首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While wetlands have been converted into farmlands, large amounts of farmlands are now being abandoned, and this novel habitat is expected to be inhabited by species which depend on wetlands. Here we examined the effects of habitat and landscape variables on the densities of wetland bird species in abandoned farmlands. We surveyed birds in abandoned farmlands with different patch area, habitat, and landscape variables in Kushiro district, eastern Hokkaido, northern Japan. We also surveyed birds in 15 ha of the remaining wetlands as a reference habitat. We used abundance-based hierarchical community models (HCMs) to estimate patch-level estimates of abundance of each species based on sampling plots data that only partially covered the studied patches. We observed 14 wetland species and analyzed them with HCMs. Abandoned farmland patch areas had significant positive effects on the densities of two species. Tree densities and shrub coverage exerted positive and negative effects on some species. Amounts of surrounding wetland/grassland had positive effects on many species. Ensemble of species-level models suggested that 24.7 and 10.6 ha of abandoned farmlands would be needed to harbor a comparable total abundance and species richness in 15-ha wetlands, respectively. These required amounts can be increased/decreased depending on the covariates. The use of HCMs allows us to predict species- and community-level responses under varied conditions based on incomplete sampling data. A quantity of 1.6 times larger areas of abandoned farmlands may be required to restore wetland bird communities in eastern Hokkaido.  相似文献   

2.
Abstract Understanding patterns and processes of habitat change is essential for managing and conserving forest fragments in anthropogenically altered landscapes. Digitized aerial photographs from 1944 and 1996 were examined for changes to the indigenous forest landscape in the Karkloof‐Balgowan archipelago in KwaZulu–Natal, South Africa. Attributes relating to proximate land‐use, patch shape, isolation and position in the landscape were used to determine putative causes of forest change. The total change in forest area was ?5.7% (forest covered 6739 ha in 1996). This is contrasted with previous reports for the period 1880–1940 that estimated change in total forest area of up to ?80%. Attrition was the predominant process of forest transformation between 1944 and 1996. Despite little overall change in forest area, 786 mostly small (<0.5 ha) forest patches were lost from the landscape, leaving 1277 forest patches in 1996. An increase in patch isolation, but no change in patch cohesion accompanied the changes in forest area. Ignoring patches that were eliminated, 514 patches decreased in area. This was partly a function of patch size, but the conversion of natural grassland to commercial plantation forestry in the matrix also influenced forest decline. Their small size and irregular shape caused forest patches in the region to be vulnerable to edge effects. Core area declined in a negative exponential way with increasing edge width and the total area of edge habitat exceeded that of core habitat at an edge width of only 50 m. Nevertheless, total core area decreased by only 2% (65 ha) between 1944 and 1996 because most of the eliminated patches were small and contained no core area. The large Karkloof forest (1649 ha) is a conservation priority for forest interior species, but the ecological role and biodiversity value of small forest patches should not be overlooked.  相似文献   

3.
Forest distribution and site quality in southern Lower Michigan, USA   总被引:1,自引:0,他引:1  
Aim The primary objectives of this research were to determine whether current forest patches in southern Lower Michigan are a proportionate sample of forest types present in the pre‐settlement cover and, if not, to establish the degree to which certain types are over‐ or under‐represented in the contemporary landscape. This determination is useful not only because any conservation policy designed to restore the present forest to pre‐settlement biodiversity through preservation of existing stands requires an accurate understanding of the degree to which these stands in sum mirror past forest diversity, but also because it fills a gap in the existing ecological literature. Location The research was conducted within four counties in southern Lower Michigan, USA (Ionia, Livingston, Tuscola and Van Buren). Methods Soil survey data were used to characterize the range of site quality across the study area and the areal extent of each quality category. The geographic locations of all current forest patches in each county were then determined from land use maps and were overlaid on the site quality classification. This procedure yielded the observed distribution of forest relative to site quality. The expected areal extent of forest within each category of site quality on the landscape was determined by assuming a random distribution and multiplying the total area of forestland by the proportion of landscape within each category of site quality. This procedure calculated the expected distribution of forest in terms of site quality by dividing the total forestland among the landscape types, relative to how well represented the landscape types were. The observed and expected distributions were then compared both in terms of absolute difference and normalized difference. Results Overall results indicate that categories of site quality that support a large proportion of the present‐day forest patches are generally composed of agriculturally inferior soil and are over‐represented with forest. Surviving or reforested tracts are concentrated on inferior types of habitat. Main conclusions Results suggest that the present‐day forest patches may not be a proportionate sample of the primeval forest. Rather, they are concentrated on agriculturally‐inferior (coarse‐textured, steeply‐sloped, or poorly‐drained) types of habitat. Unless these stands are for some unknown reason compositionally richer than their pre‐settlement counterparts, these results suggest that the existing forest resource in southern Lower Michigan is an inferior (biased) sample of the primeval cover. Furthermore, because forest types associated with the most heavily‐developed agricultural sites have apparently suffered the most loss of habitat, species more characteristic of these types may have experienced a greater decline in overall importance across the landscape. This study suggests that policy aimed at increasing the potential biodiversity of the area should include provisions that encourage the redevelopment of forest habitat on those sites no longer supporting their equal share of forest.  相似文献   

4.
The concurrent discussions of landscape scale restoration among restoration ecologists, and of historic disturbance pattern as a guideline for forest management among forest scientists, offer a unique opportunity for collaboration between these traditionally separated fields. The objective of this study was to review the environmental history, early restoration projects, and current plans to restore landscape patterns at broader scales in the 450,000 ha northwest Wisconsin Pine Barrens. The Pine Barrens offer an example of a landscape shaped by fire in the past. In northwestern Wisconsin historically the barrens were a mosaic of open prairie, savanna, and pine forests on very poor, sandy soils. The surrounding region of better soils was otherwise heavily forested. Six restoration sites have been managed since the middle of this century using prescribed burns to maintain the open, barrens habitat. However, these sites are not extensive enough to mimic the shifting mosaic of large open patches previously created by fire. Extensive clear‐cuts may be used as a substitute for these large fire patches so that presettlement landscape patterns are more closely approximated in the current landscape. We suggest that such silvicultural treatments can be suitable to restore certain aspects of presettlement landscapes, such as landscape pattern and open habitat for species such as grassland birds. We are aware that the effects of fire and clear‐cuts differ in many aspects and additional management tools, such as prescribed burning after harvesting, may assist in further approximating the effect of natural disturbance. However, the restoration of landscape pattern using clear‐cuts may provide an important context for smaller isolated restoration sites even without the subsequent application of fire, in this formerly more open landscape.  相似文献   

5.
We evaluated landscape‐scale forest restoration treatment implementation and effectiveness in meeting objectives in a ponderosa pine forest at Mt. Trumbull, Arizona, U.S.A. The goal of the project was to alter forest structure by thinning and burning to more closely resemble forest conditions prior to Euro‐American settlement in 1870. We measured 117 permanent plots before (1996/1997) and after (2003) treatments. The plots were evenly distributed across the landscape (approximately 1,200 ha), about half of which was an untreated control. We evaluated treatment implementation and effectiveness based on 1870 structure and/or goals outlined by managers. The success of treatment implementation varied: about 94% of the area originally planned for restoration was treated in some manner by 2003, but only 70% received the full planned treatment (thin and burn). Although density of ponderosa pines >2.5 cm was reduced significantly by 66% from approximately 429 pines/ha to approximately 146 pines/ha in the treated area, the targeted residual density was exceeded by 111–256% (all plots) or 10–85% (thinned and burned plots). Thirteen percent of the pre‐settlement pines died in the treated area by 2003, but 9% percent also died in the control, indicating that pre‐settlement pines in untreated areas were nearly as vulnerable as those exposed to restoration treatments. Large snags increased 45%, and 65% of logs >50 cm were retained, achieving implementation goals. Although restoration treatments were not implemented totally to specifications, they were effective in attaining the overall project goal of restoring more open forest structure while preserving more than 75% of the pre‐settlement pines. Canopy fuel loads were substantially reduced, allowing for the reintroduction of surface fires.  相似文献   

6.
The Landscape Ecology of Tropical Secondary Forest in Montane Costa Rica   总被引:4,自引:0,他引:4  
E. H. Helmer 《Ecosystems》2000,3(1):98-114
Multinomial logistic models of land use/land cover in montane Costa Rica and landscape pattern analysis showed that relative to agriculture, secondary forest occurred closer to old-growth forest, further from roads, in forest reserves, and at higher elevations. Collinearity between explanatory variables yielded simple multivariate models; proportion of surrounding old growth predicted secondary forest most accurately. An old-growth matrix [mean patch size (MPS) 24.5 ha], located mainly within protected areas, dominated elevations greater than 2500 m. A matrix of agriculture (MPS 23.5 ha), with smaller patches (approximately 9 ha) of secondary forest and old growth, dominated elevations from 1500 to 2500 m. Combining secondary forest with old growth decreased forest patch number and increased MPS from 7.3 to 37.1 ha. I concluded that: (a) secondary forest pattern is nonrandom, so ancillary data will aid its mapping with satellite imagery. The variables elevation, agriculture distance, road distance, and population density distinguished secondary forest from old growth with 74% accuracy; (b) socioeconomic and biological forces probably interact to create these secondary forest patterns; and (c) the strong association between secondary forest and old growth supports the concept that tropical forest recovery depends on the landscape structure of remnant forest. Received 16 February 1999; accepted 20 August 1999.  相似文献   

7.
Landscape change and habitat fragmentation is increasingly affecting forests worldwide. Assessments of patterns of spatial cover in forests over time can be critical as they reveal important information about landscape condition. In this study, we assessed landscape patterns across the Mountain Ash (Eucalyptus regnans) and Alpine Ash (Eucalyptus delegatensis) forests in the Central Highlands of Victoria between 1999 and 2019. These forests have experienced major disturbance over the past 20 years through a major fire (in 2009) and extensive industrial logging. We found that around 70% and 65% of the Mountain Ash and Alpine Ash forest areas, respectively, were either disturbed or within 200 m of a disturbed area. Inclusion of planned logging increased these disturbance categories to 72% and 70%, respectively. We also found that the isolation of Mountain Ash core areas (patches of undisturbed forest >1000 ha) increased significantly (P < 0.05) over our study period, with the proximity between disturbed areas conversely increasing significantly (P < 0.05). This means that continued and planned disturbance through industrial logging will have an amplified adverse effect on remaining undisturbed ash forest patches, which will become smaller and more dispersed across the landscape.  相似文献   

8.
Sustainable forest management is based on functional relationships between management actions, landscape conditions, and forest values. Changes in management practices make it fundamentally more difficult to study these relationships because the impacts of current practices are difficult to disentangle from the persistent influences of past practices. Within the Atlantic Northern Forest of Maine, U.S.A., forest policy and management practices changed abruptly in the early 1990s. During the 1970s-1980s, a severe insect outbreak stimulated salvage clearcutting of large contiguous tracts of spruce-fir forest. Following clearcut regulation in 1991, management practices shifted abruptly to near complete dependence on partial harvesting. Using a time series of Landsat satellite imagery (1973-2010) we assessed cumulative landscape change caused by these very different management regimes. We modeled predominant temporal patterns of harvesting and segmented a large study area into groups of landscape units with similar harvest histories. Time series of landscape composition and configuration metrics averaged within groups revealed differences in landscape dynamics caused by differences in management history. In some groups (24% of landscape units), salvage caused rapid loss and subdivision of intact mature forest. Persistent landscape change was created by large salvage clearcuts (often averaging > 100 ha) and conversion of spruce-fir to deciduous and mixed forest. In groups that were little affected by salvage (56% of landscape units), contemporary partial harvesting caused loss and subdivision of intact mature forest at even greater rates. Patch shape complexity and edge density reached high levels even where cumulative harvest area was relatively low. Contemporary practices introduced more numerous and much smaller patches of stand-replacing disturbance (typically averaging <15 ha) and a correspondingly large amount of edge. Management regimes impacted different areas to different degrees, producing different trajectories of landscape change that should be recognized when studying the impact of policy and management practices on forest ecology.  相似文献   

9.
Managing the pattern of forest harvest: lessons from wildfire   总被引:1,自引:0,他引:1  
Managing forests for sustainable use requires that both the biological diversity of the forests and a viable forest industry be maintained. A current approach towards maintaining biological diversity is to pattern forest management practices after those of natural disturbance events. This paradigm hypothesizes that ecological processes will be maintained best where active management approximates natural disturbance events. The forest management model now used in most sub-boreal and boreal forests calls for regularly dispersed clearcuts no greater than 60–100 ha in size. However, the spatial characteristics of the landscape produced by this model are distinctly different from the historic pattern generated by wildfire, which was heretofore the dominant stand-replacing process in these forests. Wildfire creates a more complex landscape spatial pattern with greater range in patch size and more irregular disturbance boundaries. Individual wildfires are often over 500 ha but leave patches of unburned forest within them. The combination of these attributes is not present in recent clearcuts. Allowing a proportion of larger (i.e.>500ha) harvest units may provide distinct economic advantages that could outweight the opportunity costs of leaving some patches of forest behind. For the forest type examined, further evaluation of modelling forest harvest patterns more closely after the patterns created by wildfire is required as it may achieve a good balance and strike a suitable compromise between certain ecological and economic objectives of sustainable development.  相似文献   

10.
Questions: What are the species composition and species and stem densities of liana communities in tropical landscapes of different deforestation levels? Which spatial attributes (forest cover, patch area, shape and isolation) have the strongest influence on liana communities in these landscapes? Location: Forty‐five rainforest patches in Los Tuxtlas Biosphere Reserve, Mexico. Methods: In three landscapes with different deforestation levels (HDL=4%; IDL=11%; and LDL=24% of remaining forest cover) liana communities (DBH ≥2.5 cm) were characterized in 15 randomly selected patches per landscape (10 50 m × 2 m transects per patch=0.1 ha), and evaluated the effects of patch area, shape and isolation on liana species and stem density (number of species and stems per 0.1 ha). Results: A total of 64 taxa and 24 families were sampled. Species composition differed highly among landscapes, with HDL being the most dissimilar landscape. The response of lianas to landscape spatial pattern differed significantly among landscapes. Proximity to villages had a strong positive effect on species and stem densities in LDL and IDL. There was a sharp decrease in liana stem density in HDL, with four patches (27%) found to be unoccupied by lianas. Conclusions: Fragmentation may have a positive effect on lianas, partly because of edge effects. This positive effect seems to be limited by the proportion of remaining forest cover in the landscape, as the liana communities had collapsed in the most deforested landscape.  相似文献   

11.
We censused breeding birds for three years in natural landscape mosaics of virgin old-growth spruce forest and mire in a large protected forest area in northern Sweden Twenty forest patches, ranging from 0 2 to 17 8 ha in size, were selected in two matrix types, dominated by forest and mire, respectively Patches were very similar with regards to habitat features There was a strong effect of patch area on species richness, but no effect of matrix type Standardization of species richness by rarefaction revealed that small patches (<5 ha) had fewer and large patches (>10 ha) more species than expected Overall distribution of species across patches showed a highly significant nested pattern, indicating that a few habitat generalists occupy all size classes, whereas more demanding species avoid small patches regardless of landscape composition Individual species tended to be distributed evenly across patch classes and no significant edge effect in terms of density of birds was found Our results have bearings on actions to preserve avian diversity in northern boreal forests small patches (<5 ha) provide habitat only for habitat generalists, and therefore larger (>10 ha) patches should be preserved  相似文献   

12.
For conservation purposes, it is important to design studies that explicitly quantify responses of focal species to different land management scenarios. Here, we propose an approach that combines the influence of landscape matrices with the intrinsic attributes of remaining habitat patches on the space use behavior of woodland caribou (Rangifer tarandus caribou), a threatened subspecies of Rangifer. We sought to link characteristics of forest remnants and their surrounding environment to caribou use (i.e., occurrence and intensity). We tracked 51 females using GPS telemetry north of the Saguenay River (Québec, Canada) between 2004 and 2010 and documented their use of mature forest remnants ranging between 30 and ~170 000 ha in a highly managed landscape. Habitat proportion and anthropogenic feature density within incremental buffer zones (from 100 to 7500 m), together with intrinsic residual forest patch characteristics, were linked to caribou GPS location occurrence and density to establish the range of influence of the surrounding matrix. We found that patch size and composition influence caribou occurrence and intensity of use within a patch. Patch size had to reach approximately 270 km2 to attain 75% probability of use by caribou. We found that small patches (<100 km2) induced concentration of caribou activities that were shown to make them more vulnerable to predation and to act as ecological traps. Woodland caribou clearly need large residual forest patches, embedded in a relatively undisturbed matrix, to achieve low densities as an antipredator strategy. Our patch‐based methodological approach, using GPS telemetry data, offers a new perspective of space use behavior of wide‐ranging species inhabiting fragmented landscapes and allows us to highlight the impacts of large scale management. Furthermore, our study provides insights that might have important implications for effective caribou conservation and forest management.  相似文献   

13.
Montane tropical cloud forests, with their complex topography, biodiversity, high numbers of endemic species, and rapid rates of clearing, are a top global conservation priority. However, species distributions at local and landscape scales in cloud forests are still poorly understood, in part because few regions have been surveyed. Empirical work has focused on species distributions along elevation gradients, but spatial variation among forests at the same elevation is less commonly investigated. In this study, the first to compare tree communities across multiple Andean cloud forests at similar elevations, we surveyed trees in five ridge‐top forest reserves at the upper end of the ‘mid‐elevation diversity bulge’ (1900–2250 masl) in the Intag Valley, a heavily deforested region in the Ecuadorian Andes. We found that tree communities were distinct in reserves located as close as 10 to 35 km apart, and that spatially closer forests were not more similar to one another. Although larger (1500 to 6880 ha), more intact forests contained significantly more tree species (108–120 species/0.1 ha) than smaller (30 to 780 ha) ones (56–87 species/0.1 ha), each reserve had unique combinations of more common species, and contained high proportions of species not found in the others. Results thus suggest that protecting multiple cloud forest patches within this narrow elevational band is essential to conserve landscape‐level tree diversity, and that even small forest reserves contribute significantly to biodiversity conservation. These findings can be applied to create management plans to conserve and restore cloud forests in the Andes and tropical montane cloud forests elsewhere.  相似文献   

14.
Determining the capacity of small forest remnants to support biodiversity is of critical importance, especially in the tropics where high rates of land conversion coincide with extraordinarily high species richness and endemism. Using fruit-baited traps, we conducted rapid evaluations in 1993 and 1994 of the forest butterfly diversity of seven small patches (3–30 ha) and a single remaining large patch (227 ha) of Costa Rican mid-elevation moist forest. Our results suggest that even recently isolated 20–30 ha fragments of primary forest retain surprisingly depauperate butterfly faunas relative to that supported by the 227 ha patch only 0.5–1.0 km away. If forest butterflies are an index of the diversity of small-bodied organisms in general, preservation of the latter may require unexpectedly large patches. In 1994 we also surveyed a 16 ha botanical garden, situated between and contiguous to both the 227 ha patch and an exceptionally species-rich 25 ha patch. In the garden, we discovered adults of many butterfly species associated with forest interior, suggesting that even heavily managed systems of largely exotic plants (such as agricultural systems) could be designed to serve as corridors for butterflies and perhaps some other groups of organisms. We discuss some implications for a planned restoration of biotic connections between lowland and montane forests in southern Costa Rica.  相似文献   

15.
Effective wildlife management requires an understanding of how individuals select environmental factors, although few studies assess how habitat selection may differ over time or between sexes. During the post-breeding period (15 May to 1 Sep), we tracked 146 male American woodcock (Scolopax minor) in Rhode Island, USA, from 2010–2021 to assess how habitat selection varied over time, and 17 females and 51 males during the final 2 years of the study to document sex-specific differences in habitat selection. Males generally had smaller home ranges (35.0 ± 10.7 [margin of error] ha) and preferred habitat mosaics that consisted of forested wetlands, young forest patches, areas of deciduous forest, moist soils with gentle slopes, and riparian corridors. We detected subtle differences between sexes in selection for wetland young forest, upland young forest, percent slope, distance to upland young forest, distance to streams, and distance to moist soils. During 2020–2021, females tended to have larger home ranges (78.7 ± 46.4 ha) than males (35.0 ± 10.7 ha) and more strongly selected sites closer to riparian corridors, while males selected areas that were closer to upland young forest with flatter slopes than the available surrounding landscape. Such sex-specific differences in habitat selection may be related to males and females prospecting for potential breeding sites during this post-breeding period for the following spring. We used the top-ranked habitat selection models for males and females to produce a spatially explicit state-wide map that identifies low-to-high likelihood of use areas that can be used to guide forest management decisions in southern New England to maximize benefits for American woodcock.  相似文献   

16.
Although open-cup nesting birds generally face increased risk of nest depredation from forest edge predators and brood parasites in fragmented temperate landscapes, little information exists to assess such risks in tropical birds. We compared nesting success of real birds' nests in large and small forest fragments to a control site in Caribbean lowland wet forest of Costa Rica. Pooling across species, nesting success was significantly greater in unfragmented forest than in either small, isolated fragments or the La Selva Biological Reserve, which is at the tip of a forest 'peninsula' embedded in a largely deforested landscape. Nesting success in isolated fragments did not vary according to distance from edge, suggesting that predators in fragments act throughout these forest patches. The case for increased nest predation as a plausible mechanism to explain the documented decline of forest interior bird populations in this fragmented tropical landscape is enhanced by a simple demographic model that suggests nesting success is likely too low to maintain populations at La Selva and in the fragments. The fact that the large (> 1000 ha) La Selva forest reserve is experiencing nest predation rates similar to those in much smaller fragments is cause for concern. Our results make a strong case for additional studies to document the identities of nest predators in both fragmented and unfragmented forests in such tropical forest landscapes.  相似文献   

17.
Summary  Donaghy's Corridor is a 1.2 km × 100 m planting of rain forest species on the Atherton Tableland, Queensland, designed to link an isolated fragment (498 ha) to adjacent continuous forest (80 000 ha). Vegetation and fauna monitoring commenced immediately after the linkage was completed. Vegetation surveys showed 119 plant species established in the linkage in 3 years, and 35 of these were not known to occur within the extant linkage either as planted stock or as natural individuals existing prior to project commencement. There were differences between the fauna trapped within the restoration, adjacent open pasture habitats, forest interior sites and forest edge sites. Differences likely reflect variation in species habitat preferences and the habitat suitability of the planted vegetation. Now over 10 years old, Donaghy's Corridor has developed a complex forest structure, with the tallest planted stems exceeding 20 m in height. This feature article provides information about the planning, implementation and monitoring of the linkage, and shows how restoring landscape and ecological connectivity can be a locally effective strategy to counter forest fragmentation.  相似文献   

18.
热带森林中的斑块动态与物种多样性维持   总被引:11,自引:1,他引:10  
斑块作为景观要素之一,直接到景观结构的空间格局及其内部各要素之间的相互关系,其动态也将导致景观格局的变化。异质性的斑块在自然森林中是普遍存在的,这就是说,顶极森林中仍然存在着由不同种类或不同生长时期的植物种群组成的森林斑块。由自然或人为干扰所驱动的森林生长循环导致敢这些斑块在空间上的镶嵌,对于持定的地域片段,也导致了不同生长时期的森林斑块的周期性循环。在热带森林中,森林的生长循环由林窗期(gap  相似文献   

19.
Habitat restoration is often implemented to mitigate the negative effects of intensive forestry on biodiversity. It may be increasingly adopted in future to alleviate additional negative effects of climate change. Ascertaining the restoration effort needed to fulfill project goals is difficult. Insights may be gained through simulating the effects of restoration efforts on landscape dynamics through time. Here we used a spatially explicit landscape simulation model to simulate the effects of different restoration efforts on forest landscapes in Sweden to assess the level of mitigation that is needed to allow viable populations of the locally critically endangered White‐backed Woodpecker (Dendrocopos leucotos); an umbrella species whose protection may serve the protection of a range of other species. Based on the goals of the protection plan for the species, which reflect its habitat requirements, we evaluated which of several restoration scenarios could fulfill goals with respect to (1) the amount of deciduous forest; (2) the amount of dead wood; and (3) the age of the forest. We found that whereas it may be relatively easy and quick to acquire high levels of dead wood, increasing the proportions of deciduous forest and of old forests require considerably more time and effort. Also, current management actions would not be sufficient to create the required amount of habitat to conserve the White‐backed Woodpecker in our study region. Simulations like ours can provide valuable information about the levels of restoration needed through time to fulfill project goals and may prevent wasting valuable resources, time, effort, and money.  相似文献   

20.
Fragmentation of Continental United States Forests   总被引:11,自引:1,他引:10  
We report a multiple-scale analysis of forest fragmentation based on 30-m (0.09 ha pixel−1) land-cover maps for the conterminous United States. Each 0.09-ha unit of forest was classified according to fragmentation indexes measured within the surrounding landscape, for five landscape sizes including 2.25, 7.29, 65.61, 590.49, and 5314.41 ha. Most forest is found in fragmented landscapes. With 65.61-ha landscapes, for example, only 9.9% of all forest was contained in a fully forested landscape, and only 46.9% was in a landscape that was more than 90% forested. Overall, 43.5% of forest was located within 90 m of forest edge and 61.8% of forest was located within 150 m of forest edge. Nevertheless, where forest existed, it was usually dominant—at least 72.9% of all forest was in landscapes that were at least 60% forested for all landscape sizes. Small (less than 7.29 ha) perforations in otherwise continuous forest cover accounted for about half of the fragmentation. These results suggest that forests are connected over large regions, but fragmentation is so pervasive that edge effects potentially influence ecological processes on most forested lands. Received 22 October 2001; accepted 30 April 2002.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号