首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The yeast MER1 gene is required for the production of viable meiotic products and for meiotic recombination. Cytological analysis of chromosome spreads from a mer1 mutant indicates that the MER1 gene product is also required for normal chromosome pairing. mer1 strains make axial elements, precursors to the synaptonemal complex; however, the chromosomes in most nuclei do not become fully synapsed. The DNA sequence of the MER1 coding region was determined; the MER1 open reading frame encodes a 270-amino-acid protein with a molecular mass of 31.1 kilodaltons. The MER1 protein shows limited sequence similarity to calmodulin. Expression of the MER1 gene was examined by RNA blot hybridization analysis and through the construction and analysis of mer1::lacZ fusion genes. Expression of the MER1 gene is meiotically induced and required the IME1 gene product. Thus, expression of the MER1 gene early in meiosis is required for proper chromosome pairing and meiotic recombination.  相似文献   

2.
Octobre G  Lorenz A  Loidl J  Kohli J 《Genetics》2008,178(4):2399-2412
Proteins of the RAD52 epistasis group play an essential role in repair of some types of DNA damage and genetic recombination. In Schizosaccharomyces pombe, Rad22 (a Rad52 ortholog) has been shown to be as necessary for repair and recombination events during vegetative growth as its Saccharomyces cerevisiae counterpart. This finding contrasts with previous reports where, due to suppressor mutations in the fbh1 gene, rad22 mutants did not display a severe defect. We have analyzed the roles of Rad22 and Rti1, another Rad52 homolog, during meiotic recombination and meiosis in general. Both proteins play an important role in spore viability. During meiotic prophase I, they partially colocalize and partially localize to Rad51 foci and linear elements. Genetic analysis showed that meiotic interchromosomal crossover and conversion events were unexpectedly not much affected by deletion of either or both genes. A strong decrease of intrachromosomal recombination assayed by a gene duplication construct was observed. Therefore, we propose that the most important function of Rad22 and Rti1 in S. pombe meiosis is repair of double-strand breaks with involvement of the sister chromatids. In addition, a novel mating-type-related repair function of Rad22 specific to meiosis and spore germination is described.  相似文献   

3.
Control of meiosis by respiration   总被引:1,自引:0,他引:1  
  相似文献   

4.
D A Thompson  F W Stahl 《Genetics》1999,153(2):621-641
Meiotic exchange occurs preferentially between homologous chromatids, in contrast to mitotic recombination, which occurs primarily between sister chromatids. To identify functions that direct meiotic recombination events to homologues, we screened for mutants exhibiting an increase in meiotic unequal sister-chromatid recombination (SCR). The msc (meiotic sister-chromatid recombination) mutants were quantified in spo13 meiosis with respect to meiotic unequal SCR frequency, disome segregation pattern, sporulation frequency, and spore viability. Analysis of the msc mutants according to these criteria defines three classes. Mutants with a class I phenotype identified new alleles of the meiosis-specific genes RED1 and MEK1, the DNA damage checkpoint genes RAD24 and MEC3, and a previously unknown gene, MSC6. The genes RED1, MEK1, RAD24, RAD17, and MEC1 are required for meiotic prophase arrest induced by a dmc1 mutation, which defines a meiotic recombination checkpoint. Meiotic unequal SCR was also elevated in a rad17 mutant. Our observation that meiotic unequal SCR is elevated in meiotic recombination checkpoint mutants suggests that, in addition to their proposed monitoring function, these checkpoint genes function to direct meiotic recombination events to homologues. The mutants in class II, including a dmc1 mutant, confer a dominant meiotic lethal phenotype in diploid SPO13 meiosis in our strain background, and they identify alleles of UBR1, INP52, BUD3, PET122, ELA1, and MSC1-MSC3. These results suggest that DMC1 functions to bias the repair of meiosis-specific double-strand breaks to homologues. We hypothesize that the genes identified by the class II mutants function in or are regulators of the DMC1-promoted interhomologue recombination pathway. Class III mutants may be elevated for rates of both SCR and homologue exchange.  相似文献   

5.
6.
7.
8.
9.
In the yeast Saccharomyces cerevisiae at least 10 genes are required to begin meiotic recombination. A new early recombination gene REC103 is described in this paper. It was initially defined by the rec103-1 mutation found in a selection for mutations overcoming the spore inviability of a rad52 spo13 haploid strain. Mutations in REC103 also rescue rad52 in spo13 diploids. rec103 spo13 strains produce viable spores; these spores show no evidence of meiotic recombination. rec103 SPO13 diploids produce no viable spores, consistent with the loss of recombination. Mutations in REC103 do not affect mitotic recombination, growth, or repair. These phenotypes are identical to those conferred by mutations in several other early meiotic recombination genes (e.g., REC102, REC104, REC114, MEI4, MER2, and SPO11). REC103 maps to chromosome VII between ADE5 and RAD54. Cloning and sequencing of REC103 reveals that REC103 is identical to SKI8, a gene that depresses the expression of yeast double-stranded (``killer') (ds)RNA viruses. REC103/SKI8 is transcribed in mitotic cells and is induced ~15-fold in meiosis. REC103 has 26% amino acid identity to the Schizosaccharomyces pombe rec14(+) gene; mutations in both genes confer similar meiotic phenotypes, suggesting that they may play similar roles in meiotic recombination.  相似文献   

10.
Y. Lin  K. L. Larson  R. Dorer    G. R. Smith 《Genetics》1992,132(1):75-85
The Schizosaccharomyces pombe rec7 and rec8 genes, which are required for meiotic intragenic recombination but not for mitotic recombination, have been cloned and their DNA sequences determined. Genetic and physical analyses demonstrated that the cloned fragments contained the rec genes rather than rec mutation suppressors. A 1.6-kb DNA fragment contained a functional rec7 gene, and a 2.1-kb fragment contained a functional rec8 gene. The nucleotide sequences of these fragments revealed open reading frames predicting 249 amino acids for the rec7 gene product and 393 amino acids for the rec8 gene product. Northern hybridization analysis showed that both rec gene mRNAs were detectable only at 2-3 hr after induction of meiosis. The absence of these mRNAs in mitosis and their disappearance at 4 hr and later in meiosis suggest that the rec7 and rec8 gene products may be involved primarily in the early steps of meiotic recombination in S. pombe.  相似文献   

11.
Among genes conserved from bacteria to mammals are those involved in replicating and repairing DNA. Following the complete sequencing of four hemiascomycetous yeast species during the course of the Genolevures 2 project, we have studied the conservation of 106 genes involved in replication, repair, and recombination in Candida glabrata, Kluyveromyces lactis, Debaryomyces hansenii, and Yarrowia lipolytica and compared them with their Saccharomyces cerevisiae orthologues. We found that proteins belonging to the replication fork and to the nucleotide excision repair pathway were-on the average-more conserved than proteins involved in the checkpoint response to DNA damage or in meiotic recombination. The meiotic recombination proteins Spo11p and Mre11p-Rad50p, involved in making meiotic double-strand breaks (DSBs), are conserved as is Mus81p, involved in resolving meiotic recombination intermediates. Interestingly, genes found in organisms in which DSB-repair is required for proper synapsis during meiosis are also found in C. glabrata, K. lactis, and D. hansenii but not in Y. lipolytica, suggesting that two modes of meiotic recombination have been selected during evolution of the hemiascomycetous yeasts. In addition, we found that SGS1 and TOP1, respectively, a DEAD/DEAH helicase and a type I topoisomerase, are duplicated in C. glabrata and that SRS2, a helicase involved in homologous recombination, is tandemly duplicated in K. lactis. Phylogenetic analyses show that the duplicated SGS1 gene evolved faster than the original gene, probably leading to a specialization of function of the duplicated copy.  相似文献   

12.
During meiosis homologous chromosomes replicate once, pair, experience recombination, and undergo two rounds of segregation to produce haploid meiotic products. The rec8(+), rec10(+), and rec11(+) genes of the fission yeast Schizosaccharomyces pombe exhibit similar specificities for meiotic recombination and rec8(+) is required for sister chromatid cohesion and homolog pairing. We applied cytological and genetic approaches to identify potential genetic interactions and to gauge the fidelity of meiotic chromosome segregation in the mutants. The rec8(+) gene was epistatic to rec10(+) and to rec11(+), but there was no clear epistatic relationship between rec10(+) and rec11(+). Reciprocal (crossover) recombination in the central regions of all three chromosomes was compromised in the rec mutants, but recombination near the telomeres was nearly normal. Each of the mutants also exhibited a high rate of aberrant segregation for all three chromosomes. The rec8 mutations affected mainly meiosis I segregation. Remarkably, the rec10 and rec11 mutations, which compromised recombination during meiosis I, affected mainly meiosis II segregation. We propose that these genes encode regulators or components of a "meiotic chromatid cohesion" pathway involved in establishing, maintaining, and appropriately releasing meiotic interactions between chromosomes. A model of synergistic interactions between sister chromatid cohesion and crossover position suggests how crossovers and cohesion help ensure the proper segregation of chromosomes in each of the meiotic divisions.  相似文献   

13.
14.
Genetic control of chromosome synapsis in yeast meiosis   总被引:17,自引:0,他引:17  
Both meiosis-specific and general recombination functions, recruited from the mitotic cell cycle, are required for elevated levels of recombination and for chromosome synapsis (assembly of the synaptonemal complex) during yeast meiosis. The meiosis-specific SPO11 gene (previously shown to be required for meiotic recombination) has been isolated and shown to be essential for synaptonemal complex formation but not for DNA metabolism during the vegetative cell cycle. In contrast, the RAD52 gene is required for mitotic and meiotic recombination but not for synaptonemal complex assembly. These data suggest that the synaptonemal complex may be necessary but is clearly not sufficient for meiotic recombination. Cytological analysis of spread meiotic nuclei demonstrates that chromosome behavior in yeast is comparable with that observed in larger eukaryotes. These spread preparations support the immunocytological localization of specific proteins in meiotic nuclei. This combination of genetic, molecular cloning, and cytological approaches in a single experimental system provides a means of addressing the role of specific gene products and nuclear structures in meiotic chromosome behavior.  相似文献   

15.
D Rose  W Thomas  C Holm 《Cell》1990,60(6):1009-1017
To understand better the similarities and differences between meiosis and mitosis, we examined the meiotic role of DNA topoisomerase II, an enzyme that is required mitotically to disentangle sister chromatids at the time of chromosome segregation. In meiosis, we found that topoisomerase II is required only at the time of nuclear division. When cold-sensitive top2 mutants are induced to sporulate at the restrictive temperature, they undergo premeiotic DNA synthesis and commitment to meiotic levels of recombination but fail to complete the first meiotic nuclear division. The introduction of a mutation blocking recombination relieves the requirement for topoisomerase II in meiosis I. These results suggest that topoisomerase II is required at the time of chromosome segregation in meiosis I for the resolution of recombined chromosomes.  相似文献   

16.
We utilized strains of Saccharomyces cerevisiae that exhibit high efficiency of synchrony of meiosis to examine several aspects of meiosis including sporulation, recombination, DNA synthesis, DNA polymerase I and II, and Mg2+-dependent alkaline DNases. The kinetics of commitment to intragenic recombination and sporulation are similar. The synthesis of DNA, as measured directly with diphenylamine, appears to precede the commitment to recombination. Both DNA polymerase I and II activities and total DNA-synthesizing activity in crude extracts increase two- to threefold before the beginning of meiotic DNA synthesis. Increases of 10- to 20-fold over mitotic levels are found for Mg2+-dependent alkaline DNase activity in crude extracts before and during the commitment to meiotic intragenic recombination. Of particular interest is the comparable increase in a nuclease under the control of the RAD52 gene; this enzyme has been identified by the use of antibody raised against a similar enzyme from Neurospora crassa. Since the RAD52 gene is essential for meiotic recombination, the nuclease is implicated in the high levels of recombination observed during meiosis. The effects observed in this report are meiosis specific since they are not observed in an alpha alpha strain.  相似文献   

17.
We have used a set of seven temperature-sensitive mutants in the DNA polymerase I gene of Saccharomyces cerevisiae to investigate the role of DNA polymerase I in various aspects of DNA synthesis in vivo. Previously, we showed that DNA polymerase I is required for mitotic DNA replication. Here we extend our studies to several stages of meiosis and repair of X-ray-induced damage. We find that sporulation is blocked in all of the DNA polymerase temperature-sensitive mutants and that premeiotic DNA replication does not occur. Commitment to meiotic recombination is only 2% of wild-type levels. Thus, DNA polymerase I is essential for these steps. However, repair of X-ray-induced single-strand breaks is not defective in the DNA polymerase temperature-sensitive mutants, and DNA polymerase I is therefore not essential for repair of such lesions. These results suggest that DNA polymerase II or III or both, the two other nuclear yeast DNA polymerases for which roles have not yet been established, carry out repair in the absence of DNA polymerase I, but that DNA polymerase II and III cannot compensate for loss of DNA polymerase I in meiotic replication and recombination. These results do not, however, rule out essential roles for DNA polymerase II or III or both in addition to that for DNA polymerase I.  相似文献   

18.
The initiation of meiotic recombination by the formation of DNA double-strand breaks (DSBs) catalysed by the Spo11 protein is strongly evolutionary conserved. In Saccharomyces cerevisiae, Spo11 requires nine other proteins for meiotic DSB formation, but, unlike Spo11, few of these proteins seem to be conserved across kingdoms. In order to investigate this recombination step in higher eukaryotes, we have isolated a new gene, AtPRD1, whose mutation affects meiosis in Arabidopsis thaliana. In Atprd1 mutants, meiotic recombination rates fall dramatically, early recombination markers (e.g., DMC1 foci) are absent, but meiosis progresses until achiasmatic univalents are formed. Besides, Atprd1 mutants suppress DSB repair defects of a large range of meiotic mutants, showing that AtPRD1 is involved in meiotic recombination and is required for meiotic DSB formation. Furthermore, we showed that AtPRD1 and AtSPO11-1 interact in a yeast two-hybrid assay, suggesting that AtPRD1 could be a partner of AtSPO11-1. Moreover, our study reveals similarity between AtPRD1 and the mammalian protein Mei1, suggesting that AtPRD1 could be a Mei1 functional homologue.  相似文献   

19.
Many meiosis-specific proteins in Schizosaccharomyces pombe contain coiled-coil motifs which play essential roles for meiotic progression. For example, the coiled-coil motifs present in Meu13 and Mcp7 are required for their function as a putative recombinase cofactor complex during meiotic recombination. Mcp6/Hrs1 and Mcp5/Num1 control horsetail chromosome movement by astral microtubule organization and anchoring dynein respectively. Dhc1 and Ssm4 are also required for horsetail chromosome movement. It is clear from these examples that the coiled-coil motif in these proteins plays an important role during the progression of cells through meiosis. However, there are still many unanswered questions on how these proteins operate. In this paper, we briefly review recent studies on the meiotic coiled-coil proteins in Sz. pombe.  相似文献   

20.
Meiosis is a specialized set of two nuclear divisions, meiosis I and II, by which a diploid cell produces four haploid daughters. After premeiotic DNA replication, homologous chromosomes pair and recombine, and then disjoin at meiosis I. Subsequently, at meiosis II, the sister chromatids of each chromosome segregate. In nearly all eukaryotes, meiotic chromosome pairing culminates in the formation of a ladderlike supramolecular protein structure, the synaptonemal complex (SC) (Page and Hawley, 2004). The rungs of the ladder are known as transverse filaments (TFs). Genes encoding TF proteins have been identified in a limited number of organisms, and their function has been studied by mutational analysis. Although TF proteins show little amino acid sequence conservation, their structure and function are largely conserved. In all analyzed species, TF proteins are required for meiotic reciprocal recombination (crossing over).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号