首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sequence of a cDNA clone encoding porcine transthyretin (prealbumin) was used to develop polymorphic markers for the TTR locus. The single-strand conformation polymorphism (SSCP) detected is caused by a silent AIT mutation in the penultimate coding codon and can also be revealed as a SacI restriction fragment length polymorphism (RFLP). The TTR locus was mapped to chromosome 6q by segregation and linkage analysis with these polymorphisms. This assignment confirms the predictions of homology between human chromosome 18 and pig chromosome 6q2.5-2.6.  相似文献   

2.
Summary We have studied the genetic linkage relationships of seven DNA polymorphisms on chromosome 19, with each other and with the myotonic dystrophy locus. The DNA sequences were localised to various regions of the chromosome using translocations in somatic cell hybrids. These results provide the basis for a linkage map of most of chromosome 19, and suggest that the myotonic dystrophy locus is close to the centromere.  相似文献   

3.
Red clover (Trifolium pratense L.) is a forage legume and an allogamous diploid plant (2n = 14; 440 Mb). Here, we examine the 7 prometaphase chromosomes of red clover using fluorescence in situ hybridization (FISH) with ribosomal RNA sequences, pericentromeric and telomeric repeats, as well as bacterial artificial chromosome (BAC) clones. Position of hybridization signals and chromosome condensation patterns were quantified by the help of the chromosome image analysis system ver. 4.0 (CHIAS IV). Fourteen BAC clones belonging to linkage groups (LG) 1-7 hybridized to individual chromosomes 4, 2, 6, 5, 1, 7, and 3, respectively. Quantitative analysis of FISH mapping and chromosome analysis using CHIAS IV allowed us to construct a quantitative idiogram that constitutes the comprehensive chromosome map of red clover. Chromosomal positions of the 26S rDNA locus were detected at a heterozygous locus on chromosome 6 in the variety HR, and polymorphisms of rDNA loci were observed in other varieties, although chromosomal positions of some BAC clones did not vary among HR and other varieties. These results demonstrate chromosomal collinearity among allogamous red clover varieties. This integration of genetic linkage and quantitative chromosome maps should provide valuable insight into allogamous legume genetics.  相似文献   

4.
In order to develop linkage markers for the murine argininosuccinate synthetase locus (Ass-1), we have searched for restriction fragment length polymorphisms in the mouse genome using cloned sequences from the mouse arginosuccinate synthetase structural gene. Five restriction fragment length polymorphisms were found among the recombinant inbred progenitor strains AKR/J, BALB/cByJ, C3H/HeJ, C57BL/6J, C57L/J, DBA/2J, and SWR/J. Of these, four polymorphisms were found to distinguish the SWR/J strain from the other six strains, which all had the same fragment. The fifth polymorphism revealed differences among the progenitor strains for recombinant inbred strain sets AKXL, BXD, and SWXL. The strain distribution pattern for this polymorphism indicated close linkage of Ass-1 to Hc (the fifth component of complement) on proximal mouse chromosome 2 with a recombination fraction of 0.016 and a 95% confidence interval of 0.003 to 0.054. These data place Ass-1 in a syntenic group with the genes Hc, Abl, Fpgs, and Ak-1 whose linkage has been conserved between human chromosome 9q and mouse chromosome 2.  相似文献   

5.
We report the cloning, sequencing, and mapping of three short sequence repeat polymorphisms due to tetranucleotide (TAAA)n repeats from human chromosome 21. These DNA markers (D21S221, D21S225, D21S226) have been cloned from the chromosome 21-specific plasmid library of J. C. Fuscoe, C. C. Collins, D. Pinkel, and J. W. Gray (1989, Genomics 5: 100-109) and were shown to be polymorphic by polymerase chain reaction amplification and polyacrylamide gel electrophoresis. Genotypes were determined in informative CEPH pedigrees and used in linkage analysis relative to other mapped markers on human chromosome 21. One of these markers, D21S221, is closely linked to the amyloid precursor protein gene (APP), which has been implicated in the etiology of familial Alzheimer disease in some families.  相似文献   

6.
P300 amplitude is an electrophysiological quantitative trait that is correlated with both alcoholism and smoking status. Using the Collaborative Study on the Genetics of Alcoholism data, we performed model-free linkage analysis to investigate the relationship between alcoholism, P300 amplitude, and habitual smoking. We also analyzed the effect of parent-of-origin on alcoholism, and utilized both microsatellites (MS) markers and single-nucleotide polymorphisms (SNPs). We found significant evidence of linkage for alcoholism to chromosome 10; inclusion of P300 amplitude as a covariate provided additional evidence of linkage to chromosome 12. This same region on chromosome 12 showed some evidence for a parent-of-origin effect. We found evidence of linkage for the P300 phenotype to chromosome 7 in non-smokers, and to chromosome 17 in alcoholics. The effects of alcoholism and habitual smoking on P300 amplitude appear to have separate genetic determinants. Overall, there were few differences between MS and SNP genome scans. The use of covariates and parent-of-origin effects allowed detection of linkage not seen otherwise.  相似文献   

7.
Polymerase chain reaction oligonucleotides were designed to amplify bovine specific sequences for four genes that are located on human chromosome 22 (HSA22): crystallin beta A4 (CRY B A4), parvalbumin (PVALB), tissue inhibitor of metalloproteinase 3 (TIMP3) and matrix metalloproteinase 11 (MMP11). Single strand conformation analysis of these bovine gene fragments defined polymorphisms within a population of three large half-sib families of three F1 Charolais x Brahman sires and a composite herd comprising an equal proportion of Africander, Brahman, Hereford and Shorthorn breeds (CSIRO pedigree). The DNA marker genotypes were used to define linkage associations to other DNA markers already placed on the CSIRO linkage map. The genes TIMP3 and PVALB were assigned to BTA5 and CRYbetaA4 and MMP11 to BTA17.  相似文献   

8.
Summary In seven large families with myotonic dystrophy (DM) comprising 102 individuals, linkage studies were perfermed employing restriction fragment length polymorphisms in the complement component 3 gene and the 19cen C banding heteromorphism as genetic markers. Three-point linkage analysis excludes DM from the 19cen-C3 segment and strongly supports its assignment to the proximal long arm of chromosome 19.  相似文献   

9.
Three polymorphisms were identified in a 1·6-kb fragment of the porcine calpastatin (CAST) gene and these polymorphisms were used for genetic linkage mapping. Linkage analysis revealed significant linkage of CAST to five microsatellites previously mapped to porcine chromosome 2; these microsatellites were S0010, S0226, Sw14, Sw395 and Sw776. A somatic cell hybrid panel was used to determine the chromosomal localization of CAST and the microsatellites S0091, S0226 and Sw395. All of these were localized to the region 2q2·1–q2·4.  相似文献   

10.
Summary The pericentromeric region of human chromosomes is composed of diverse classes of repetitive DNAs, which provide a rich source of genetic variability. Here, we describe two novel centromeric polymorphisms associated with a subset of alpha satellite repetitive DNA, D11Z1, which is specific for human chromosome 11. Segregation and inheritance of the polymorphisms are demonstrated and their relative frequencies are determined. These polymorphisms may be useful genetic tools for distinguishing between individual chromosome 11 centromeres. In addition, these polymorphisms may be applied to the development of a centromerebased genetic linkage map of chromosome 11. Molecular models for the generation of these polymorphisms are discussed.  相似文献   

11.
M F Seldin  G D Kruh 《Genomics》1989,4(2):221-223
A human Abelson related gene (ABLL) cDNA clone was used to detect restriction fragment length polymorphisms (RFLPs) on mouse Southern blots. Abll was mapped to mouse chromosome 1 by analysis of segregation with other distal chromosome 1 genetic polymorphisms by using a panel of DNAs from [(C3H/HeJ-gld/gld x Mus spretus) F1 x C3H/HeJ-gld/gld] interspecific backcross mice. The data indicate the following gene order: (centromere)-CD45-6.5 cM-Lamb-2-1 cM-Abll-2 cM-At-3. The results extend the analysis of a large conserved linkage group spanning nearly 30 cM on distal mouse chromosome 1 syntenic with human chromosome 1q21-32. Within this linkage group similar relative positions have been characterized in both species for C4BP, REN, CD45, LAMB2, ABLL, AT3, APOA2, and SPTA.  相似文献   

12.
13.
Southern blot analysis of genomic cattle DNA was carried out using murine cDNA probes representing the Tcp-1 gene of the t complex. Excellent cross-hybridization was obtained, and the probes apparently hybridized to at least two bovine TCP1 genes. Two independent restriction fragment length polymorphisms, each composed of two allelic variants, were detected; the inheritance of the restriction fragment length polymorphisms was confirmed by family data. One of the restriction fragment length polymorphisms, designated TCP1B, was evidently due to a gene duplication and was revealed with any restriction enzyme used. The duplication was found in three different cattle breeds investigated. Family segregation data indicated that TCP1B is linked to major histocompatibility complex genes. The result was consistent with close linkage to the major histocompatibility complex class II DO beta gene, whereas a fairly high recombination frequency was indicated between TCP1B/DO beta and other major histocompatibility complex genes. The result assigns TCP1B to a bovine linkage group previously comprising major histocompatibility complex class I and class II genes and blood group locus M. The similarity between this linkage group and parts of mouse chromosome 17 (t-H-2) and human chromosome 6 (TCP1-HLA) is discussed.  相似文献   

14.
A strategy is described that allows the development of polymorphic genetic markers to be characterized in individual genes. Segments of the 3' untranslated regions are amplified, and polymorphisms are detected by digestion with frequently cutting enzymes and with the detection of single-stranded conformation polymorphisms. This allows these genes, or DNA segments, to be placed on the linkage maps of human chromosomes. Polymorphisms in two genes have been identified using this approach. A HaeIII polymorphism was detected in the KIT proto-oncogene, physically assigned to chromosome 4q11-12. This polymorphism is linked to other chromosome 4p markers and is in linkage disequilibrium with a HindIII polymorphism previously described at this locus. We have also identified in the insulin-like growth factor1 receptor gene (IGF1R) a 2-bp deletion that is present at a frequency of .25 in the Caucasian population. Pedigree analysis with this insertion/deletion polymorphism placed the IGF1R gene at the end of the current linkage map of chromosome 15q, consistent with the physical assignment of 15q2526. Thus, polymorphisms in specific genes can be used to related the physical, genetic, and comparative maps of mammalian genomes and to simplify the testing of candidate genes for human diseases.  相似文献   

15.
Using data provided by the Collaborative Study on the Genetics of Alcoholism we studied the genetics of a quantitative trait: the maximum number of drinks consumed in a 24-hour period. A two-stage method was used. First, linkage analysis was performed, followed by association analysis in regions where linkage was detected. Additionally, the extent of linkage disequilibrium among single-nucleotide polymorphisms (SNP) associated with the phenotype was assessed. Linkage to chromosomes 2 and 7 was detected, and follow-up association analysis found multiple trait-associated SNPs in the chromosome 7 linkage region. Chromosome 4, which has been implicated in previous studies of the maximum drinks phenotype, did not pass our threshold for linkage evidence in stage 1, but secondary analyses of this chromosome indicated modest evidence for both linkage and association. The evidence suggests that chromosome 7 may harbor an additional locus influencing the maximum drinks consumption phenotype.  相似文献   

16.
Classical linkage programs analyze the segregation of two markers in informative families. When several markers are available for one human chromosome, pairwise analysis can exclude linkage between each marker and an inherited disease. The identification of restriction fragment length polymorphisms has made many new informative markers, assigned to chromosomes, available. We have adapted the multipoint linkage program MLINK developed by Lathrop et al. in order to exclude linkage between cystic fibrosis and several markers known to be on human chromosome 4. The exclusion obtained is greater than that for a pairwise analysis.  相似文献   

17.
On the genetic length of the short arm of the human X chromosome   总被引:3,自引:0,他引:3  
Published estimates of the length of the human X chromosome are unreliable because they are based on scanty linkage data and complex assumptions about the frequency and distribution of chiasmata in female meiosis. In recent months we have established linkage between restriction fragment length polymorphisms (RFLPs) and several genes on the short arm of the X chromosome. These and previous data can be combined to construct a continuous linkage map spanning the short arm from the Xg gene to the centromere. They suggest that the genetic length of the Xg-Xcen segment may be in the order of 75-90 cM.  相似文献   

18.
Alpha satellite DNA is composed of variants of a short consensus sequence that are repeated in tandem arrays in the centromeric heterochromatin of each human chromosome. To define centromeric markers for linkage studies, we screened human genomic DNA for restriction fragment length polymorphisms using a probe detecting alphoid sequences on chromosomes 13 and 21. We describe one such DNA polymorphism. Analysis of linkage of this DNA marker to other polymorphic markers in the CEPH pedigrees demonstrates linkage to markers on the proximal long arm of chromosome 13 and defines the centromeric end of the linkage map of this chromosome.  相似文献   

19.
High plasma apolipoprotein B (apoB) and LDL cholesterol levels increase cardiovascular disease risk. These highly correlated measures may be partially controlled by common genetic polymorphisms. To identify chromosomal regions that contain genes causing low plasma levels of one or both parameters in Caucasian families ascertained for familial hypobetalipoproteinemia (FHBL), we conducted a whole-genome scan using 443 microsatellite markers typed in nine multigenerational families with at least two members with FHBL. Both variance components and regression-based linkage methods were used to identify regions of interest. Common linkage regions were identified for both measures on chromosomes 10q25.1-10q26.11 [maximum log of the odds (LOD) = 4.2 for LDL and 3.5 for apoB] and 6q24.3 (maximum LOD = 1.46 for LDL and 1.84 for apoB). There was also evidence for linkage to apoB on chromosome 13q13.2 (LOD = 1.97) and to LDL on chromosome 3p14.1 at 94 centimorgan (LOD = 1.52). Bivariate linkage analysis provided further evidence for loci contributing to both traits (6q24.3, LOD = 1.43; 10q25.1, LOD = 1.74). We evaluated single nucleotide polymorphisms (SNPs) in genes within our linkage regions to identify variants associated with apoB or LDL levels. The most significant finding was for rs2277205 in the 5' untranslated region of acyl-coenzyme A dehydrogenase short/branched chain and LDL (P = 10(-7)). Three additional SNPs were associated with apoB and/or LDL (P < 0.01). Although only the linkage signal on chromosome 10 reached genome-wide statistical significance, there are likely multiple chromosomal regions with variants that contribute to low levels of apoB and LDL and that may protect against coronary heart disease.  相似文献   

20.
Chromosomes of Bombyx mori (n = 28) and of Bombyx mandarina (n = 27) were studied cytogenetically to resolve the origin of the large M chromosome in the Japaneses type of B. mandarina. In the F1 progeny from the reciprocal cross between B. mandarina and B. mori, the mitotic chromosome number was 2n = 55, and a chromosome configuration of 26 bivalents plus 1 trivalent was observed at metaphase I of germ cells. The trivalent chromosome consisted of the M chromosome from B. mandarina and two chromosomes from B. mori. When males of B. mori were mated to the F1 females, nuclei with two types of chromosome number (2n = 55 and 2n = 56) and two sets of chromosome pairs (26 bivalents plus 1 trivalent versus 28 bivalents) were observed in the metaphase I stage. Linkage analysis showed that the 14th chromosome of B. mori was involved in these two types of chromosome segregation. This result indicates that the M chromosome in B. mandarina arose from a fusion between a chromosome corresponding to the 14th linkage group and another, yet unidentified linkage group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号