首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The maize genome contains a helitron insertion   总被引:8,自引:0,他引:8       下载免费PDF全文
The maize mutation sh2-7527 was isolated in a conventional maize breeding program in the 1970s. Although the mutant contains foreign sequences within the gene, the mutation is not attributable to an interchromosomal exchange or to a chromosomal inversion. Hence, the mutation was caused by an insertion. Sequences at the two Sh2 borders have not been scrambled or mutated, suggesting that the insertion is not caused by a catastrophic reshuffling of the maize genome. The insertion is large, at least 12 kb, and is highly repetitive in maize. As judged by hybridization, sorghum contains only one or a few copies of the element, whereas no hybridization was seen to the Arabidopsis genome. The insertion acts from a distance to alter the splicing of the sh2 pre-mRNA. Three distinct intron-bearing maize genes were found in the insertion. Of most significance, the insertion bears striking similarity to the recently described DNA helicase-bearing transposable elements termed HELITRONS: Like Helitrons, the inserted sequence of sh2-7527 is large, lacks terminal repeats, does not duplicate host sequences, and was inserted between a host dinucleotide AT. Like Helitrons, the maize element contains 5' TC and 3' CTRR termini as well as two short palindromic sequences near the 3' terminus that potentially can form a 20-bp hairpin. Although the maize element lacks sequence information for a DNA helicase, it does contain four exons with similarity to a plant DEAD box RNA helicase. A second Helitron insertion was found in the maize genomic database. These data strongly suggest an active Helitron in the present-day maize genome.  相似文献   

3.
Eleven chromosomal products of somatic excision of Tc1 transposable elements have been cloned and sequenced. The cloning method did not involve genetic reversion; therefore the products analyzed should be representative. Six empty religated target sites were from excision of one Tc1 element inserted near actin genes on linkage group V; five were from a second Tc1 element inserted elsewhere on the same linkage group. All six products from the first element were identical in sequence to an empty target site from a second strain, indicating excision had been precise. Two of the products from the second element were also precise, whereas the other three contained four extra nucleotides at the point of excision, indicating an imprecise excision. The four nucleotides are the same in all cases and could represent two terminal nucleotides of the transposon plus a two-nucleotide target site duplication. The difference in the ratio of precise to imprecise excision at the two insertion sites suggests a possible chromosomal position effect on the pathway of Tc1 somatic excision.  相似文献   

4.
5.
Abortive gap repair: underlying mechanism for Ds element formation.   总被引:6,自引:0,他引:6       下载免费PDF全文
The mechanism by which the maize autonomous Ac transposable element gives rise to nonautonomous Ds elements is largely unknown. Sequence analysis of native maize Ds elements indicates a complex chimeric structure formed through deletions of Ac sequences with or without insertions of Ac-unrelated sequence blocks. These blocks are often flanked by short stretches of reshuffled and duplicated Ac sequences. To better understand the mechanism leading to Ds formation, we designed an assay for detecting alterations in Ac using transgenic tobacco plants carrying a single copy of Ac. We found frequent de novo alterations in Ac which were excision rather than sequence dependent, occurring within Ac but not within an almost identical Ds element and not within a stable transposase-producing gene. The de novo DNA rearrangements consisted of internal deletions with breakpoints usually occurring at short repeats and, in some cases, of duplication of Ac sequences or insertion of Ac-unrelated fragments. The ancient maize Ds elements and the young Ds elements in transgenic tobacco showed similar rearrangements, suggesting that Ac-Ds elements evolve rapidly, more so than stable genes, through deletions, duplications, and reshuffling of their own sequences and through capturing of unrelated sequences. The data presented here suggest that abortive Ac-induced gap repair, through the synthesis-dependent strand-annealing pathway, is the underlying mechanism for Ds element formation.  相似文献   

6.
The unstable allele sh-m6233 caused by insertion of the transposable element Ds into the sucrose synthase gene of maize, was cloned. The mutation is caused by the insertion of an ˜4 kb DNA segment, consisting of two identical Ds elements of ˜2000 bp length, of which one is inserted into the center of the other in inverted orientation. This structure is, at the level of restriction mapping and partial DNA sequencing, identical to the double Ds element found in a larger insert in the mutant allele sh-m5933. 8 bp of host DNA are duplicated upon insertion. In a revertant, a 6-bp duplication is retained.  相似文献   

7.
We have examined the 28S ribosomal genes of the silkmoth, Bombyx mori, for the presence of insertion sequences. Two types of insertion sequences were found, each approximately 5 kb in length, which do not share sequence homology. Comparison of the nucleotide sequences of the junction regions with the uninserted gene reveals that one type of insertion has resulted in a 14 bp duplication of the 28S coding region at the insertion site. The location of this insertion and the 14 bp duplication are identical to that found in the Type I ribosomal insertion element of Drosophila melanogaster. The second type of insertion element is located at a site corresponding to approximately 75 bp upstream of the first type. The location of this insertion, the variability detected at its 5' junction, and a short region of sequence homology at its 3' junction suggest that it is related to the Type II element of D. melanogaster. This is the first example of a Type II-like rDNA insertion outside of sibling species of D. melanogaster, and the first example of a Type I-like rDNA insertion outside of the higher Diptera.  相似文献   

8.
Several P element insertion and deletion mutations near the 5' end of Drosophila melanogaster RpII215 have been examined by nucleotide sequencing. Two different sites of P element insertion, approximately 90 nucleotides apart, have been detected in this region of the gene. Therefore, including an additional site of P element insertion within the coding region, there are at least three distinct sites of P element insertion at RpII215. Both 5' sites are within a noncoding portion of transcribed sequences. The sequences of four revertants of one P element insertion mutation (D50) indicate that the P element is either precisely deleted or internally deleted to restore RpII215 activity. Partial internal deletions of the P element result in different RpII215 activity levels, which appear to depend on the specific sequences that remain after excision.  相似文献   

9.
Many strains of Bacteroides harbor large chromosomal elements that can transfer themselves from the chromosome of the donor to the chromosome of the recipient. Most of them carry a tetracycline resistance (Tcr) gene and have thus been designated Tcr elements. In the present study, we have used transverse alternating field electrophoresis to show that all but one of the Tcr elements screened were approximately 70 to 80 kbp in size. The exception (Tcr Emr 12256) was 150 to 200 kbp in size and may be a hybrid element. All of the Tcr elements inserted in more than one site, but insertion was not random. The Tcr elements sometimes cotransfer unlinked chromosomal segments, or nonreplicating Bacteroides units (NBUs). Transverse alternating field electrophoresis analysis showed that insertion of NBUs was not random and that the NBUs did not insert near the Tcr element. Although attempts to clone one or both ends of a Tcr element have not been successful, ends of a cryptic element (XBU4422) were cloned previously and shown to be homologous to the ends of Tcr elements. We have obtained DNA sequences of junction regions between XBU4422 and its target from several different insertions. Comparison of junction sequences with target sequences showed that no target site duplication occurred during insertion and that XBU4422 carried 4 to 5 bp of adjacent chromosomal DNA when it excised from the chromosome and inserted in a plasmid. We identified a short region of sequence similarity between one of the ends of XBU4422 and its target site that may be important for insertion. This sequence contained an 8-bp segment that was identical to the recombinational hot spot sequence on Tn21. XBU4422 could exise itself from plasmids into which it inserted. In most cases, the excision left a single additional A behind in the target site, but precise excision was seen in one case.  相似文献   

10.
In the Bacillus thuringiensis strains toxic for the lepidopteran larvae, the delta-endotoxin genes cryIA are frequently found within a composite transposonlike structure flanked by two inverted repeat sequences. We report that these elements are true insertion sequences and designate them IS232. IS232 is a 2,184-bp element and is delimited by two imperfect inverted repeats (28 of 37 bp are identical). Two adjacent open reading frames, overlapping for three codons, span almost the entire sequence of IS232. The potential encoded polypeptides of 50 and 30-kDa are homologous to the IstA and IstB proteins of the gram-negative insertion sequence IS21. The N-terminal part of the 50-kDa polypeptide contains a helix-turn-helix DNA-binding motif. The junctions at the insertion sites of three IS232 elements were analyzed. Each case was different, with 0, 4, or 6 bp of the target DNA being duplicated. Transposition of IS232 in Escherichia coli was demonstrated by using a genetic marker inserted upstream of the two open reading frames.  相似文献   

11.
M. Alleman  J. L. Kermicle 《Genetics》1993,135(1):189-203
The R gene regulates the timing and tissue-specificity of anthocyanin deposition during maize development. The Ac/Ds system of transposable elements was used to induce insertional mutants of the R-sc:124 allele during two cycles of mutagenesis. Of 43 unstable, spotted-aleurone mutants generated, 42 contain inserts of the Ds6 transposable element differing only in the position and orientation of the element. The remaining mutant, r-sc:m1, contained an insert of a Ds element of the approximate size of the Ds1 transposable element. The patterns of somatic variegation of these mutants, resulting from excision of Ds, define a spectrum of phenotypes ranging from sparse to dense variegation. The sparsely variegated mutants produce few germinal revertants but relatively many stable null derivative alleles; densely variegated mutants produce many germinal revertants and few stable null derivatives. Molecular analysis shows that the sparsely variegated alleles are caused by Ds6 insertions in protein coding regions of R-sc:124 whereas the densely variegated mutants result from insertions in introns or in flanking regions of the gene. The excision rate of Ds6 from R, estimated as the proportion of R genomic DNA restriction fragments lacking the element, was uniform regardless of position, orientation or whether the element was inserted in R-sc:124 or another R allele. The excision rate was greater, however, for the mutable alleles involving the Ds element from r-sc:m1. These data indicate that, although the excision rates are uniform for a given Ds element, the somatic and germinal mutability patterns of alleles associated with that element vary widely and depend primarily on the position of the transposable element within coding or noncoding regions of the gene.  相似文献   

12.
G. Baran  C. Echt  T. Bureau    S. Wessler 《Genetics》1992,130(2):377-384
The somatic and germinal behavior of the maize wx-B3 mutation indicates that this Ac allele rarely reverts. Endosperms containing wx-B3 display tiny and infrequent Wx revertant sectors while no significant reversion is detected when wx-B3 pollen is stained with I/KI. Previous studies of other transposable element alleles that revert infrequently have implicated low levels of element excision. Unlike these other alleles, the wx-B3 Ac element is indistinguishable from fully active Ac elements with respect to its structure, and its ability to transpose from the Wx gene or to trans-activate a Ds element. Characterization of somatic and germinal excision events lead us to conclude that excision of the wx-B3 Ac element almost always produces null alleles. Furthermore, the excellent correlation between the position of the wx-B3 mutation on the physical and genetic maps indicates that the Ac insertion is the only lesion of wx-B3. As a result, precise excision of this Ac should restore Wx function. The fact that revertant sectors and pollen grains are rare indicates that precise excision of Ac is also rare. The finding that the wx-B3 reversion frequency is comparable whether wx-B3 is hemizygous or over a wx allele with a wild-type insertion site illustrates a fundamental difference between the excision mechanisms of Ac and Drosophila P elements.  相似文献   

13.
DNA-based transposable elements, or DNA transposons, transpose in a cut-and-paste fashion, involving excision from the chromosome. If this process affects the function of a host gene and the excision rate is high, any gene associated with such an element would clearly be in a genetically "unstable" state, and there are many examples of unstable genes in various organisms. However, none have hitherto been reported in vertebrates. We here document the finding of an unstable mutant gene in the medaka fish, Oryzias latipes, a useful model animal for vertebrate genetics and evolutionary studies. In an inbred strain, excision of the Tol2 element inserted in a pigmentation gene occurs spontaneously, giving rise to different heritable phenotypes and new mutant genes that carry different excision footprint sequences. The phenotypic mutation rate is as high as 2% per gamete, representing a 1000-fold increase from spontaneous mutation rates so far determined with the same organism. With mutations caused by insertion, and then excision, of transposons, one can no longer recognize participation of transposons in their generation. Thus, the impact of DNA transposons on vertebrate genomes may be, and may have been, larger than commonly supposed.  相似文献   

14.
A transgenic tomato line containing between eight and ten copies per genome of an exceptionally active maize transposable element Ac has previously been described. Southern analyses indicated that these elements are somatically active in these plants. In order to characterize further the pattern of somatic transposition in this line, 24 independent Ac insertion events from a single plant were cloned. In 21 cases, Ac inserted into single copy genomic DNA while in three cases Ac inserted into sequences present at two to four copies per genome; none of the insertions occurred into more highly repetitive DNA. The chromosomal locations of 20 insertion sites were determined by RFLP mapping and a pattern of small dispersed clusters emerged. Thirteen of the 20 insertion sites were linked to at least one other insertion site but these were distributed over nine of the 12 tomato chromosomes. Only one Ac insertion was linked to the T-DNA locus. The structural integrity of these Ac elements was examined and no evidence of deletions or other rearrangements suggestive of Ds elements was found. The implications of these findings with respect to the use of Ac as a transposon tag in heterologous species are discussed.  相似文献   

15.
Somatic excision of the Mu1 transposable element of maize.   总被引:8,自引:1,他引:7       下载免费PDF全文
The Mu transposons of the Robertsons's Mutator transposable element system in maize are unusual in many respects, when compared to the other known plant transposon systems. The excision of these elements occurs late in somatic tissues and very rarely in the germ line. Unlike the other plant transposons, there is no experimental evidence directly linking Mu element excision and integration. We have analyzed the excision products generated by a Mu1 transposon inserted into the bronze 1 locus of maize. We find that the excision products or 'footprints' left by the Mu1 element resemble those of the other plant transposable elements, rather than those of the animal transposable element systems. We also find some novel types of footprints resembling recombinational events. We suggest that the Mu1 element can promote intrachromosomal crossovers and conversions near its site of insertion, and that this may be another mechanism by which transposons can accelerate the evolution of genomes.  相似文献   

16.
L. Scott  D. LaFoe    C. F. Weil 《Genetics》1996,142(1):237-246
Mobile elements transposing via DNA intermediates often leave small rearrangements, or ``transposon footprints,' at sites where they excise. Each excision event leaves its own footprint and, at any given site, these vary in size and sequence. Footprint formation involves DNA repair of sequences flanking the element. We have analyzed the footprints formed by a 2-kb Ds element excising from six different sites in exons of the maize waxy (Wx) gene. We find that groups of footprints left at individual sites are surprisingly nonrandom; different excision products predominate consistently at each site. Less frequent footprints left by each insertion appear related to the predominant type. The data suggest that flanking sequences affect the DNA repair processes associated with element excision. Two models have been proposed to explain footprint formation, one featuring a 5' exonuclease and the other featuring hairpin loop formation and an endonuclease. Our data have interesting implications for both these models. Evidence is also presented to support the presence of a separate excision mechanism that can remove Ac/Ds elements without leaving any footprint and that operates in parallel with the footprint-forming mechanism.  相似文献   

17.
The Japanese morning glory has an extensive history of genetic studies. Many mutants in the colors and shapes of its flowers and leaves have been isolated since the 17th century, and more than 200 genetic loci have been localized for the 10 linkage groups. They include over 20 mutable loci, several with variegated flower phenotypes. In a line of Japanese morning glory bearing variegated flowers called flecked, a transposable element of 6.4 kb, termed Tpn1, was found within one of the anthocyanin biosynthesis genes encoding dihydroflavonol-4-reductase (DFR). The 6.4-kb element carries 28-bp perfect terminal inverted repeats, the outer 13 bp being identical to those of the maize transposable element Suppressor-mutator/Enhancer. It is flanked by 3-bp direct repeats within the second intron of the DFR gene, 9 bp upstream of the third exon. When somatic and germinal excision occurs, it produces excision sequences characteristic of plant transposable elements. Cosegregation data of the variegated flower phenotype and the DFR gene carrying Tpn1 indicated that the mutable phenotype is due to excision of Tpn1 from the DFR gene. Sequences homologous to Tpn1 are present in multiple copies in the genome of Japanese morning glory.  相似文献   

18.
A family of novel mobile DNA elements is described, examples of which are found at several independent locations and encode a variety of antibiotic resistance genes. The complete elements consist of two conserved segments separated by a segment of variable length and sequence which includes inserted antibiotic resistance genes. The conserved segment located 3' to the inserted resistance genes was sequenced from Tn21 and R46, and the sequences are identical over a region of 2026 bases, which includes the sulphonamide resistance gene sull, and two further open reading frames of unknown function. The complete sequences of both the 3' and 5' conserved regions of the DNA element have been determined. A 59-base sequence element, found at the junctions of inserted DNA sequences and the conserved 3' segment, is also present at this location in the R46 sequence. A copy of one half of this 59-base element is found at the end of the sull gene, suggesting that sull, though part of the conserved region, was also originally inserted into an ancestral element by site-specific integration. Inverted or direct terminal repeats or short target site duplications, both of which are characteristics of class I and class II transposons, are not found at the outer boundaries of the elements described here. Furthermore, the conserved regions do not encode any proteins related to known transposition proteins, except the DNA integrase encoded by the 5' conserved region which is implicated in the gene insertion process. Mobilization of this element has not been observed experimentally; mobility is implied from the identification of the element in at least four independent locations, in Tn21, R46 (IncN), R388 (IncW) and Tn1696. The definitive features of these novel elements are (i) that they include site-specific integration functions (the integrase and the insertion site); (ii) that they are able to acquire various gene units and act as an expression cassette by supplying the promoter for the inserted genes. As a consequence of acquiring different inserted genes, the element exists in a variety of forms which differ in the number and nature of the inserted genes. This family of elements appears formally distinct from other known mobile DNA elements and we propose the name DNA integration elements, or integrons.  相似文献   

19.
L J Harris  A M Rose 《Plasmid》1989,22(1):10-21
The transposable element Tc1 in the genome of Caenorhabditis elegans var. Bristol strain N2 is very stable. In order to investigate possible causes of Tc1 immobility in this strain 17 individual isolates have been cloned and characterized with regard to their structure and genomic environment. Ten of 16 elements examined had identical restriction maps, and at least 1 of these (#7) showed a high level of somatic excision. Two of the elements had altered restriction sites, 2 had different internal deletions of about 700 bp, 1 had an 89-bp terminal deletion, and 1 a 54-bp insertion. When DNA sequences flanking the N2 Tc1 elements were used as probes in genomic hybridizations, it was found that most N2 elements are located in regions of repetitive DNA. Furthermore when hybridizations to DNA from N2 and var. Bergerac strain B0 were performed, a major band of the same size was observed in both strains. Two flanking sequences identified strain polymorphic sites hP2(IV) and hP3(IV). In at least one of these cases, a rearranged Tc1 was present in the B0 strain at the same location. The fact that all or most of the Tc1 elements are in the same location in N2 and B0 adds support to the hypothesis that the high copy number B0 strain arose from amplification of Tc1 copies in a N2-like strain. The N2 Tc1 elements are highly conserved; however, intact elements had fewer nucleotide changes than the rearranged elements. These results may indicate that the intact Tc1 elements in N2 are functionally active and subject to selective pressure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号