首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Supply of 1, 2, 5, 10 or 20 mM nitrate to detached roots, scutella or shoots from 5- to 6-d-old Zea mays L. seedlings increased in vitro nitrate reductase (NR) activity in all the organs and NADPH specific NR (NADPH:NR) activity in roots and scutella but not in the shoots. Usually 2 to 5 mM nitrate supported maximum enzyme activity, the higher concentration did not increase it further. The protein content in the roots, scutella and shoots increased up to 5, 2 and 20 mM medium nitrate, respectively. Nitrate uptake also increased with increasing nitrate concentration in roots and shoots, but it increased only slightly in the scutella. In both roots and scutella, methionine sulfoximine had no effect, while cycloheximide and tungstate abolished nitrate induced NADH:NR activity completely and NADPH:NR partially. Methionine sulfoximine increased nitrate uptake by roots and scutella slightly, but other inhibitors had no effect. The depletion of dissolved oxygen from the medium was lower in the presence of nitrate than in its absence or in the presence of ammonium, especially in the scutella. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
4.
5.
The effects of red and far-red light on the enhancement of in vitro nitrate reductase activity and on nitrate accumulation in etiolated excised maize leaves were examined. Illumination for 5 min with red light followed by a 4-h dark period caused a marked increase in nitrate reductase activity, whereas a 5-min illumination with far-red light had no effect on the enzyme activity. The effect of red light was completely reversed by a subsequent illumination with the same period of far-red light. Continuous far-red light also enhanced nitrate reductase activity. Both photoreversibility by red and far-red light and the operation of high intensity reaction under continuous far-red light indicated that the induction of nitrate reductase was mediated by phytochrome. Though nitrate accumulation was slightly enhanced by red and continuous far-red light treatments by 17% and 26% respectively, this is unlikely to account for the entire increase of nitrate reductase activity. The far-red light treatments given in water, to leaves preincubated in nitrate, enhanced nitrate reductase activity considerably over the dark control. The presence of a lag phase and inhibition of increase in enzyme activity under continuous far-red light-by tungstate and inhibitors of RNA synthesis and protein synthesis-rules out the possibility of activation of nitrate reductase and suggests de novo synthesis of the enzyme affected by phytochrome.  相似文献   

6.
7.
8.
9.
10.
Summary Barley nitrate reductase cDNA clone bNRp10 was used as a hybridization probe to screen a genomic DNA library of rice (Oryza sativa L.) cultivar M201. Two different lambda clones were isolated, subcloned to plasmids, and partially characterized. The subclone pHBH1 was tentatively identified as encoding a NADH nitrate reductase. Southern and dot blot analysis suggest that, in rice, nitrate reductase is encoded by a small gene family. Regulation of NADH nitrate reductase was investigated in rice cultivars Labelle and M201 representing the subspecies indica and japonica, respectively. In the absence of nitrate, only trace levels of nitrate reductase activity and mRNA were detected in seedling leaves. Upon addition of nitrate to seedling roots, nitrate reductase activity and mRNA increased rapidly in leaves. Nitrate reductase activity continued to increase over a 24 h period, but the mRNA accumulation peaked at about 6 h and then declined. Western blot analysis with a barley NADH nitrate reductase antiserum showed the presence of two bands of approximately 115 and 105 kDa. These protein bands were not detected in extracts of tissue grown in the absence of nitrate.  相似文献   

11.
12.
13.
1. RNA and protein synthesis was studied during the incubation of excised radish cotyledons in nitrate, conditions that induced nitrate reductase activity in the tissue. 2. Synthesis of total RNA and protein, as measured by the incorporation of radioactive precursor, was significantly stimulated in the presence of nitrate (compared with chloride control), but was decreased in the presence of ammonium nitrate, which induced higher enzyme activity. 3. Synthesis of RNA and protein was required for induction of enzyme activity, as determined by using the inhibitors actinomycin D, puromycin and cycloheximide. 4. On the basis of 5-fluorouracil inhibition, the synthesis of only DNA-like RNA was required for induction, but no differences, either quantitative or qualitative, were observed in DNA-like RNA synthesis in the presence or absence of induction. 5. A 100-fold purification of the nitrate reductase activity showed no increase in nitrate reductase protein, nor any increased incorporation of radioactive precursor into nitrate reductase protein in the induced versus the control system. Such results suggested that the protein synthesis required for induction may be for a protein other than nitrate reductase.  相似文献   

14.
15.
16.
Steady state levels of in vivo nitrate reductase activity in the endosperm, scutella, roots and shoots of maize seedlings were higher in normal maize than those in high lysine maize. Activity of peroxidase in the roots, however, was higher in the high lysine cultivar. The nitrate reductase activity increased with the supply of nitrate in all parts of the seedlings of both cultivars, although the rates of increment in the endosperm were lower than those in scutella, roots and shoots. In relation to substrate concentration, a saturation was achieved at 5 to 10 mM of nitrate except in the endosperm, where activity increased slowly up to 100 mM at least. Final levels of enzyme activity were significantly higher in the scutella of normal than in that of high lysine seedlings. In vitro enzyme activity in the roots also increased with the supply of nitrate in both cultivars, reaching maximum at 5 to 10 mM nitrate.  相似文献   

17.
18.
Unlike phosphate or potassium transport, uptake of nitrate by roots is induced, in part, by contact with the substrate ion. Plasmalemma influx of 13N-labeled nitrate in maize roots was studied in relation to induction of the uptake system, and the influence of short-term N starvation. Maize (Zea mays) roots not previously exposed to nitrate had a constitutive transport system (state 1), but influx increased 250% during six hours of contact with 100 micromolar nitrate, by which time the transport mechanism appeared to be fully synthesized (state 2). A three-day period of N starvation prior to induction and measurement of nitrate influx resulted in a greater capacity to transport nitrate than in unstarved controls, but this was fully expressed only if roots were kept in contact with nitrate for the six hours needed for full induction (state 2E). A kinetic analysis indicated a 160% increase in maximum influx in N-starved, induced roots with a small decrease in Km. The inducible component to nitrate influx was induced only by contact with nitrate. Full expression of the nitrate inducible transport system was dependent upon mRNA synthesis. An inhibitor of cytoplasmic protein synthesis (cycloheximide) eliminated the formation of the transport system while inhibition by chloramphenicol of mitochondrial- or plastid-coded protein synthesis had no effect. Poisoning of membrane-bound proteins effectively disabled both the constitutive and induced transport systems.  相似文献   

19.
The disappearance of nitrate reductase activity in leaves of Hordeum vulgare L. during darkness was inhibited by cycloheximide, actinomycin D, and low temperature. Thus, protein synthesis was probably required for the disappearance of nitrate reductase in the dark. Since chloramphenicol did not affect the rate of loss of activity, the degradation or inactivation apparently required protein synthesis by the cytoplasmic ribosomal system. Consistent with this observation, nitrate reductase is also reportedly located in the cytoplasm. Thus, the amount of nitrate reductase activity present in leaves of barley may be controlled by a balance between activating and inactivating systems.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号