efficient motor-driven transport than the structure with a mixed MT orientation in proximal dendrites.  相似文献   

11.
12.
Surface IgG-bearing cells retain the capacity to secrete IgM   总被引:2,自引:0,他引:2  
Our previous studies indicated that a large proportion of surface IgG+-primed B cells give rise to clones secreting IgM antibodies. Due to the implications of this result relative to molecular mechanisms of class switching, it was important to document that the surface IgG had been endogenously synthesized by the surface IgG+ cells and was not present as a result of cytophilic IgG. Therefore, spleen cells from immunized mice were treated sequentially with anti-immunoglobulin and protease which removed greater than 99% of surface immunoglobulin. After overnight incubation to allow resynthesis of surface immunoglobulin, the treated cells were sorted for surface IgG-bearing cells and were transferred to carrier-primed, irradiated adoptive recipients for analysis in the splenic focus assay. It was found that the majority of antibody-secreting clones derived from these surface IgG+ B cells still synthesized IgM. These data are discussed relative to current concepts of molecular mechanisms of immunoglobulin class switching.  相似文献   

13.
Esch  Teresa  Lemmon  Vance  Banker  Gary 《Brain Cell Biology》2000,29(3):215-223
A fundamental step in neuronal development is the acquisition of a polarized form, with distinct axons and dendrites. Although the ability to develop a polarized form appears to be largely an intrinsic property of neurons, it can be influenced by environmental cues. For example, in cell cultures substrate and diffusible factors can enhance and orient axonal development. In this study we examine the effects of growth on each of two cell adhesion molecules (CAMs), NgCAM and N-cadherin, on the development of polarity by cultured hippocampal neurons. We find that although the same pattern of development occurs on control substrates and the CAMs, the CAMs greatly accelerate the rate and extent of development of axons—axons form sooner and grow longer on the CAMs than on the control substrate. In contrast, the CAMs have opposite effects on dendritic development—N-cadherin enhances, but NgCAM reduces dendritic growth compared to control. These results provide further evidence that the development of polarity is largely determined by a cell-autonomous program, but that environmental cues can independently regulate axonal and dendritic growth.  相似文献   

14.
This review highlights important events during the morphological development of retinal ganglion cells (RGCs), focusing on mechanisms that control axon and dendritic arborization as a means to understand synaptic connectivity with special emphasis on the role of neurotrophins during structural and functional development of RGCs. Neurotrophins and their receptors participate in the development of visual connectivity at multiple levels. In the visual system, neurotrophins have been shown to exert various developmental influences, from guiding the morphological differentiation of neurons to controlling the functional plasticity of visual circuits. This review article examines the role of neurotrophins, and in particular of BDNF, during the morphological development of RGCs, and discusses potential interactions between activity and neurotrophins during development of neuronal connectivity.  相似文献   

15.
Stromal fibroblasts from the adult rabbit cornea were propagated in vitro, then injected into the vitreous compartment of normal rabbit eyes. In this environment the stromal cells deposited a matrix of imperfect orthogonal collagenous lamellae resembling normal corneal stroma. Extracellular matrices were also secreted by other ocular and nonocular cell types intravitreally, but no orthogonal regions were observed. The vitreous appears to provide some of the physical and humoral factors required to permit adult corneal fibroblasts to secrete a stroma-like matrix in the absence of embryonic tissue influences.  相似文献   

16.
We have previously shown that the earliest thymic progenitors retain the potential to generate T and NK cells and that they lose the bipotentiality to give rise to unipotent T and NK progenitors during the progression of intrathymic developmental stages. The present study examines the ability of these thymic progenitors for generation of dendritic cells (DC) with a new clonal assay that is capable of determining the developmental potential for DC in addition to T cells and NK cells. We found that the large majority of the T/NK bipotential progenitors in the earliest population of fetal thymus was able to generate DC. Although the DC potential is lost with the progression of the differentiation stage, some of the T/NK bipotential progenitors still retain their DC potential even at the CD44(+)CD25(+) stage.  相似文献   

17.
Polarized neurites (axons and dendrites) form the functional circuitry of the nervous system. Secreted guidance cues often control the polarity of neuron migration and neurite outgrowth by regulating ion channels. Here, we show that secreted semaphorin 3A (Sema3A) induces the neurite identity of Xenopus spinal commissural interneurons (xSCINs) by activating Ca(V)2.3 channels (Ca(V)2.3). Sema3A treatment converted the identity of axons of cultured xSCINs to that of dendrites by recruiting functional Ca(V)2.3. Inhibition of Sema3A signalling prevented both the expression of Ca(V)2.3 and acquisition of the dendrite identity, and inhibition of Ca(V)2.3 function resulted in multiple axon-like neurites of xSCINs in the spinal cord. Furthermore, Sema3A-triggered cGMP production and PKG activity induced, respectively, the expression of functional Ca(V)2.3 and the dendrite identity. These results reveal a mechanism by which a guidance cue controls the identity of neurites during nervous system development.  相似文献   

18.
We have examined the morphology of fetal rat sympathetic neurons grown in serum-free medium in the absence of nonneuronal cells. Because cell density can affect phenotypic expression in vitro, the morphological analysis was subdivided into the study of isolated neurons (neurons whose somata were at least 150 micron from their nearest neighbor) and of more highly aggregated neurons. When isolated neurons were injected with intracellular markers, it was found that most (79%) had a single process emanating from their somata and that this unipolar state persisted for at least 8 weeks in vitro. The processes of unipolar sympathetic neurons had the appearance of axons in that they were thin and long, had a constant diameter, and were relatively unbranched. Cytochemical methods revealed that such processes had other axonal characteristics: (1) they were more reactive with a monoclonal antibody against phosphorylated forms of the M and H neurofilament subunits than with an antibody to nonphosphorylated forms of these proteins; (2) they also reacted with antibodies to the tau microtubule-associated protein and to the phosphorylated forms of the H neurofilament subunit; and (3) they contained only small amounts of RNA as determined by [3H]uridine autoradiography. These data indicate that neurons which normally form dendrites in vivo need not express this capacity in vitro and that axonal and dendritic growth can be dissociated under some conditions in culture. While most isolated neurons were unipolar, neurons in regions of high neuronal cell density were usually multipolar. In addition to axons, multipolar neurons had processes with some of the characteristics expected of rudimentary dendrites: they ended locally (usually within 100 micron), were often highly branched, and reacted with an antibody to nonphosphorylated forms of the M and H neurofilament subunits. The effects of density were most prominent when neurons were within aggregates in which the somata were in close apposition. Density-dependent changes in morphology were less frequently observed when neuronal somata were separated by greater distances (30-100 micron). These data indicate that the morphology of sympathetic neurons is subject to environmental regulation and that neuron-neuron interactions can promote the extension of rudimentary dendrites in vitro.  相似文献   

19.
The functional capacity of alveolar macrophages (AM) in human immunodeficiency virus (HIV)-infected patients with pulmonary tuberculosis (TB) is not completely understood. To investigate the capacity of AM to mediate inflammatory responses, we obtained AM from human subjects by bronchoalveolar lavage (BAL) and studied the cells ex vivo. We compared AM from HIV-infected patients with suspected pulmonary TB to AM from healthy, HIV-negative controls for their capacity to produce TNF-alpha or IL-6 spontaneously and upon stimulation with lipopolysaccharide (LPS). Cytokine-producing cells were identified by macrophage markers and intracellular cytokine staining and flow cytometry. A higher proportion of AM from patients with microbiologically confirmed pulmonary TB than patients with probable TB or controls spontaneously expressed TNF-alpha shortly after isolation (geometric means: 38.5%, 23.7% and 15.8%, respectively), suggesting endogenous cytokine production. The proportions of AM spontaneously expressing TNF-alpha positively correlated with peripheral blood CD4(+) T-lymphocyte counts in patients (partial r=0.60, p=0.003) but not controls. Stimulation with LPS resulted in a significant increase in the proportions of TNF-alpha- and IL-6-positive AM from patients and controls (p<0.01). Bronchoalveolar lavage fluid (BALF) from confirmed TB patients also contained higher concentrations of the inflammatory cytokines predominantly produced by macrophages, IL-6 and IL-8, than controls (geometric mean cytokine concentrations per gram of BALF albumin were 1291 pg/g vs. 115 pg/g, p=0.03 for IL-6 and 4739 pg/g vs. 704 pg/g, p=0.03 for IL-8). We concluded that AM from HIV-infected patients with pulmonary TB produced and released inflammatory cytokines in vivo and retained their innate ability to respond to stimulation by LPS.  相似文献   

20.
We describe culture systems for neurons of an adrenergic autonomic ganglion which: (a) permit cultivation of neurons without supporting cells, (b) permit separate harvest of somal and axonal material, and (c) permit direct access to the neuronal surface. The antimetabolites used to suppress supporting cell growth did not have demonstrable effects on neuronal polypeptide synthesis. Rapid neurite outgrowth, which characterized these cultures, was prevented by colchicine or cycloheximide and resumed promptly after their withdrawal. Axons separated from cell bodies showed no incorporation of label from leucine or fucose, but did exhibit incorporation of glucosamine. The major polypeptides present in this neuron, as demonstrated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis, are described. No major differences in polypeptide content were observed when soma and axons were compared. Likewise, there were no differences detected in polypeptides synthesized by neurons in suspension or neurons actively extending processes. Analysis of the polypeptides within the neurites after labeling with amino acids indicated transport at a number of different rates; certain of these polypeptides corresponded in size and transport characteristics to polypeptides observed in the rabbit optic nerve after labeling of retinal ganglion cells. Tubulin and actin have been definitively identified in this cell type (18); we found proteins similar in size and proportionate amounts to be among the rapidly transported soluble polypeptides. The prominent polypeptides observed after several methods of surface labeling are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号