首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In vivo effect of abscisic acid (ABA) on photosynthetic oxygen evolution was investigated in barley chloroplasts. The most important kinetic parameters of O2-producing reactions were changed. The results show inhibition of the O2-flash yields at ABA concentrations of 10 mol/l and 100 mol/l and an increase in the degree of damping of the oscillations. ABA has a marked effect on the distribution of the oxygenevolving centers in S0 and S1 states and on sum of the centers (S0+S1) estimated according to the Kok model. In addition, the amplitude and the shape of the initial oxygen burst under continuous illumination are also significantly altered. At a concentration of 100 mol/l, ABA strongly inhibits Hill reaction activity measured by DCPIP reduction. The results cannot be explained by the hypothesis of socalled stomata effect. On the other hand, no effects were observed on the investigated parameters in experiments involving ABA applied in vitro to isolated chloroplasts. It is hypothesized that ABA disrupts the granal chloroplasts structure and raises the degree of participation of the cooperative mechanism of O2-evolution connected with the functioning of PS II centers in the stroma situated thylakoids.Abbreviations DCPIP 2,6-Dichlorophenolindophenol - DCMU 3-(3,4-dichlorophenil)-1,1-dimethylurea - HEPES N-2-Hydroxyethylpiperazine-N-2-ethane sulfonic acid - PSII photosystem II - RubisCO Ribulose-1,5-bis-phosphate carboxylase-oxygenase  相似文献   

2.
Plant extracts containing phaseic acid (PA), as well as solutions of purified PA and dihydrophaseic acid (DPA) were applied to leaves, isolated mesophyll cells, and isolated epidermal strips. In Commelina communis, stomatal closure began 4 minutes after the addition of either 20 micromolar (±)-abscisic acid or 10 micromolar PA. Stomata closed less rapidly after treatment with 10 micromolar PA than after treatment with 10 micromolar (±)-abscisic acid in Amaranthus powelli, Hordeum vulgare, Xanthium strumarium, and Zea mays and did not respond at all to PA in Vicia faba. DPA (10 micromolar) did not cause stomatal closure in any species.  相似文献   

3.
Abstract The kinetics of a range of chlorophyll fluorescence parameters, non-cyclic electron transport and the capacity of the thylakoids to bind Atrazine were examined during photoinhibition treatment of intact pea chloroplasts. Parameters of fluorescence induction of chloroplasts in the presence and absence of 3-(3,4-dichlorophenyl)-1,1-dimethyl urea at 20 °C and at 77 K were determined. The contributions of photochemical and non-photochemical quenching processes to the loss of fluorescence during photoinhibitory treatment were assessed. Two distinct phases of photoinhibitory damage were observed. During the initial 5 min period of exposure to light the minimal fluorescence level (Fo) increased, whilst the maximal fluorescence level (FP) decreased, both coupled and uncoupled non-cyclic electron transport to methyl viologen decreased and the ability to bind Atrazine to the thylakoids decreased. Fluorescence analyses demonstrated that during this period thylakoids were becoming increasingly less efficient at generating and maintaining a transmembrane proton electrochemical gradient. Photoinhibitory damage that occurred at later times between 5 and 20 min was of a very different nature. Both Fo and FP declined, a loss of coupled and uncoupled non-cyclic electron transport was observed together with a loss of the capacity to photo-oxidize water. However, no further loss of Atrazine-binding was associated with such changes. A consistent decrease in the quantum yield of non-cyclic electron transport was also observed throughout photoinhibition treatment. The possibility of two distinct mechanisms of photoinhibitory damage to the photosynthetic apparatus is discussed.  相似文献   

4.
The influence of abscisic acid (ABA) on carbon metabolism, rate of photorespiration, and the activity of the photorespiratory enzymes ribulose bisphosphate oxygenase and glycolate oxidase in 7-day-old barley seedlings (Hordeum vulgare L. var. Alfa) was investigated. Plants treated with ABA had enhanced incorporation of labeled carbon from 14CO2 into glycolic acid, glycine, and serine, while 14C incorporation into 3-phosphoglyceric acid and sugarphosphate esters was depressed. Parallel with this effect, treated plants showed a rise in activity of RuBP oxygenase and glycolic acid oxidase. The rate of photorespiration was increased twofold by ABA treatment at IO−6 molar while the CO2-compensation point increased 46% and stomatal resistance increased more than twofold over control plants.  相似文献   

5.
We investigated the organization of photosystem II (PSII) in agranal bundle sheath thylakoids from a C(4) plant maize. Using blue native/SDS-PAGE and single particle analysis, we show for the first time that PSII in the bundle sheath (BS) chloroplasts exists in a dimeric form and forms light-harvesting complex II (LHCII).PSII supercomplexes. We also demonstrate that a similar set of photosynthetic membrane complexes exists in mesophyll and agranal BS chloroplasts, including intact LHCI.PSI supercomplexes, PSI monomers, PSII core dimers, PSII monomers devoid of CP43, LHCII trimers, LHCII monomers, ATP synthase, and cytochrome b(6)f complex. Fluorescence functional measurements clearly indicate that BS chloroplasts contain PSII complexes that are capable of performing charge separation and are efficiently sensitized by the associated LHCII. We identified a fraction of LHCII present within BS thylakoids that is weakly energetically coupled to the PSII reaction center; however, the majority of BS LHCII is shown to be tightly connected to PSII. Overall, we demonstrate that organization of the photosynthetic apparatus in BS agranal chloroplasts of a model C(4) plant is clearly distinct from that of the stroma lamellae of the C(3) plants. In particular, supramolecular organization of the dimeric LHCII.PSII in the BS thylakoids strongly suggests that PSII in the BS agranal membranes may donate electrons to PSI. We propose that the residual PSII activity may supply electrons to poise cyclic electron flow around PSI and prevent PSI overoxidation, which is essential for the CO(2) fixation in BS cells, and hence, may optimize ATP production within this compartment.  相似文献   

6.
Response of barley aleurone layers to abscisic Acid   总被引:3,自引:0,他引:3       下载免费PDF全文
Ho DT 《Plant physiology》1976,58(2):175-178
Cordycepin, an inhibitor of RNA synthesis in barley (Hordeum vulgare L.) aleurone cells, does not inhibit the gibberellic acid-enhanced α-amylase (EC 3.2.1.1.) synthesis in barley aleurone layers if it is added 12 hours or more after the addition of the hormone. However, the accumulation of α-amylase activity after 12 hours of gibberellic acid can be decreased by abscisic acid. The accumulation of α-amylase activity is sustained or quickly restored when cordycepin is added simultaneously or some time after abscisic acid, indicating that the response of aleurone layers to abscisic acid depends on the continuous synthesis of a short lived RNA. By analysis of the newly synthesized proteins by gel electrophoresis with sodium dodecylsulfate, we observed that the synthesis of α-amylase is decreased in the presence of abscisic acid while the synthesis of most of the other proteins remains unchanged. From the rate of resumption of α-amylase production in the presence of cordycepin and abscisic acid, it appears that abscisic acid does not have a measurable effect on the stability of α-amylase mRNA.  相似文献   

7.
Weis E 《Plant physiology》1982,70(5):1530-1534
The most heat-sensitive functions of chloroplasts in Spinacia oleracea L. including the stromal carboxylation reaction, the light-induced electrical field gradient across the thylakoid membrane, as well as the overall photosynthetic CO2 fixation were less affected by heat if chloroplasts were heated in the light: 50% inactivation occurred around 35°C in the dark and around 40°C in the light. Relative low light intensities were sufficient to obtain optimal protection against heat. In contrast, the light-induced ΔpH across the thylakoid membrane, the photophosphorylation, and the photochemical activity of photosystem II which were less sensitive to heat in the dark (50% inactivation above 40°C) were not protected by light. Photosystem II even was destabilized somewhat by light.

The effect of light on the heat sensitivity of the water-splitting reaction was dependent on the pH in the medium. Protection by light only occurred at alkaline pH, in which case heat sensitivity was high (50% inactivation at 33°C in the dark and at 38°C in the light). Protection was prevented by uncouplers. At pH 6.8 when the heat sensitivity was low in any case (50% inactivation at 41°C in the dark), light had no further protecting effect.

Protection by light has been discussed in terms of light-induced transport of protons from the stroma to the thylakoid space and related ion fluxes.

  相似文献   

8.
9.
The effect of cadmium on the formation of the photosynthetic apparatus of greening barley (Hordeum vulgare L. cv. Triangel) leaves has been investigated. Cadmium treatment of dark-grown leaves strongly reduced the extent of chlorophyll accumulation during greening. Low-temperature fluorescence emission showed, however, that neither the synthesis nor photoconversion of protochlorophyllide was inhibited, although a blue shift of the main fluorescence emission from 685 to 668 mm was found. Chlorophyll fluorescence lifetime was followed by measuring the phase-shift angle of modulated emission. Whereas this parameter normally decreases rapidly during greening, this change proceeded noticeably slower with increasing severity according to cadmium concentration. Cadmium also decreased the variable part of fluorescence induction. These results suggest that the cadmium in greening leaves, rather than interfering with chlorophyll biosynthesis, acts mainly by disturbing the integration of chlorophyll molecules into the stable complexes required for normal functional photoysnthetic activity.  相似文献   

10.
Lin LS  Ho TH 《Plant physiology》1986,82(1):289-297
As part of a continuing effort to elucidate the mode of action of abscisic acid (ABA) in barley (Hordeum vulgare L. cv Himalaya) aleurone layers, we have investigated the induction of several polypeptides by ABA in this tissue. There were nine ABA-induced polypeptides as observed by one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and considerably more (at least 16 spots) on a two-dimensional gel. These proteins started to show enhanced synthesis 2 to 4 hours after ABA treatment, and their synthesis continued for at least 48 hours. In vitro translation using total RNA isolated from ABA-treated aleurone layers indicated that translatable mRNA levels of these proteins essentially paralleled the levels of in vivo synthesized proteins. The most abundant of the ABA-induced proteins was a 29 kilodalton polypeptide which was also synthesized in tissue incubated without ABA. In vivo synthesis of this protein declined as ABA concentration was decreased, with 1 nanomolar ABA approaching control level. Cell fractionation experiments located the 29 kilodalton major ABA-induced protein in 1,000g and 13,000g pellets; most other induced proteins were in the 80,000g supernatant. The 29 kilodalton protein appeared to be sensitive to degradation by sulfhydryl type proteases. As expected, the induction of these proteins by ABA was suppressed by gibberellic acid. Phaseic acid, the first stable metabolite of ABA, suppressed the gibberellic acid-enhanced α-amylase synthesis but was unable to induce the ABA-induced proteins. None of the ABA-induced proteins were secreted into the incubation medium. A 36 kilodalton ABA-induced protein showed cross-reactivity with antibody against a barley lectin specific for glucosamine, galactosamine, and mannosamine.  相似文献   

11.
Huber SC 《Plant physiology》1979,63(4):754-757
Millimolar concentrations of Mg2+ inhibited CO2-dependent O2 evolution by barley (Hordeum vulgare L.) chloroplasts and also prevented the activation of NADP-glyceraldehyde-3-phosphate dehydrogenase, ribulose-5-phosphate kinase, and fructose-1,6-diphosphatase by light in intact chloroplasts. When added in the dark, 3-phosphoglycerate prevented the inhibition of O2 evolution by Mg2+ and reduced the Mg2+ inhibition of enzyme activation by light. Fructose 1,6-diphosphate and ribulose 5-phosphate also prevented the inhibition of O2 evolution by Mg2+ whereas glucose 1-phosphate, glucose 6-phosphate, ribulose 1,5-diphosphate, and citrate had no effect. Phosphoenolpyruvate gave an intermediate response. Metabolites that prevented the Mg2+ inhibition of O2 evolution shortened the lag phase of CO2-dependent O2 evolution in the absence of M2+. Loading chloroplasts in the dark with 3-phosphoglycerate reduced both the lag phase of O2 evolution and the inhibition of O2 evolution by Mg2+. The results suggested that Mg2+ inhibition was lessened either by external metabolites that compete with inorganic phosphate for transport into the chloroplast or by a high concentration of internal metabolites.  相似文献   

12.
Biogenesis of the photosynthetic apparatus in greening etiolated leaves of barley (Hordeum vulgare L) was investigated by an approach permitting investigation of this process under conditions that minimize differences in plastid development. Distributions of barley leaves greening for 24 h as to chlorophyll content and of chloroplast grana as to number of thylakoids were shown to be of a multimodal character. The shape of time-course curves of chlorophyll accumulation in local sites of greening etiolated leaves was of a stepped or (at the end of greening) undulated character. The stepwise accumulation of chlorophyll was accompanied by wave-like changes in chlorophyll b/a ratio, intensity of low-temperature chlorophyll fluorescence and photosynthetic activity with minima at the time points of transition to accelerated chlorophyll accumulation. It is assumed that (1) development of the photosynthetic apparatus in local sites of greening etiolated leaves occurs stepwise, from one steady level to another, but not as gradually as is generally accepted, and (2) every separate step in development of the photosynthetic apparatus seems to begin with formation of photosystem cores and to end with the synthesis of light-harvesting complexes. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Jacobsen JV  Shaw DC 《Plant physiology》1989,91(4):1520-1526
[35S]Methionine labeling experiments showed that abscisic acid (ABA) induced the synthesis of at least 25 polypeptides in mature barley (Hordeum vulgare) aleurone cells. The polypeptides were not secreted. Whereas most of the proteins extracted from aleurone cells were coagulated by heating to 100°C for 10 minutes, most of the ABA-induced polypeptides remained in solution (heat-stable). ABA had little effect on the spectrum of polypeptides that were synthesized and secreted by aleurone cells, and most of these secreted polypeptides were also heatstable. Coomassie blue staining of sodium dodecyl sulfate polyacrylamide gels indicated that ABA-induced polypeptides already occurred in high amounts in mature aleurone layers having accumulated during grain development. About 60% of the total protein extracted from mature aleurone was heat stable. Amino acid analyses of total preparations of heat-stable and heat-labile proteins showed that, compared to heat-labile proteins, heat-stable intracellular proteins were characterized by higher glutamic acid/glutamine (Glx) and glycine levels and lower levels of neutral amino acids. Secreted heat-stable proteins were rich in Glx and proline. The possibilities that the accumulation of the heat-stable polypeptides during grain development is controlled by ABA and that the function of these polypeptides is related to their abundance and extraordinary heat stability are considered.  相似文献   

14.
Klaus Raschke  Rainer Hedrich 《Planta》1985,163(1):105-118
(±)-Abscisic acid (ABA) at 10-5 M was added to the transpiration stream of leaves of 16 species (C3 and C4, monocotyledons and dicotyledons). Stomatal responses followed one of three patterns: i) stomata that were wide and insensitive to CO2 initially, closed partially and became sensitive to CO2; ii) for stomata that were sensitive to CO2 before the application of ABA, the range of highest sensitivity to CO2 shifted from high to low intercellular partial pressures of CO2, for instance in leaves of Zea mays from 170–350 to 70–140 bar; iii) when stomata responded strongly to ABA, their conductance was reduced to a small fraction of the initial conductance, and sensitivity to CO2 was lost. The photosynthetic apparatus was affected by applications of ABA to various degrees, from no response at all (in agreement with several previous reports on the absence of effects of ABA on photosynthesis) through a temporary decrease of its activity to a lasting reduction. Saturation curves of photosynthesis with respect to the partial pressure of CO2 in the intercellular spaces indicated that application of ABA could produce three phenomena: i) a reduction of the initial slope of the saturation curve (which indicates a diminished carboxylation efficiency); ii) a reduction of the level of the CO2-saturated rate of assimilation (which indicates a reduction of the ribulose-1,5-bisphosphate regeneration capacity); and iii) an increase of the CO2 compensation point. Photosynthesis of isolated mesophyll cells was not affected by ABA treatments. Responses of the stomatal and photosynthetic apparatus were usually synchronous and often proportional to each other, with the result that the partial pressure of CO2 in the intercellular spaces frequently remained constant in spite of large changes in conductance and assimilation rate. Guard cells and the photosynthetic apparatus were able to recover from effects of ABA applications while the ABA supply continued. Recovery was usually partial, in the case of the photosynthetic apparatus occasionally complete. Abscisic acid did not cause stomatal closure or decreases in the rate of photosynthesis when it was applied during a phase of stomatal opening and induction of photosynthesis that followed a transition from darkness to light.Abbreviations and symbols A rate of CO2 assimilation - ABA (±)-abscisic acid - c a partial pressure of CO2 in the ambient air or in the gas supplied to the leaf chambers - c i partial pressure of CO2 in the intercellular spaces of a leaf - e a partial pressure of H2O in the air - g conductance for water vapor - J quantum flux - T 1 leaf temperature  相似文献   

15.
A brief review is given of investigations on stres-induced alterations of ms-to s-luminescence yield of chlorophyll in plants. Three different approaches are considered: phytoluminography, luminescence-temperature curves, and luminescence induction curves. The remainder of this article presents new results of the effect of heat stress on luminescence induction curves of isolated chloroplasts. Three parameters with widely different heat resistances were resolved from induction curves. A fast valinomycin sensitive transient, L'i, with a 50% inhibition temperature of 33 to 34°C was correlated with the magnitude of the light-induced membrane potential after heat pretreatment. A slower nigericin sensitive transient, L'm, with a 50% inhibition temperature of 39 to 40°C was mainly correlated with the light-induced proton gradient. An uncoupler resistant part of the induction curve, L0, was enhanced by heat stress (half maximum after pretreatment at 46°C) and was correlated with the degree of inhibition of oxygen evolution. Since L0 was also raised by other treatments impairing the oxygen evolving enzyme system, and since this rise was inhibited by DCMU and hydroxylamine, this type of luminescence was ascribed to the intrinsic backreaction. We conclude that luminescence induction curves can serve as an useful indicator of the intactness of the membrane potential, the proton gradient, and the oxygen evolving enzyme system in isolated chloroplasts after heat stress.Abbreviations 9-AA 9-aminoacridine - CCCP carbonylcyanide m-chlorophenylhydrazone - A518 light-induced absorbance change at 518 nm - Aon, Aoff rapid A518 upon switching actinic light on or off, respectively - Li, Lm, L0 in this order, initial spike, main maximum, uncoupler insensitive transient of luminescence induction curve - L'i = Li – L0 - L'm = Lm – L0 - P, P680 primary donor of PS II - PFD photon flux density (400–700 nm) - QA primary acceptor of PS II  相似文献   

16.
R.J. Strasser  W.L. Butler 《BBA》1977,460(2):230-238
Equations are derived from our model of the photochemical apparatus of photosynthesis to show that the yield of energy transfer from Photosystem II to Photosystem I, ?T(II→Iz), can be obtained from measurements on an individual sample of chloroplasts frozen to ?196 °C by comparing the sum of two specifically defined fluorescence excitation spectra with the absorption spectrum of the sample. Then, given that value of ?T(II→I), the fraction of the quanta absorbed by the photochemical apparatus which is distributed initially to Photosystem I, α, can be determined as a function of the wavelength of excitation from the same fluorescence excitation spectra. The results obtained in this study of individual samples of chloroplasts frozen to ?196 °C in the absence of divalent cations, namely, that ?T(II→I) varies from a minimum value of 0.10 when the Photosystem II reaction centers are all open to a maximum value of 0.25 when the centers are all closed and that α has a value of about 0.30 which is almost independent of wavelength for wavelengths shorter than 675 nm (α increases rapidly toward unity at wavelengths longer than 675 nm), agrees quite well with results obtained previously from comparative measurements of chloroplasts frozen to ?196 °C in the presence and absence of divalent cations.  相似文献   

17.
The interaction and coupling between photosynthetic processeswere studied in ethanol-treated chloroplasts (in the absenceof ethanol) or in the presence of ethanol. Light-induced H+uptake and photophosphorylation were suppressed and electrontransfer was enhanced by ethanol treatment or in the presenceof ethanol (10–25%). Dark recoveries of the H+ uptakeand the 515-nm absorbance change were accelerated by ethanol.The half-effective concentrations of ethanol for these processeswere higher in the ethanol-treated chloroplasts than when ethanolwas present in the reaction mixture. The maximum rate of electrontransfer in the ethanol-treated chloroplasts, which was at thesame level as that of the control with an uncoupler, was notaffected by uncouplers. The marked acceleration of recoveryof the 515-nm absorbance change by SCN- or valinomycin plusK+ in the untreated chloroplasts was much smaller in the ethanol-treatedchloroplasts or in the presence of ethanol. The ethanol-treatedpreparation had the same characteristics as those of the control,in chlorophyll fluorescence, light-intensity dependence of electrontransfer (compared with the control with an uncoupler), andsensitivity to sucrose osmolarity except for a slight increaseof the packed volume. Under the present conditions, the ethanoltreatment mainly induced an increase of permeability of thylakoidmembranes to ions. In chloroplasts treated with ethanol at various concentrations,the relationships of the uncoupler-stimulated part of electrontransfer with the dark half-recovery time of H+ uptake and withphotophosphorylation were linear. Logarithms of the photophosphorylationand the extent of H+ uptake had a linear relationship with aslope of about 3. This slope may indicate the stoichiometryof H+/ATP. (Received June 17, 1978; )  相似文献   

18.
Choe HT  Whang M 《Plant physiology》1986,80(2):305-309
Chloroplasts, isolated from the primary leaves of 7-day-old seedlings, were incubated in vitro at 25°C with 2-chloroethylphosphonic acid (ethephon) under light (0.16 milliwatts per square centimeter) and dark conditions. Ethephon at 1 micromolar (0.1445 ppm), 0.1 and 1 millimolar, or 5 microliters ethylene promoted the deterioration of chloroplasts, increased proteolysis, and reduced the chlorophyll content and PSI and PSII during 72 hours under both light and dark conditions. The decline in PSI and PSII occurred prior to a measurable loss of chlorophyll. The loss of photosynthetic activity affected by ethephon was initiated prior to 12 hours of incubation. After 24 hours in light, 0.1 millimolar (1.445 ppm) epthephon significantly reduced PSI and PSII and promoted the total free amino acid liberation in isolated chloroplasts. In darkness the rate of loss of PSI activity was about 50% of that in light. After 24 hours, in light at 1 millimolar epthephon, PSII activity was 55% of the control, yet nearly 90% of the chlorophyll remained, which indicates that the loss of thylakoid integrity was promoted by ethephon. Ethylene injected in the chloroplast medium at 5 microliters (0.22 micromolar per milliliter) reduced PSI by nearly 50% of the initial in 12 hours. In leaf sections floated in 5 microliters per milliliter suspension medium, a 36% loss of chlorophyll of the control in 36 hours was observed. Cycloheximide at 0.5 millimolar masked the effect of 1 millimolar ethephon and maintained the initial chlorophyll content during the 72 hour period.  相似文献   

19.
The effects of copper on photosynthetic electron transfer systemsin isolated spinach chloroplasts were studied. Two differentinhibitions were observed. First, copper markedly inhibitedferredoxin-catalyzed reactions such as NADP+ photoreduction.The concentration required for 50% inhibition was about 2 µMof cupric sulfate. However, electron flow from reduced 2,6-dichloroindophenol(DCIP) to methyl viologen was not affected. The dissociationconstant between ferredoxin and ferredoxin-NADP+ reductase wasunchanged in the presence of 2.5 µM of cupric sulfate.In enzymic reaction systems, the ferredoxin-dependent electronflow from NADPH to cytochrome c was also strongly inhibitedin the presence of cupric sulfate, while DCIP reduction withNADPH as the electron donor was not affected. Second, DCIP photoreductionwas weakly blocked by copper and the lost activity could notbe recovered by adding 1,5-diphenylcarbazide (DPC). It can be concluded that copper directly interacted with ferredoxincausing inhibition of ferredoxin-dependent reactions. Further,copper caused weak inactivation between the oxidizing side ofthe reaction center of photosystem II and the electron donatingsite of DPC. (Received August 8, 1977; )  相似文献   

20.
The effects of guanylates and inosinates (and adenylates) on phosphorylation, ferricyanide reduction, and light-induced H+ uptake in spinach chloroplasts were studied. GDP, GTP, IDP, and ITP (but not GMP and IMP) stimulated the light-induced H+ uptake and partially inhibited ferricyanide reduction. Phosphate, arsenate, and phlorizin increased the extent of inhibition by these nucleotides and decreased the values of their apparent dissociation constants for the inhibition process. In the presence of phosphate (or arsenate), restoration of ferricyanide reduction from the level inhibited by guanylates and inosinates was observed as phosphorylation (or arsenylation) proceeded. These results suggest that phosphorylation of GDP and IDP as well as ADP takes place after two steps of nucleotide binding to the chloroplast coupling factor 1. The apparent dissociation constants of GDP and IDP for these two binding steps were estimated to be about 34 and 38 µM for the first and 110 and 160 µM for the second step, respectively (at pH 8.3, 15°C). Above pH 9, the ratio (P/e) of the extent of phosphorylation to the increment of electron transport from the basal level measured in the presence of [ATP + Pi] or [ADP + Pi + phlorizin], became increasingly large. When the electron transport level inhibited by dicyclohexylcarbodiimide was taken to be the basal activity, the P/e ratio remained almost constant ( 1) from pH 7.0 up to 10.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号