首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
In kinetoplastids spliced leader (SL) RNA is trans-spliced onto the 5' ends of all nuclear mRNAs, providing a universal exon with a unique cap. Mature SL contains an m(7)G cap, ribose 2'-O methylations on the first four nucleotides, and base methylations on nucleotides 1 and 4 (AACU). This structure is referred to as cap 4. Mutagenized SL RNAs that exhibit reduced cap 4 are trans-spliced, but these mRNAs do not associate with polysomes, suggesting a direct role in translation for cap 4, the primary SL sequence, or both. To separate SL RNA sequence alterations from cap 4 maturation, we have examined two ribose 2'-O-methyltransferases in Trypanosoma brucei. Both enzymes fall into the Rossmann fold class of methyltransferases and model into a conserved structure based on vaccinia virus homolog VP39. Knockdown of the methyltransferases individually or in combination did not affect growth rates and suggests a temporal placement in the cap 4 formation cascade: TbMT417 modifies A(2) and is not required for subsequent steps; TbMT511 methylates C(3), without which U(4) methylations are reduced. Incomplete cap 4 maturation was reflected in substrate SL and mRNA populations. Recombinant methyltransferases bind to a methyl donor and show preference for m(7)G-capped RNAs in vitro. Both enzymes reside in the nucleoplasm. Based on the cap phenotype of substrate SL stranded in the cytosol, A(2), C(3), and U(4) methylations are added after nuclear reimport of Sm protein-complexed substrate SL RNA. As mature cap 4 is dispensable for translation, cap 1 modifications and/or SL sequences are implicated in ribosomal interaction.  相似文献   

2.
3.
The 5' end of kinetoplastid mRNA possesses a hypermethylated cap 4 structure, which is derived from standard m7GpppN (cap 0) with additional methylations at seven sites within the first four nucleosides on the spliced leader RNA. In addition to TbCe1 guanylyltransferase and TbCmt1 (guanine N-7) methyltransferase, Trypanosoma brucei encodes a second cap 0 forming enzyme. TbCgm1 (T. brucei cap guanylyltransferase-methyltransferase) is a novel bifunctional capping enzyme consisting of an amino-terminal guanylyltransferase domain and a carboxyl-terminal methyltransferase domain. Recombinant TbCgm1 transfers the GMP to spliced leader RNA (SL RNA) via a covalent enzyme-GMP intermediate, and methylates the guanine N-7 position of the GpppN-terminated RNA to form cap 0 structure. The two domains can function autonomously in vitro. TbCGM1 is essential for parasite growth. Silencing of TbCGM1 by RNA interference increased the abundance of uncapped SL RNA and lead to accumulation of hypomethylated SL RNA. In contrast, silencing of TbCE1 and TbCMT1 did not affect parasite growth or SL RNA capping. We conclude that TbCgm1 specifically cap SL RNA, and cap 0 is a prerequisite for subsequent methylation events leading to the formation of mature SL RNA.  相似文献   

4.
5.
The formation of the mRNA 5' end in trypanosomatid protozoa is carried out by trans-splicing, which transfers a spliced leader (SL) sequence and its hypermethylated cap (cap4) from the SL RNA to the pre-mRNA. Previous in vitro studies with synthetic uncapped RNAs have shown that the SL sequence of Leptomonas collosoma can assume two alternate conformations, Form 1 and Form 2, with Form 1 being the dominant one. To gain information about the structure of the SL RNA in vivo, in its protein-rich environment, we have used permeable Trypanosoma brucei and L. collosoma cells for chemical modification experiments. We introduce the use in vivo of the water-soluble reagents CMCT and kethoxal. In contrast to the in vitro results, the Form 2 secondary structure predominates. However, there are chemically accessible regions that suggest conformational flexibility in SL RNPs and a chemically inaccessible region suggestive of protection by protein or involvement in tertiary interactions. Using complementary 2'-O-methyl RNA oligonucleotides, we show that T. brucei SL RNA can be induced to switch conformation in vivo. SL RNA stripped of proteins and probed in vitro does not display the same Form 2 bias, indicating that SL RNA structure is determined, at least in part, by its RNP context. Finally, the methyl groups of the cap4 do not seem to affect the secondary structure of T. brucei SL RNA, as shown by chemical modification of undermethylated SL RNA probed in vivo.  相似文献   

6.
7.
mRNA cap 1 2'-O-ribose methylation is a widespread modification that is implicated in processing, trafficking, and translational control in eukaryotic systems. The eukaryotic enzyme has yet to be identified. In kinetoplastid flagellates trans-splicing of spliced leader (SL) to polycistronic precursors conveys a hypermethylated cap 4, including a cap 0 m7G and seven additional methylations on the first 4 nucleotides, to all nuclear mRNAs. We report the first eukaryotic cap 1 2'-O-ribose methyltransferase, TbMTr1, a member of a conserved family of viral and eukaryotic enzymes. Recombinant TbMTr1 methylates the ribose of the first nucleotide of an m7G-capped substrate. Knockdowns and null mutants of TbMTr1 in Trypanosoma brucei grow normally, with loss of 2'-O-ribose methylation at cap 1 on substrate SL RNA and U1 small nuclear RNA. TbMTr1-null cells have an accumulation of cap 0 substrate without further methylation, while spliced mRNA is modified efficiently at position 4 in the absence of 2'-O-ribose methylation at position 1; downstream cap 4 methylations are independent of cap 1. Based on TbMTr1-green fluorescent protein localization, 2'-O-ribose methylation at position 1 occurs in the nucleus. Accumulation of 3'-extended SL RNA substrate indicates a delay in processing and suggests a synergistic role for cap 1 in maturation.  相似文献   

8.
9.
10.
11.
12.
In trypanosomes, all mRNAs possess a spliced leader (SL) at their 5' end. SL is added to pre-mRNA via trans -splicing from a small RNA, the SL RNA. To examine structure-function aspects of the trypanosomatid SL RNA, an in vivo system was developed in the monogenetic trypanosomatid Leptomonas collosoma to analyze the function of chimeric and site-directed SL RNA mutants in trans -splicing. Stable cell lines expressing chimeric and mutated SL RNA from the authentic SL RNA regulatory unit were obtained. The chimeric RNA was expressed and assembled into an SL RNP particle, but could not serve as a substrate in splicing. Mutations in loop II and III of L.collosoma SL RNA formed the Y structure intermediate. In addition, a double SL RNA mutant in loop II, and positions 7 and 8 of the intron, also formed the Y structure intermediate, suggesting that these intron positions, although proposed to participate in the interaction of SL RNA with U5, may not be crucial for the first step of the trans -splicing reaction. A mutation in the exon located in loop I was not utilized in splicing, suggesting the importance of exon sequences for trans -splicing in trypanosomes. However, a double SL RNA mutant in loop II and exon position 31 was utilized in both steps of splicing; the mutant thus provides a model molecule for further analysis of positions essential for the function of the SL RNA.  相似文献   

13.
W J Murphy  K P Watkins  N Agabian 《Cell》1986,47(4):517-525
We present evidence that addition of the 35 nucleotide spliced leader (SL) to the 5' end of T. brucei mRNAs occurs via trans RNA splicing. A 100 nucleotide fragment of the 135 base SL RNA (100-mer) is revealed by S1 nuclease analysis of total and poly(A)+ RNA. This 100-mer is not detected by Northern hybridization analysis, indicating that it does not exist free in the cell. The 5' end of the 100-mer maps precisely to the conserved splice junction sequence of the SL RNA. Purified debranching enzyme releases this 100-mer RNA as a free, 100 nucleotide species. This indicates that the 100-mer is covalently linked to poly(A)+ RNA by a 2'-5' phosphodiester bond, that the branched intermediate has a discontinuous intron or Y structure (rather than a lariat), which is expected of a trans-spliced mRNA, and that the SL RNA is indeed the donor of the SL sequence to trypanosome mRNAs.  相似文献   

14.
One of the unique aspects of RNA processing in trypanosomatid protozoa is the presence of a cap 4 structure (m7Gpppm2(6)AmpAmpCmpm3Um) at the 5' end of all mRNAs. The cap 4 becomes part of the mRNA through trans-splicing of a 39-nucleotide-long sequence donated by the spliced leader RNA. Although the cap 4 modifications are required for trans-splicing to occur, the underlying mechanism remains to be determined. We now describe an unconventional nuclear cap binding complex (CBC) in Trypanosoma brucei with an apparent molecular mass of 300 kDa and consisting of five protein components: the known CBC subunits CBP20 and importin-alpha and three novel proteins that are only present in organisms featuring a cap 4 structure and trans-splicing. Competitive binding studies are consistent with a specific interaction between the CBC and the cap 4 structure. Downregulation of several individual components of the T. brucei CBC by RNA interference demonstrated an essential function at an early step in trans-splicing. Thus, our studies are consistent with the CBC providing a mechanistic link between cap 4 modifications and trans-splicing.  相似文献   

15.
Many viruses of eukaryotes that use mRNA cap-dependent translation strategies have evolved alternate mechanisms to generate the mRNA cap compared to their hosts. The most divergent of these mechanisms are those used by nonsegmented negative-sense (NNS) RNA viruses, which evolved a capping enzyme that transfers RNA onto GDP, rather than GMP onto the 5' end of the RNA. Working with vesicular stomatitis virus (VSV), a prototype of the NNS RNA viruses, we show that mRNA cap formation is further distinct, requiring a specific cis-acting signal in the RNA. Using recombinant VSV, we determined the function of the eight conserved positions of the gene-start sequence in mRNA initiation and cap formation. Alterations to this sequence compromised mRNA initiation and separately formation of the GpppA cap structure. These studies provide genetic and biochemical evidence that the mRNA capping apparatus of VSV evolved an RNA capping machinery that functions in a sequence-specific manner.  相似文献   

16.
17.
In the presence of ATP plus two other ribonucleoside triphosphates or in reactions containing all four ribonucleoside triphosphates and actinomycin D, vaccinia virus synthesizes in vitro discrete low-molecular-weight RNA molecules ranging in size from about 20 to several hundred bases. A novel feature of these small RNA molecules is that they are capped and methylated at the 5' terminus, containing both mGpppGm and mGpppAm type cap structures, and in addition these molecules are polyadenylated at the 3' terminus. Hybridization of these RNAs to restriction fragments derived from vaccinia virus DNA indicates a considerable degree of complexity, suggesting the presence of a large number of promoters throughout the genome. However, measurable sensitivity to pancreatic RNase of the 5' capped end of these RNAs while in hybrid form to the DNA suggests other possible roles for these small RNAs in vaccinia virus mRNA biogenesis.  相似文献   

18.
Using a pre-RNA containing the simian virus 40 early introns and poly(A) addition site, we investigated several possible requirements for accurate and efficient mRNA 3' end cleavage and polyadenylation in a HeLa cell nuclear extract. Splicing and 3' end formation occurred under the same conditions but did not appear to be coupled in any way in vitro. Like splicing, 3' end cleavage and polyadenylation each required Mg2+, although spermidine could substitute in the cleavage reaction. Additionally, cleavage of this pre-RNA, but not others, was totally blocked by EDTA, indicating that structural features of pre-RNA may affect the ionic requirements of 3' end formation. The ATP analog 3' dATP inhibited both cleavage and polyadenylation even in the presence of ATP, possibly reflecting the coupled nature of these activities. A 5' cap structure appears not to be required for mRNA 3' end processing in vitro because neither the presence or absence of a 5' cap on the pre-RNA nor the addition of cap analogs to reaction mixtures had any effect on the efficiency of 3' end processing. Micrococcal nuclease pretreatment of the nuclear extract inhibited cleavage and polyadenylation. However, restoration of activity was achieved by addition of purified Escherichia coli RNA, suggesting that the inhibition caused by such a nuclease treatment was due to a general requirement for mass of RNA rather than to destruction of a particular nucleic acid-containing component such as a small nuclear ribonucleoprotein.  相似文献   

19.
20.
In Trypanosoma brucei the small nuclear (sn) RNAs U1, U2, U4, and U5, as well as the spliced leader (SL) RNA, bind the seven Sm canonical proteins carrying the consensus Sm motif. To determine the function of these proteins in snRNA and SL RNA biogenesis, two of the Sm core proteins, SmE and SmD1, were silenced by RNAi. Surprisingly, whereas the level of all snRNAs, including U1, U2, U4, and U5 was reduced during silencing, the level of SL RNA was dramatically elevated, but the levels of U6 and spliced leader-associated RNA (SLA1) remained unchanged. The SL RNA that had accumulated in silenced cells lacked modification at the cap4 nucleotide but harbored modifications at the cap1 and cap2 nucleotides and carried the characteristic psi. This SL RNA possessed a longer tail and had accumulated in the cytoplasm in 10 and 50 S particles that were found by in situ hybridization to be present in "speckles." We propose a model for SL RNA biogenesis involving a cytoplasmic phase and suggest that the trypanosome-specific "cap4" nucleotides function as a signal for export and import of SL RNA out and into the nucleus. The SL RNA biogenesis pathway differs from that of U sn ribonucleoproteins (RNPs) in that it is the only RNA that binds Sm proteins that were stabilized under Sm depletion in a novel RNP, which we termed SL RNP-C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号