首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Methylation of chromatin DNA.   总被引:6,自引:4,他引:2       下载免费PDF全文
E. coli DNA methylase has been used to methylate chromatin DNA in vitro. At saturation only 50% of the chromatin DNA becomes methylated. The methylated regions of chromatin correspond to that fraction of the chromatin which is sensitive to staphylococcal nuclease. Using in vitro methylated chromatin followed by nuclease digestion movement of chromatin proteins along the DNA can be detected. By this criterion, sonication of chromatin or precipitation with MnCl2 causes 10% of the previously uncovered methylated regions to become covered by protein. Reconstitution of methylated chromatin results in the randomization of the chromatin proteins. Using nuclei which were methylated in vitro we have demonstrated that a small degree of protein sliding does occur during the preparation of chromatin from nuclei. Finally, we have prepared open region DNA by polylysine titration. This procedure does not cause displacement of chromatin proteins.  相似文献   

2.
Organization of 5-methylcytosine in chromosomal DNA   总被引:16,自引:0,他引:16  
A Solage  H Cedar 《Biochemistry》1978,17(14):2934-2938
The 5-methylcytosine residues of L-cells have been labeled with [methyl-3H]-L-methionine and their chromatin localization studied using deoxyribonucleases. The kinetics of micrococcal nuclease digestion showed that the methylated cytosine residues are concentrated within regions resistant to nuclease digestion and preferentially missing from those regions between nucleosomes which are nuclease sensitive. Using DNA hybridization kinetic analysis, it is shown that 5-methylcytosine is abundant in highly repeated sequences but is also present in middle repetitive and unique sequence DNA.  相似文献   

3.
4.
Derivatives of the furocoumarin, psoralen, can penetrate intact cells or nuclei and cross-link opposite strands of the chromosomal DNA under the influence of long wave-length ultraviolet light. The potential of trioxsalen (4,5',8-trimethylpsoralen) as a probe for chromatin structure has been investigated. The DNA in both embryo nuclei and tissue culture cells from Drosophila melanogaster was found to be about 90% protected from trioxsalen binding relative to purified DNA. Digestion of trioxsalen-treated nuclei by micrococcal nuclease and gel electrophoresis of the resulting DNA gave the same type of band pattern that is characteristic of native, untreated nuclei are digestion. Nuclease digestion was therefore used to examine the distribution of bound trioxsalen in the DNA. The resulting DNA fragments were analyzed both by radioactivity measurements and quantitative electron microscopy. The nuclease cleaved intact photoreacted nuclei in such a way that preferential excision of trioxsalen containing regions of the DNA occurred, but, when acting upon purified DNA that contained bount trioxsalen, it attacked the trioxsalen-free regions preferentially. It was thus concluded that trixosalen binds at the sites corresponding to the regular nuclease-sensitive regions of the chromatin in nuclei.  相似文献   

5.
We have examined the relationship between the distribution of DNA damage and repair in chromatin from confluent human fibroblasts treated with the carcinogen 7-bromomethylbenz (a) anthracene. Analysis of staphylococcal nuclease (SN)4 digestion kinetics and gel electrophoresis revealed that more total damage occurs in nucleosome core DNA (approximately 80-85% of chromatin DNA) than in SN sensitive DNA (APPROXIMATELY15-20%). Furthermore, over a 24 hr period, damage is removed at about the same rate from these two regions. In contrast, virtually all of the nucleotides incorporated during repair synthesis are initially SN sensitive even when measured at 12 hr after damage. With time many repair-incorporated nucleotides become SN resistant and coelectrophorese with nucleosome core DNA. To explain these data we propose a model whereby excision repair occurs in both linker and core DNA; however, in core DNA the repair process induces conformational changes resulting in temporarily increased SN sensitivity; subsequently, rearrangement occurs and results in the re-establishment of native or near-native nucleosome conformation and SN resistance.  相似文献   

6.
In mammalian cells, newly synthesized DNA repair patches are highly sensitive to digestion by staphylococcal nuclease (SN), but with time, they acquire approximately the same nuclease resistance as the DNA in bulk chromatin. We refer to the process which restores native SN sensitivity to repaired DNA as chromatin rearrangement. We find that during repair of ultraviolet damage in human fibroblasts, repair patch synthesis and ligation occur at approximately the same rate, with ligation delayed by about 4 min, but that chromatin rearrangement is only 75% as rapid. Thus, repair-incorporated nucleotides can exist in at least three distinct states: unligated/unrearranged, ligated/unrearranged, and ligated/rearranged. Inhibition of repair patch synthesis by aphidicolin or hydroxyurea results in inhibition of both patch ligation and chromatin rearrangement, confirming that repair patch completion and/or ligation are prerequisites for rearrangement. We also analyze the kinetics of SN digestion of repair-incorporated nucleotides at various extents of rearrangement and find the data to be consistent with the existence of two or more forms of unrearranged repair patch which have different sensitivities to digestion by SN. These data indicate that the chromatin rearrangement which restores native SN sensitivity to repaired DNA is a multistep process. The multiple forms of unrearranged chromatin with different SN sensitivities may include the unligated/unrearranged and ligated/unrearranged states. If so, the differences in SN sensitivity must arise from differences in chromatin structure, because SN does not differentiate between ligated and unligated repair patches in naked DNA.  相似文献   

7.
Nuclei of substantial purity were isolated from the middle or posterior silk glands of the silkworm Bombyx mori larvae. Both the fibroin H- and L-chain gene sequences in the isolated nuclei from the posterior silk glands of the fifth instar larvae, where the genes are transcribed actively, are extremely sensitive to the digestion with DNaseI; on the other hand, these sequences in the middle silk gland nuclei from the same larvae, where the genes are not expressed, are markedly resistant to the digestion. The H-chain gene sequences in the posterior silk gland nuclei from the fifth instar larvae are also highly susceptible to the digestion with micrococcal nuclease, HinfI, and HhaI. The digestion products with micrococcal nuclease show a continuous size distribution. The H-chain gene sequences in the middle silk gland nuclei or the posterior silk gland nuclei from the fourth molting stage are cleaved partially into nucleosome dimer to oligomer sizes upon digestion with higher concentrations of micrococcal nuclease, suggesting that the inactive forms of the H-chain gene chromatin are constructed by folding of the chromatin fiber containing a regular array of nucleosomes. Hypersensitive sites to micrococcal nuclease are present near both ends of the second exon, a major body of the fibroin H-chain gene, in both the active and inactive forms of the chromatin. The DNaseI or micrococcal nuclease sensitivity of the H-chain gene chromatin in the posterior silk gland nuclei shows periodical changes corresponding to the intermolt-molt-intermolt cycle.  相似文献   

8.
DNA in Chinese hamster ovary cells was labeled with [14C]thymidine and [methyl- 3H]-1-methionine in culture, and their nuclei were digested with micrococcal nuclease. Not until 10 percent of bulk DNA was digested did methylated DNA appear in the acid-soluble fraction. When these cells were exposed to UV-radiation, alkylating agents and intercalating agents in culture, the resistance of methylated DNA to digestion by the nuclease was largely or completely eliminated. The change in the sensitivity of methylated DNA to the nuclease indicates a conformational change in chromatin induced by the genotoxicants.  相似文献   

9.
Some parameters that influence the analysis in situ of DNA sensitivity to digestion with nuclease S1 have been studied in isolated HeLa nuclei with flow cytometry. DNA staining with the intercalating fluorochrome propidium iodide allowed the nucleolytic activity on double-stranded (ds) DNA to be determined by monitoring the relative reduction in nuclear fluorescence intensity. Nuclei isolated in buffer at low ionic strength in order to decondense chromatin fibres, showed a lower fluorescence intensity than nuclei with native chromatin, after digestion with nuclease S1 under identical conditions. Nuclei prepared with dispersed chromatin and digested with increasing amounts of enzyme showed a decrease in fluorescence intensity that reached a limit value at about 50% of the value of undigested control samples. On the other hand, in nuclei with native chromatin, fluorescence intensity decreased only about 18%. The NaCl concentration in the reaction buffer strongly influenced the DNA sensitivity to S1 nuclease. By increasing salt molarity from 5 mM to 200 mM, the digestion of dsDNA was significantly reduced as also shown by the amount of released nucleotides from purified calf thymus DNA. The detection of DNA sensitivity to nuclease S1, as assessed by the cytometric method, was shown to be more sensitive than a biochemical technique involving hydrolysis of purines. These results indicate that both the procedure for nuclei isolation and the digestion conditions have to be carefully controlled when evaluating in situ the presence of S1-sensitive sites.  相似文献   

10.
The search for proteins involved in maintaining higher order chromatin structures has led to a systematic examination of the non-histone proteins (NHP) of rat liver nuclei in the context of nuclease digestion studies. 40-45% of the 3H-tryptophan labelled NHP originally present could be removed by extensive washing in a "physiological" buffer, incubation at 37 degrees C with or without nuclease and a further wash step. Nuclei at this stage had a remarkably constant NHP content (ca. 0.73 micrograms/micrograms DNA), independent of the degree of digestion with micrococcal nuclease or HaeIII. The solubilized chromatin produced by limited digestion with either nuclease contained 0.3-0.5 microgram NHP/microgram DNA, this value falling to ca. 0.16 after more extensive cleavage. Insoluble chromatin fractions were between 2-fold (very limited digestion) and 16-fold (extensive digestion) richer in NHP than the corresponding soluble fractions. Gel electrophoresis revealed about 12 NHP bands in soluble fractions, the most prominent of M.Wt. 41.400, while the insoluble material had at least 50 components. These properties were independent of whether lysis of nuclei occurred in 0.2 or 50 mM ionic strength. The large disparity in NHP content between complementary soluble and insoluble chromatin fractions is considered in terms of chromatin organization in vivo and the possible role of NHP migration.  相似文献   

11.
The distribution of methyl methanesulfonate induced DNA repair was measured in mouse mammary cell chromatin by digestion of "repair labeled" nuclei with micrococcal nuclease. The results indicate that there is a nonuniform distribution of DNA repair in chromatin. The chromatin fraction digested during the first 5 minutes of incubation with micrococcal nuclease appears to be a primary site of DNA repair after methyl methanesulfoante treatment. The observed nonuniform distribution of DNA repair in chromatin may be due to 1)a nonrandom alkylation of DNA in chromatin by methyl methanesulfonate or 2)areas in chromatin of increased accessibility for the repair enzymes to the DNA lesions.  相似文献   

12.
13.
Summary Some parameters that influence the analysis in situ of DNA sensitivity to digestion with nuclease S1 have been studied in isolated HeLa nuclei with flow cytometry. DNA staining with the intercalating fluorochrome propidium iodide allowed the nucleolytic activity on double-stranded (ds) DNA to be determined by monitoring the relative reduction in nuclear fluorescence intensity. Nuclei isolated in buffer at low ionic strength in order to decondense chromatin fibres, showed a lower fluorescence intensity than nuclei with native chromatin, after digestion with nuclease S1 under identical conditions. Nuclei prepared with dispersed chromatin and digested with increasing amounts of enzyme showed a decrease in fluorescence intensity that reached a limit value at about 50% of the value of undigested control samples. On the other hand, in nuclei with native chromatin, fluorescence intensity decreased only about 18%. The NaCl concentration in the reaction buffer strongly influenced the DNA sensitivity to S1 nuclease. By increasing salt molarity from 5 mM to 200 mM, the digestion of dsDNA was significantly reduced as also shown by the amount of released nucleotides from purified calf thymus DNA. The detection of DNA sensitivity to nuclease S1, as assessed by the cytometric method, was shown to be more sensitive than a biochemical technique involving hydrolysis of purines. These results indicate that both the procedure for nuclei isolation and the digestion conditions have to be carefully controlled when evaluating in situ the presence of S1-sensitive sites.  相似文献   

14.
A purification scheme for satellite DNA containing chromatin from mouse liver has been developed. It is based on the highly condensed state of the satellite chromatin and also takes advantage of its resistance to digestion by certain restriction nucleases. Nuclei are first treated with micrococcal nuclease and the satellite chromatin enriched 3-5 fold by extraction of the digested nuclei under appropriate conditions. Further purification is achieved by digestion of the chromatin with a restriction nuclease that leaves satellite DNA largely intact but degrades non-satellite DNA extensively. In subsequent sucrose gradient centrifugation the rapidly sedimenting chromatin contains more than 70% satellite DNA. This material has the same histone composition as bulk chromatin. No significant differences were detected in an analysis of minor histone variants. Nonhistone proteins are present only in very low amounts in the satellite chromatin fraction, notably the HMG proteins are strongly depleted.  相似文献   

15.
16.
The structures of DNAs present in various intracellular forms of simian virus 40 (SV40) nucleoprotein complexes were analyzed by micrococcal nuclease digestion. The results showed that the 70S SV40 chromatin was completely sensitive to nuclease digestion, whereas CsCl gradient-purified mature virion was completely resistant. Virion assembly intermediates with different degrees of virion maturation showed intermediate resistance, and three products were found: nucleosomal DNA fragments, representing the fraction of intermediates that were sensitive to nuclease; linear SV40 genome-sized DNA, representing the more mature intermediates that contained one or limited defects in the capsid shell; and supercoiled SV40, which was derived from mature virions. These digestion products, however, remained associated with capsid shells after nuclease digestion. These results were consistent with the model in which maturation of the SV40 virion is achieved through the organization of capsid proteins that accumulate around SV40 chromatin. Mild digestion of SV40 nucleoprotein complexes with micrococcal nuclease revealed the difference in nucleosome repeat length between SV40 chromatin and virion assembly intermediates. A novel DNA fragment of about 75 nucleotides was observed early in nuclease digestion.  相似文献   

17.
To examine the distribution of 5-methylcytosine in chromatin DNA, DNA of HeLa cells was labeled with [3H-methyl]methionine and [14C] thymidine and analyzed after extensive digestion of the nuclei with micrococcal nuclease. When the chromatin solubilized with the nuclease was fractionated on a sucrose density gradient, DNA in mononucleosomes was considerably depleted in 5-methylcytosine, as compared with polynucleosomes. Electrophoretic separation of DNA from the chromatin also revealed the depletion of 5-methylcytosine in the mononucleosomal size of DNA. This was confirmed by the chromatographic analysis of 5-methyldeoxycytidine after enzymatic digestion of the DNA to nucleosides. Thus the DNA in mononucleosomes solubilized by extensive micrococcal nuclease digestion is depleted in 5-methylcytosine, suggesting that 5-methylcytosine is preferentially missing from the DNA in the nucleosome core particles.  相似文献   

18.
Using restriction endonucleases which preferentially digest mouse main band DNA and leave satellite DNA intact, we have isolated highly purified chromatin fractions containing only mouse satellite or main band DNA. Following the digestion of mouse brain nuclei with EndoR Alu I, main band DNA chromatin is selectively extracted with 10mM Tris, 10mM EDTA. Satellite DNA chromatin is subsequently extracted from the nuclear pellet with Tris-3M urea and further purified on sucrose gradients. Chromatin extracted from digested nuclei with Tris-EDTA contains only main band DNA and has a molecular weight lower than 2 x 10(6). Chromatin fractions obtained from the lower regions of sucrose gradients of the Tris-Urea extracts contain 40--95% satellite DNA and have a molecular weight of 6 to 8 x 10(6). Both the satellite DNA and main band DNA chromatins contain all five histones and have a protein to DNA ratio of 1.3 to 1.  相似文献   

19.
Chromatin isolated from several chick tissues was treated with micrococcal nuclease. A limited degree of tissue specificity of chromatin DNA resistance to nuclease digestion was observed. No difference in the extent of nuclease resistance of chromatin DNA was detected during oestrogen-induced oviduct differentiation. This suggested that the amount of non-histone chromosomal protein does not play an important role in the sensitivity of chromatin DNA to nuclease digestion. Studies of nuclease resistance of chromatin DNA after dissociation and reconstitution of chromatin proteins and ethanol extraction of chromatin indicate that the histones protect the DNA from nuclease attack. Slow thermal denaturation of nuclease-resistant DNA suggests that the protected DNA sequences may be (A+T)-rich, and the (G+C)-rich satellites present in total chick DNA are sensitive to nuclease.  相似文献   

20.
The distribution of histones H1 and H5 along chromatin fibers has been examined in the nucleated hen erythrocyte. Nucleosome oligomers, produced by micrococcal nuclease digestion of nuclei, were sequentially reacted with affinity-chromatography purified rabbit anti-H5 and sheep anti-rabbit antibodies. Quantitation of the relative amounts of H1 and H5 in the precipitated and supernatant fractions as a function of the oligomer number was consistent with a close interspersion of both types of histones, probably a random one. This conclusion was supported by the immunoprecipitation of longer chromatin fibers. This pattern of distribution appears to apply both to bulk chromatin and to chromatin inactivated during the maturation of the erythrocyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号