首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
化学合成链球菌蛋白G的C3D基因片段,通过分子生物学的方法对蛋白G(proteinG)的C3[1]片段进行PCR扩增,拼接形成含有两个和三个重复C3片段的重组链球菌蛋白G,C3片段间以链接区D连接,即形成C3DC3和C3DC3DC3的形式,进而克隆到质粒pET21中,在大肠杆菌BL21(DE3)中表达.重组表达的蛋白经过DEAE - Sepharose和IgG- Sepharose纯化,得到纯化的重组蛋白.采用非竞争性酶免疫法对重组蛋白与不同来源IgG的结合常数进行测定,实验结果显示两种重组链球菌蛋白G均可有效地与小鼠、兔及山羊等多种不同来源抗体特异性结合.这些实验结果为下一步研究奠定了基础.  相似文献   

2.
化学合成链球茵蛋白G的C3D基因片段,通过分子生物学的方法对蛋白G(proteinG)的C3片段进行PCR扩增,拼接形成含有两个和三个重复C3片段的重组链球茵蛋白G,C3片段间以链接区D连接,即形成C3DC3和C3DC3DC3的形式,进而克隆到质粒pET21中,在大肠杆菌BL21(DE3)中表达。重组表达的蛋白经过DEAE—Sepharose和IgG—Sepharose纯化,得到纯化的重组蛋白。采用非竞争性酶免疫法对重组蛋白与不同来源IgG的结合常数进行测定,实验结果显示两种重组链球茵蛋白G均可有效地与小鼠、兔及山羊等多种不同来源抗体特异性结合。这些实验结果为下一步研究奠定了基础。  相似文献   

3.
重组SARS冠状病毒M蛋白的表达、纯化及鉴定   总被引:1,自引:0,他引:1  
SARS冠状病毒是人的严重急性呼吸综合征的病原体。根据对其他种类冠状病毒的研究结果 ,膜蛋白 (M蛋白 )是病毒主要的结构蛋白 ,重组M蛋白可被用来作为抗原检测对应冠状病毒的感染和制备疫苗。SARS病毒M蛋白基因克隆到原核表达载体pMAL cRI中 ,利用N端和C端分别融合麦芽糖结合蛋白 (maltosebindingprotein和MxeGyrAinteinCBD的策略 ,在大肠杆菌中初步表达了重组M蛋白 ,并通过Western印迹和质谱对蛋白质进行了鉴定。重组蛋白质经亲和层析得到了部分纯化 ,纯化后的蛋白质将用于功能研究与诊断试剂盒的研制。  相似文献   

4.
人蛋白C cDNA基因的克隆及序列分析   总被引:1,自引:0,他引:1  
为实现人蛋白C cDNA在哺乳动物细胞中的表达以及研究其生物学特性,针对人蛋白C cDNA序列设计引物,运用逆转录聚合酶链反应(RT-PCR)从人胎肝总RNA中钓取人蛋白C cDNA,将其克隆入pIRES neo载体中,通过酶切和PCR鉴定出重组体并进行测序分析。结果表明,获得大小为1386bp的人蛋白C cDNA基因,成功构建人蛋白C cDNA载体pIRES/hPC,为进一步进行人蛋白C cDNA的表达和活性鉴定奠定了基础。  相似文献   

5.
目的:用RP-HPLC方法对注射用重组人尿激酶原制剂蛋白含量进行定量分析。方法:用反相C18柱、0.1%TFA水溶液与0.1%乙腈进行梯度洗脱,280nm波长紫外检测器监测;以重组人尿激酶原同质标准品作为对照品,根据进样量和相应的峰面积建立标准曲线方程,将待测定样品的峰面积代入标准曲线方程,可测得蛋白含量。结果:按照方法学验证要求对此方法进行了专属性、检测限、定量限、线形、精密度(重复性、中间精密度)、准确度(回收率)考察,线性范围为9~27μg,回收率在97%以上,RSD2.0%,完全满足对制剂蛋白的定量需求。结论:本方法准确,适用于注射用重组人尿激酶原成品制剂蛋白定量测定。  相似文献   

6.
为研究蛇毒C型凝集素类蛋白的快速进化机制和结构功能关系 ,使用PCR技术扩增了若干编码C型凝集素类蛋白 β链的cDNA分子以及agkisasinβ的基因组DNA ,并将这些扩增产物进行克隆和测序 .对测序结果与试验过程中的具体条件进行了因果关系分析 ,并且进行点阵图比较和多序列比对 .结果表明 ,可能存在“转录后同源重组”等转录后的事件 ,在蛇毒C型凝集素类蛋白的多样性上起着重要的作用 .对于解释基因数目与蛋白质数目的差异这一后基因组时代的重要问题 ,具有一定的参考价值 .首次报告蛇毒C型凝集素类蛋白的基因组DNA序列 ,其中未发现有内含子  相似文献   

7.
制备16型人乳头瘤病毒mE6Δ/mE7蛋白与I型人单纯疱疹病毒VP22Δ蛋白的治疗型分子内佐剂融合蛋白疫苗,并检测其免疫原性和抗肿瘤相关生物活性。通过克隆HSV-1 VP22Δ及HPV-16 mE6Δ/mE7基因,构建pET28a-VP22Δ-mE6Δ/mE7原核表达载体。重组质粒在Rosetta(DE3)宿主菌中进行诱导表达,表达蛋白经分离、复性后,通过镍离子亲和层析进行纯化,纯化蛋白经SDS-PAGE、Western blot 鉴定,并免疫BalB/C及C57BL/6小鼠,检测其免疫原性和抗肿瘤活性。结果显示,VP22Δ-mE6Δ/mE7蛋白以包涵体形式表达,分子量约为34kDa,表达量约占菌体总蛋白的45%。该蛋白免疫小鼠后血清特异性IgG、特异性淋巴细胞增殖效果及对TC-1致瘤小鼠的肿瘤治疗效果均高于无佐剂单一重组蛋白疫苗。以上结果说明,所获得的重组融合蛋白具有较好的免疫原性和抗肿瘤活性,为治疗型HPV分子内佐剂疫苗的进一步研究奠定了基础。  相似文献   

8.
目的:制备Tropic1808基因重组蛋白的单克隆抗体,并对其生物学特性进行鉴定。方法:用Tropic1808基因重组蛋白作为抗原免疫BALB/C小鼠,取小鼠脾细胞与小鼠骨髓瘤(SP2/0)细胞融合,经ELISA筛选和有限稀释法获得分泌单克隆抗体的细胞株,Western Blot等方法对其生物学特性进行鉴定。结果:获得2株识别Tropic1808基因重组蛋白的单克隆抗体的细胞株Ⅱ4B、Ⅲ4C。WesternBlot法显示该抗体特异性地识别Tropic1808基因重组蛋白;ELISA法测定杂交瘤细胞培养上清及体内成瘤后产生的腹水的抗体效价分别为1:80、1:600;杂交瘤细胞染色体数平均为90-100;亚类鉴定单抗的重链为小鼠IgG1,轻链为κ型。结论:成功地制备了Tropic1808基因重组蛋白的单克隆抗体,为进一步研究Tropic1808基因重组蛋白的功能提供了良好的基础。  相似文献   

9.
从1982年美国批准第一个重组蛋白药物(重组人胰岛素Humulin)上市至今,已过去了四分之一世纪。重组蛋白药物虽仅占全球处方药市场的7%~8%,但却是增长最快的一类。目前,共有82个重组蛋白药物被用于临床,其中“重磅炸弹”15个,占总数的18%。2005年重组蛋白药物销售总额约410亿美元,而其中“重磅炸弹”的销售额合计约270亿美元,占总额的66%。2006年,美国和欧洲批准了第一个肺吸入型胰岛素上市;欧洲批准了第一个由转基因羊生产的重组人抗凝血酶用于临床,并批准了第一个重组蛋白仿制药物上市。重组蛋白药物市场已经从蛹发育为美丽的蝴蝶,但是,这只蝴蝶能够美丽多久,还受到多种因素的制约。本文以美国和欧洲重组蛋白药物市场为主,采用市场细分的方法,从重组蛋白药物种类的销售额入手,分析了市场及研发趋势,将对我们判断市场走向、提供创新思维和制定创新战略有实际的参考价值。  相似文献   

10.
目的将人类PSF基因的不同功能片段定向连入pEGFP—C2质粒,使PSF蛋白的各功能片段与绿色荧光蛋白在HeLa细胞内融合表达,观察其在HeLa细胞中的表达及定位。方法以重组质粒pEGFP—C2-PSF为模板,PCR法扩增出目的基因,将扩增片段双酶切后连接到质粒pEGFP—C2上,构建重组质粒pEGFP—C2-PSF(I—V)。将构建成功的pEGFP—C2-PSF(I—V)质粒脂质体法转染HeLa细胞,Western印迹检测融合蛋白的表达,并在荧光显微镜下观察融合蛋白的定位与分布。结果成功构建质粒pEGFP—C2-PSF(I~V),并在HeLa细胞中实现表达;Western印迹检测到融合蛋白GFP—PSF(I~V);在激光共聚焦显微镜下观察到绿色的融合蛋白表达和定位。结论人类PSF基因的不同功能片段的重组质粒pEG—FP—C2-PSF(I~V)构建成功,可用于标记PSF蛋白的不同功能片段,为进一步研究PSF在信号转导中的作用机制以及其生物学功能奠定基础。  相似文献   

11.
Vitamin K-dependent protein S exists in two forms in plasma, as free protein and in a bimolecular, noncovalent complex with the regulatory complement protein C4b-binding protein (C4BP). The effects of C4BP on the protein Ca cofactor activity of protein S were studied in a plasma system and in a system using purified components from both human and bovine origin. Bovine protein S was found to interact with human C4BP with a 5-fold higher affinity than that observed for the interaction between human protein S and human C4BP. The binding of protein S, from either species, to human C4BP results in the loss of the protein Ca cofactor function. In bovine plasma, protein S could be totally complexed by the addition of human C4BP, with a concomitant total loss of protein Ca cofactor activity. The addition of purified human C4BP to human plasma resulted in only partial loss of protein Ca cofactor activity and the plasma protein S was not completely complexed. Human protein S functioned as a cofactor to human protein Ca, but not to bovine protein Ca, whereas bovine protein S demonstrated very little species specificity and functioned as a cofactor both with human and bovine protein Ca. The species specificity of the protein Ca-protein S interaction was useful in elucidating the effect of C4BP in the plasma system. In the system with purified bovine components, protein S was required for the degradation of factor Va by low concentrations of protein Ca, whereas in the system with human components protein Ca alone, even when added at very low concentrations, exhibited potential to degrade factor Va, and the presence of protein S only enhanced the reaction rate approximately 5-fold. In both these systems, the stimulating effect of protein S on factor Va degradation by protein Ca was completely lost when protein S bound to C4BP.  相似文献   

12.
Protein S and C4b-binding protein (C4BP) form a tight complex (Kd approximately 0.6 nM) the physiologic purpose of which is unknown. The participation of protein S in this complex was investigated using site-specific mutagenesis. Normal recombinant human protein S (rHPS) and five specifically mutated protein S analogs were expressed in transformed human kidney 293 cells and the following properties were characterized: solution-phase C4BP binding, ability to be cleaved by thrombin, ability to act as a cofactor in the activated protein C-catalyzed inactivation of factor Va, and gamma-carboxyglutamic acid content. In some cases, beta-hydroxyaspartic acid plus beta-hydroxyasparagine content was also determined. Binding studies indicated that while clearly important for a high affinity interaction, the amino acid sequence Gly605-Ile614 identified by Walker (Walker, F J. (1989) J. Biol. Chem. 264, 17645-17648) does not account for all the binding energy of the HPS-C4BP interaction. All mutants perturbed in this region or lacking it altogether displayed reduced C4BP binding, and some retained anticoagulant cofactor function. Neither human factor X nor human steroid-binding protein had any measurable ability to compete with plasma HPS for C4BP binding. Furthermore, bovine protein S and a rHPS analog with bovine sequence from Gly597-Trp629 bound to human C4BP with the same affinity as did HPS, and both proteins substituted effectively for HPS as a cofactor for activated protein C in an otherwise human anticoagulation system. Together these results suggest that optimal binding of protein S to C4BP requires the putative alpha-helix Gly605-Ile614, as well as other undetermined regions of protein S, and that the regions of HPS responsible for C4BP binding and activated protein C cofactor function are structurally isolated.  相似文献   

13.
The prototype of the short consensus repeat (SCR)-containing C regulatory protein is of interest in view of its evolutionary significance with regard to the origin of the C regulatory system. Lamprey is an agnathan fish that belongs to the lowest class of vertebrates. Because it does not possess lymphocytes, it lacks Ig and consequently the classical C pathway. We identified an SCR-containing C regulatory protein from the lamprey. The primary structure predicted from the cDNA sequence showed that this is a secretary protein consisting of eight SCRs. This framework is similar to the alpha-chain of C4b-binding protein (C4bp). SCR2 and -3 of human C4bp are essential for C4b inactivation, and this region is fairly well conserved in the lamprey protein. However, the other SCRs of this protein are similar to those of other human C regulatory proteins. The lamprey protein binds to the previously reported lamprey C3b/C3bi deposited on yeast and cleaves lamprey C3b-like C3 together with a putative serum protease. The scheme resembles the C regulatory system of mammals, where factor I and its cofactor inactivate C3b. Unlike human cofactors, the lamprey protein requires divalent cations for C3b-like C3 cleavage. Its artificial membrane-anchored form protects host cells from lamprey C attack via the lectin pathway. Thus, the target of this protein appears to be C3b and/or its family. We named this protein Lacrep, the lamprey C regulatory protein. Lacrep is a member of SCR-containing C regulators, the first of its kind identified in the lowest vertebrates.  相似文献   

14.
Thirteen monoclonal antibodies designated as MFC-1 to MFC-13 were obtained from hybridoma cells cloned after the fusion of mouse myeloma cells with spleen cells of mice immunized with purified human protein C. Studies were made to determine where the antibodies bound to the molecule of protein C and whether they affected the biological actions of protein C. By using the immunoblotting technique, six of these antibodies were shown to bind to the light chain of protein C, and five to the heavy chain of protein C and also activated protein C. The remaining two antibodies bound to neither the light chain nor the heavy chain, though both antibodies bound to the intact protein C. Antibodies specific for the light chain did not bind to the gamma-carboxyglutamic acid-domain. Two of the antibodies specific for the heavy chain (MFC-13 and -1) inhibited the amidolytic activity of activated protein C. The MFC-13 also inhibited the activity of bovine activated protein C, but not that of human Factor IXa, Factor Xa, or thrombin. In addition to these two antibodies, another one for the heavy chain (MFC-10) and two antibodies for the light chain (MFC-9 and -11) inhibited the inactivation of Factor Va by human activated protein C. One of the antibodies which inhibited the enzyme activity (MFC-1) blocked the inhibition of activated protein C by protein C inhibitor. Another one for the heavy chain (MFC-5) inhibited the activation of protein C by thrombin regardless of the presence or absence of thrombomodulin. Based on these results, we have established the positions of some monoclonal antibody-binding sites on the protein C molecule.  相似文献   

15.
Characterization of the baboon erythrocyte C3b-binding protein   总被引:2,自引:0,他引:2  
E from primates demonstrate type 1 CR (CR1) with binding specificities for C3b and C4b. In the present study we characterized the E C3b-binding protein of baboons. We showed that three out of four mouse mAb and one polyclonal antiserum, raised against human E CR1, cross-reacted with baboon E. In addition, one anti-human CR1 mAb (1B4) and a polyclonal anti-human CR1 inhibited the binding of C3b opsonized immune complexes to baboon E. Finally, a mAb to human CR1 (E11) recognized epitopes on E of a variety of nonhuman primates, including baboons. SDS-PAGE analysis of biochemically purified baboon E membrane fractions reactive with E11 demonstrated a 65-kDa protein as a major component. Affinity absorption and elution experiments verified this protein to be E11 reactive as well as a C3b binding protein. E surface radiolabeling, followed by C3i affinity purification, confirmed that this 65-kDa protein is the only C3b-binding protein present on the baboon E membrane. We postulate that the baboon E 65-kDa protein is the equivalent of the human E CR1. In addition, there appear to be antigenic similarities between the baboon E 65-kDa protein and the human E CR1.  相似文献   

16.
In this study, we analyze the amino acid pairs in human protein C precursor to determine which amino acid pairs are more susceptible to 71 variants from missense mutant human protein C precursor. The results show 85.92% of 71 variants occur at randomly unpredictable amino acid pairs accounting for 61.96% of amino acid pairs in protein C.  相似文献   

17.
We have used normal human monocytes as a model system to begin elucidating the signal transduction mechanism associated with the IL-3R. Normal human monocytes deprived of human serum and CSF become quiescent in vitro. Stimulation of these cells with rIL-3 induces expression of the c-jun protooncogene, as detected by Northern blotting of total monocyte RNA. This protooncogene is also induced in these cells by phorbol ester through direct stimulation of protein kinase C. Concentrations of the protein kinase C inhibitor I-(5-isoquindinyl-sulfonyl)-2 methylpiperazine (H-7) between 30 and 100 microM (5-20 x Ki) inhibit this induction by phorbol ester. The same concentration-range of H-7 completely inhibited the induction of c-jun by human IL-3. A structural analog of H-7 designated HA-1004 preferentially inhibits cyclic nucleotide-dependent protein kinase rather that protein kinase C. HA-1004 at 5 to 20 x Ki did not inhibit IL-3-induced c-jun mRNA accumulation. Further 30 microM genistein that is an effective inhibitor of cellular tyrosine kinases did not inhibit IL-3-induced c-jun expression. Immunoprecipitation of lysates from [32P]orthophosphate labeled cells with antiphosphotyrosine polyclonal antibody showed that IL-3-stimulated phosphorylation of a 70-kDa protein and a 110-kDa protein on tyrosine, and that these protein phosphorylations were completely inhibited by 30 microM genistein. As further confirmation that IL-3 is stimulating protein kinase C in human monocytes we have found that IL-3 stimulates phosphorylation of the unique protein kinase C substrate myristoylated alanine-rich C kinase substrate in these cells. It is therefore likely that the interaction of IL-3 with its receptor generates diacylglycerol and stimulates the Ca2+/phospholipid-dependent protein kinase C.  相似文献   

18.
A cDNA encoding a membrane-associated complement (C) regulatory protein was identified here for the first time in an oviparous vertebrate, chicken. This protein, named Cremp, possessed five short consensus repeats (SCRs) and one SCR-like domain followed by a transmembrane domain and a cytoplasmic tail. SCR1/SCR2 of Cremp were 43.6% identical with SCR2/SCR3 of human decay-accelerating factor (CD55), and SCR3/SCR4 were 45.3% identical with those of human membrane cofactor protein (CD46). Cremp is likely to be an ancestral hybrid protein of human decay-accelerating factor and membrane cofactor protein rather than a homolog of rodent C receptor 1-related protein y, which structurally resembles human CR1 (CD35). Chinese hamster ovary cells transfected with Cremp were efficiently protected from chicken C but not from human or rabbit C in both classical and alternative pathways. Thus, chicken Cremp is a membrane C regulator for cell protection against homologous C. Cremp mRNA was seen as a doublet comprised of a faint band of 2.2 kb and a thick band of 3.0 kb on RNA blotting analysis. An Ab against chicken Cremp recognized a single band of 46.8 kDa on immunoblotting. mRNA and protein of Cremp were ubiquitously expressed in all chicken organs tested. Minute amounts of dimer were present in some tissues. Surface expression of Cremp was confirmed by flow cytometry and immunofluorescence analysis. These results suggested that even in nonmammals a C regulatory membrane protein with ubiquitous tissue distribution should be a prerequisite for protection of host cells from homologous C attack.  相似文献   

19.
Using rapid amplification of cDNA ends, a cDNA encoding a novel splice variant of the human C alpha catalytic subunit of cAMP-dependent protein kinase (PKA) was identified. The novel isoform differed only in the N-terminal part of the deduced amino acid sequence, corresponding to the part encoded by exon 1 in the previously characterized murine C alpha gene. Sequence comparison revealed similarity to an ovine C alpha variant characterized by protein purification and micropeptide sequencing, C alpha-s, identifying the cloned human cDNA as the C alpha-s isoform. The C alpha-s mRNA was expressed exclusively in human testis and expression in isolated human pachytene spermatocytes was demonstrated. The C alpha-s protein was present in ejaculated human sperm, and immunofluorescent labeling with a C alpha-s-specific antibody indicated that C alpha-s was localized in the midpiece region of the spermatozoon. The majority of C alpha-s was particulate and could not be released from the sperm midpiece by cAMP treatment alone. Furthermore, detergent extraction solubilized approximately two-thirds of the C alpha-s pool, indicating interaction both with detergent-resistant cytoskeletal and membrane structures. In addition, we recently identified the regulatory subunit isoforms RI alpha, RII alpha, and an A-kinase anchoring protein, hAKAP220 in this region in sperm that could target C alpha-s. This novel C alpha-s splice variant appeared to have an independent anchor in the human sperm midpiece as it could not be completely solubilized even in the presence of both detergent and cAMP.  相似文献   

20.
An enzyme was purified from human parotid saliva that can cleave a single arginine-glycine peptide bond between residues 106 and 107 in human salivary proline-rich protein C, hereby giving rise to another proline-rich protein A, which is also found in saliva. The enzyme was purified 2400-fold. It cleaved salivary protein C at the rate of 59 micrograms of protein/h per microgram of enzyme and had amino acid composition, molecular weight and inhibition characteristics similar to those reported for human salivary kallikrein. Confirmation that the enzyme was kallikrein was demonstrated by its kinin-generating ability. Histochemical evidence indicates that a post-synthetic cleavage of protein C by kallikrein would have to take place during passage of saliva through the secretory ducts. In secreted saliva, cleavage of salivary protein C can only be observed after 72 h incubation. In addition, there is no effect of salivary flow rate on the relative amounts of proteins A and C in saliva. On the basis of the experimental observations, it is proposed that in vivo it is unlikely that kallikrein secreted from ductal cells plays a significant role in converting protein C into protein A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号