首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cells with nuclear DNA fragmentation related to apoptosis were detected by TUNEL technique in the seminiferous epithelium of control rats and of rats with experimental hyperprolactinemia induced by metoclopramide. The percentage of convoluted tubules with apoptotic cells and the number of apoptotic cells (predominantly spermatogonia and spermatocytes) was increased in the experimental group. The results indicated stage-specific germ cell apoptosis. In the experimental group, apoptotic cells were most evident at early (I-IV), middle (VII-VIII) and late (XII-XIV) stages of the seminiferous epithelium cycle, as revealed by light and electron microscopy. We suggest that a decreased concentration of testosterone and an increased concentration of prolactin could disturb spermatogenesis and contribute to the intensive apoptosis of germ cells in rats with hyperprolactinemia. Sertoli cells which have receptors for testosterone and prolactin and play an important role in spermatogenesis and in the initiation of apoptosis in seminiferous epithelium, could mediate such an influence of both hormones.  相似文献   

2.
Seminiferous tubules contain a cytoplasmic androgen receptor similar to the receptors in the epididymis and ventral prostate. The presence of a cytoplasmic receptor indicates that androgens maintain spermatogenesis by a direct action on certain types of cells within the seminiferous tubule. The Sertoli cell appears to be one of the cell types containing androgen receptors and the receptor might also be present in spermatogonia, primary spermatocytes, or peritubular cells. The Sertoli cell is stimulated by FSH to produce an androgen-binding protein which may serve to increase the accumulation of androgen in the seminiferous epithelium and make it available for binding by intracellular androgen receptors. This may be a way in which FSH enhances the action of androgen on spermatogenesis. Androgens act on the Sertoli cell to increase its response to FSH. This action of androgens on the Sertoli cell results in increased production of androgen-binding protein and may enhance the production of other substances which exert trophic effects on spermatogenesis.  相似文献   

3.
The effects of follicle-stimulating hormone (FSH) and testosterone in rat Sertoli cells were investigated in vitro by means of isolated cell populations. The Sertoli cells selectively bind FSH, and respond to FSH stimulation with increased accumulation of endogenous cyclic AMP and secretion of androgen-binding protein (ABP). FSH binding and cyclic AMP response in the Sertoli cells change dramatically during sexual maturation. Cyclic AMP response decreases despite an increase in FSH-binding receptors per cell. Evidence has been provided for the existence of cytoplasmic and nuclear androgen receptors and chromatin acceptor-sites that specifically bind the androgen-receptor complex in the Sertoli cells. A model has been proposed for the hormonal interactions in the seminiferous tubule and the possible role of Sertoli cells in mediating the hormonal effects on spermatogenesis.  相似文献   

4.
In vitro culturing of normal human seminiferous epithelium remains largely unexplored. To study normal human spermatogenesis in vitro, we used a micromethod for the purification and culture of Sertoli cells, spermatogonia A, spermatocytes, and early round spermatids. Cytological quantitative data for Sertoli and premeiotic germ cell cocultures isolated from normal testicular biopsies demonstrated that cells were able to proliferate (4%), complete meiosis (6.7%), and differentiate into late round (54%), elongating (49%), and elongated (17%) spermatids at similar in vivo time delays (up to 16 days) in response to FSH + testosterone stimulation. Cells maintained normal meiotic segregation, chromosome complements, and specific gene expression profiles. Follicle-stimulating hormone + testosterone stimulated spermatogonia proliferation and Sertoli cell survival. Follicle-stimulating hormone and especially FSH + testosterone increased diploid germ cell survival during the first week, whereas only FSH + testosterone was able to inhibit cell death during the second week of culture. Follicle-stimulating hormone and especially FSH + testosterone also stimulated meiosis resumption, although this was restricted to late pachytene and secondary spermatocytes. In contrast, spermiogenesis was only stimulated by FSH + testosterone. Expression studies showed that apoptosis was induced in the nucleus of diploid cells, and in nuclear and cytoplasmic compartments of spermatids, mainly triggered by the Fas pathway. Although junctional complexes between Sertoli and premeiotic germ cells were partially reacquired, the same did not apply to spermatids, suggesting that FSH potentiated by testosterone was unable to render Sertoli cells competent to bind round spermatids.  相似文献   

5.
Studies of synchronization of spermatogenesis following vitamin A deficiency have suggested that this may provide an in vivo model for the study of stage-dependent changes in hormonal action and protein secretion within the seminiferous epithelium. However, until now, no information on the stability or durability of this condition has been available. In this study, 200 seminiferous tubules from each of 40 rats (including controls) were classified according to their spermatogenic stage after withdrawal and replenishment of vitamin A. Following 15 wk withdrawal and subsequent replenishment of vitamin A, spermatogenesis was initiated in a synchronous fashion. This synchrony remained stable for more than 10 cycles of the seminiferous epithelium (2.5 spermatogenic cycles). In association with the extended period of vitamin A deficiency, a proportion of tubules (30%) showed morphological characteristics of either Sertoli cells only or Sertoli cells plus spermatogonia with occasional pachytene spermatocytes. During the 11-wk period of observation in this study, no significant change in proportions of damaged tubules were observed. Testicular testosterone concentrations, although elevated with respect to controls, showed no correlation with the stage of the cycle of the seminiferous epithelium observed, whereas pituitary and serum follicle-stimulating hormone levels were elevated, probably due to the number of damaged tubules observed. The persistence of synchrony in spermatogenesis following vitamin A treatment suggests that this model is applicable for studies of paracrine actions within the testis. However, the decreased ratio of synchrony observed with time may provide evidence that duration of the individual stages of the cycle of the seminiferous epithelium might be subject to temporal variation, leading to a progressive desynchronization of spermatogenesis in this model system.  相似文献   

6.
The LH receptor knockout model, developed in our laboratory, was used in determining what FSH alone can do in the absence of LH signaling and whether any of the testicular LH actions are not mediated by androgens. The results revealed that null animals contained smaller seminiferous tubules, which contained the same number of Sertoli cells, spermatogonia, and early spermatocytes as wild-type siblings. The number of late spermatocytes, on the other hand, was moderately decreased, the number of round spermatids was dramatically decreased, and elongated spermatids were completely absent. These changes appear to be due to an increase in apoptosis in spermatocytes. While the number of Leydig cells progressively increased from birth to 60 days of age in wild-type animals, they remained unchanged in null animals. Consequently, 60-day-old null animals contained only a few Leydig cells of fetal type. The age-dependent increase in testicular macrophages lagged behind in null animals compared with wild-type siblings. Orchidopexy indicated that -/- testicular phenotype was not due to abdominal location. Rather, it was mostly due to androgen deficiency, as 21-day testosterone replacement therapy stimulated the growth of seminiferous tubules, decreased apoptosis, and increased the number of late spermatocytes and round spermatids and their subsequent differentiation into mature sperm. The therapy, however, failed to restore adult-type Leydig cells and testicular macrophage numbers to the wild-type levels. In summary, our data support the concept that FSH signaling alone can maintain the proliferation and development of Sertoli cells, spermatogonia, and early spermatocytes. LH actions mediated by testosterone are required for completion of spermatogenesis, and finally, androgen-independent actions of LH are required for the formation of adult-type Leydig cells and recruitment of macrophages into the testes.  相似文献   

7.
In order to elucidate essential factors responsible for the initiation and promotion of spermatogenesis, we developed an organ culture system with a chemically defined medium. When newt testes fragments, consisting of somatic cells and germ cells almost exclusively secondary spermatogonia, were cultured in control medium for three weeks, most of the testicular cysts still contained only secondary spermatogonia. On the other hand, in the medium supplemented with various kinds of hormones and vitamins primary spermatocytes (zygotene-pachytene) appeared in about 60% of the cysts by the second week. Selective removal of specific hormones and vitamins revealed that follicle-stimulating hormone (FSH) alone was indispensable and sufficient for the differentiation of secondary spermatogonia to primary spermatocytes. Neither the addition of luteinizing hormone (LH) nor androgens (testosterone and 5α-dihydrotestosterone) to the control medium stimulated differentiation. Consistent with these findings was the fact that radioreceptor assays revealed high affinity specific binding sites for FSH but none for LH. Since our ultrastructural studies revealed a major loss of contact between spermatogonia and Sertoli cells following exposure to FSH, we suggest that FSH triggers differentiation of spermatogonia by acting on Sertoli cells which in turn act on spermatogonia.  相似文献   

8.
The response of pig Sertoli cell-enriched cultures to FSH was investigated by measuring plasminogen activator (PA) secretion in culture, throughout the nonpubertal and prepubertal periods. Sertoli cell-enriched populations could be isolated from birth until a testicular weight of 56 g. FSH elicited a dose-dependent increase in PA secretion by pig Sertoli cell-enriched cultures. The ED50 was minimal for cells coming from testes weighing 10-22 g, and increased more than 2-fold for cells from heavier testes. This suggests that, at the end of the non-pubertal period, an increased FSH sensitivity is important for initiation of spermatogenesis in this species, and that during the prepubertal period Sertoli cells become less sensitive to FSH. The FSH-stimulated PA secretion increased about 10-fold from a testicular weight of 25 g onwards, i.e. when primary spermatocytes appear in seminiferous tubules.  相似文献   

9.
During spermatogenesis in mammalian testes, junction restructuring takes place at the Sertoli–Sertoli and Sertoli–germ cell interface, which is coupled with germ cell development, such as cell cycle progression, and translocation of the germ cell within the seminiferous epithelium. In the rat testis, restructuring of the blood–testis barrier (BTB) formed between Sertoli cells near the basement membrane and disruption of the apical ectoplasmic specialization (apical ES) between Sertoli cells and fully developed spermatids (spermatozoa) at the luminal edge of the seminiferous epithelium occur concurrently at stage VIII of the seminiferous epithelial cycle of spermatogenesis. These two processes are essential for the translocation of primary spermatocytes from the basal to the apical compartment to prepare for meiosis, and the release of spermatozoa into the lumen of the seminiferous epithelium at spermiation, respectively. Cytokines, such as TNFα and TGFβ3, are present at high levels in the microenvironment of the epithelium at this stage of the epithelial cycle. Since these cytokines were shown to disrupt the BTB integrity and germ cell adhesion, it was proposed that some cytokines released from germ cells, particularly primary spermatocytes, and Sertoli cells, would induce restructuring of the BTB and apical ES at stage VIII of the seminiferous epithelial cycle. In this review, the intricate role of cytokines and testosterone to regulate the transit of primary spermatocytes at the BTB and spermiation will be discussed. Possible regulators that mediate cytokine-induced junction restructuring, including gap junction and extracellular matrix, and the role of testosterone on junction dynamics in the testis will also be discussed.  相似文献   

10.
Cryptorchidism for 28 or 10 days resulted in a severe disruption of spermatogenesis (assessed histologically or by fertility tests), Sertoli cell function (assessed by seminiferous tubule fluid production after efferent duct ligation, ABP levels, binding of 125I-labelled FSH to testis homogenates and serum FSH levels) and Leydig cell function (assessed by serum LH and testosterone levels, in-vitro testosterone production, binding of 125I-labelled hCG). Orchidopexy after 28 days of cryptorchidism resulted in a poor recovery of spermatogenesis since the majority of tubules were lined by Sertoli cells and a few spermatogonia. No recovery occurred in the indicators of Sertoli and Leydig cell function. Orchidopexy after 10 days of cryptorchidism also resulted in a poor recovery of spermatogenesis, with a few animals showing partial recovery after 6 months. No recovery occurred in seminiferous tubule fluid production but partial recovery occurred in ABP content and production rate. Serum FSH, LH levels and in-vitro testosterone production by the testis remained elevated and did not change from the values found during cryptorchidism. Fertility testing at 6 months revealed a small number of rats in which fertility was restored although the number of embryos was lower than in controls. In this group of animals there was a significant improvement in a number of indicators of Sertoli cell and Leydig cell function. These data provide further evidence to link the changes in Sertoli cell and Leydig cell function to the germ cell complement present in the testis.  相似文献   

11.
Summary The effects of follicle-stimulating hormone (FSH) and testosterone in rat Sertoli cells were investigated in vitro by means of isolated cell populations. The Sertoli cells selectively bind FSH, and respond to FSH stimulation with increased accumulation of endogenous cyclic AMP and secretion of androgen-binding protein (ABP). FSH binding and cyclic AMP response in the Sertoli cells change dramatically during sexual maturation. Cyclic AMP response decreases despite an increase in FSH-binding receptors per cell. Evidence has been provided for the existence of cytoplasmic and nuclear androgen receptors and chromatin acceptor-sites that specifically bind the androgen-receptor complex in the Sertoli cells. A model has been proposed for the hormonal interactions in the seminiferous tubule and the possible role of Sertoli cells in mediating the hormonal effects on spermatogenesis. Presented in the formal symposium on Sexual Differentiation in Vitro and in Vivo at the 29th Annual Meeting of the Tissue Culture Association, Denver, Colorado, June 4–8, 1978. This work was supported by Grant P50 HD08338 from the NICHHD. Dr. barbara M. Sanborn is a recipient of Research Career Development Award 1-K04-HD00126 (NIH).  相似文献   

12.
Male PD strain rats are sterile in the homozygous condition (pd/pd) due to abnormal spermatogenesis detectable at around nine weeks of age. Previous studies have indicated electron microscopic abnormalities in the Sertoli cells of pd/pd males at three and 12 weeks of age. Since spermatogenesis and Sertoli cell function depend on gonadotropins (luteinizing and follicle-stimulating hormones [LH and FSH]) and testosterone, production and/or secretion of these hormones might be altered in pd/pd males. The aim of the study reported here was to investigate the hormonal status of pd/pd males at three, six, and nine weeks of age. Although alteration was not evident in the LH-immunoreactive cells, FSH-immunoreactive cells in pd/pd males were small in size with scant cytoplasm and were reduced in number and area (73 and 51% of phenotypically normal pd/+ males, respectively) at three weeks of age, although serum FSH concentration was similar to that in pd/+ males. At six and nine weeks of age, percentages of the areas occupied by LH- and FSH-immunoreactive cells in pd/pd males were higher than those in pd/+ males. Serum FSH concentration in pd/pd males was significantly high at nine weeks of age, although a difference in serum LH and testosterone concentration was not evident. These results suggest that FSH production in pd/pd males is decreased at three weeks of age. This might be associated with the Sertoli cell abnormalities and subsequent abnormal spermatogenesis seen in adult life.  相似文献   

13.
In this study, we determined the relative role of LH and FSH in initiating the pubertal proliferation of Sertoli cells in primates. Sixteen juvenile male rhesus monkeys (Macaca mulatta) bearing venous catheters received intermittent intravenous infusions of single chain human LH (schLH) or recombinant human FSH (rhFSH) or a combination of both for 11 days. The schLH infusion elicited a physiological testosterone response. On Day 11, monkeys were castrated, and one-half of a testis was fixed in Bouin's fluid. Infusion of the gonadotropins, either alone or in combination, effected a significant increase in testicular weight, seminiferous cord diameter, and the number of Sertoli cells per testis (schLH, 295 +/- 46 x 10(6); rhFSH, 342 +/- 64 x 10(6); LH+FSH, 298 +/- 26 x 10(6) versus vehicle, 204 +/- 26 x 10(6)). The latter finding indicated that LH, in addition to FSH, plays a critical role in the initiation of the pubertal proliferation of Sertoli cells in primates. Moreover, combined gonadotropin treatment led to the appearance of germ cells as mature as early primary spermatocytes, indicating that initiation of spermatogenesis had been set in motion. Because the duration of hormone stimulation was only 11 days, the latter result suggests that Leydig and Sertoli cells of the juvenile monkey testis can immediately transduce a gonadotropin signal to the germ cell.  相似文献   

14.
A cDNA clone coding for Cellular Retinol-Binding Protein (CRBP) was used as a probe to study the expression of the gene in the somatic cells of the seminiferous tubules (Sertoli and peritubular cells). In this paper we demonstrate that these cells are actively involved in the synthesis of the specific mRNA. In Sertoli cells the gene is modulated by the hormones effective in spermatogenesis, such as FSH and testosterone. Moreover, peritubular cells revealed an approximately two times higher concentration of CRBP steady-state mRNA levels when compared with Sertoli cells.  相似文献   

15.
This review centers around studies which have used ethane dimethane sulphonate (EDS) selectively to destroy all of the Leydig cells in the adult rat testis. With additional manipulations such as testosterone replacement and/or experimental induction of severe seminiferous tubule damage in EDS-injected rats, the following questions have been addressed: 1) What are the roles and relative importance of testosterone and other non-androgenic Leydig cell products in normal spermatogenesis and testicular function in general? 2) What are the factors controlling Leydig cell proliferation and maturation? 3) Is it the Leydig cells or the seminiferous tubules (or both) which control the testicular vasculature? The findings emphasize that in the normal adult rat testis there is a complex interaction between the Leydig cells, the Sertoli (and/or peritubular) cells, the germ cells, and the vasculature, and that testosterone, but not other Leydig cell products, plays a central role in many of these interactions. The Leydig cells drive spermatogenesis via the secretion of testosterone which acts on the Sertoli and/or peritubular cells to create an environment which enables normal progression of germ cells through stage VII of the spermatogenic cycle. In addition, testosterone is involved in the control of the vasculature, and hence the formation of testicular interstitial fluid, presumably again via effects on the Sertoli and/or peritubular cells. When Leydig cells regenerate and mature after their destruction by EDS, it can be shown that both the rate and the location of regenerating Leydig cells is determined by an interplay between endocrine (LH and perhaps FSH) and paracrine factors; the latter emanate from the seminiferous tubules and are determined by the germ cell complement. Taken together with other data on the paracrine control of Leydig cell testosterone secretion by the seminiferous tubules, these findings demonstrate that the functions of all of the cell types in the testis are interwoven in a highly organized manner. This has considerable implications with regard to the concentration of research effort on in vitro studies of the testis, and is discussed together with the need for a multidisciplinary approach if the complex control of spermatogenesis is ever to be properly understood.  相似文献   

16.
The study was an examination of the effects of spinal cord injury (SCI) on spermatogenesis and Sertoli cell functions in adult rats with Sertoli cell-enriched (SCE) testes. The effects of SCI on the seminiferous epithelium were characterized by abnormalities in the remaining spermatogenic cells during the first month after SCI. Three days after SCI, serum testosterone levels were 80% lower, while serum FSH and LH levels were 25% and 50% higher, respectively, than those of sham control SCE rats. At this time, the levels of mRNA for androgen receptor (AR), FSH receptor (FSH-R), and androgen-binding protein (ABP) were normal whereas those for transferrin (Trf) had decreased by 40%. Thereafter, serum testosterone levels increased, but they remained lower than those of the sham control rats 28 days after SCI; and serum FSH and LH levels returned to normal. The levels of mRNA for AR, ABP, and Trf exhibited a biphasic increase 7 days after SCI and remained elevated 28 days after SCI. FSH-R mRNA levels were also elevated 90 days after SCI. Unexpectedly, active spermatogenesis, including qualitatively complete spermatogenesis, persisted in > 40% of the tubules 90 days after SCI. These results suggest that the stem cells and/or undifferentiated spermatogonia in SCE testes are less susceptible to the deleterious effects of SCI than the normal testes and that they were able to proliferate and differentiate after SCI. The presence of elevated levels of mRNA for Sertoli cell FSH-R and AR, as well as of that for the Sertoli cell proteins, in the SCE testes during the chronic stage of SCI suggests a modification of Sertoli cell physiology. Such changes in Sertoli cell functions may provide a beneficial environment for the proliferation of the stem cells and differentiation of postmeiotic cells, thus resulting in the persistence of spermatogenesis in these testes.  相似文献   

17.
The various mechanisms regulating testicular and ovarian androgen secretion are reviewed. Testicular androgen secretion is controlled by luteinizing hormone (LH) and follicle stimulating hormone (FSH), which influence the Leydig cell response to the LH. The contribution of prolactin, growth hormone and thyroid hormones to the Leydig cell function is discussed. The ovarian androgen secretion is regulated in a very similar fashion as the Leydig cell of testis. Prolactin, however, has an inhibitory effect on androgen secretion in the ovary. The intratesticular action of androgens is linked to spermatogenesis. Sertoli cells, by producing the androgen-binding protein, contribute to the intratubular androgen concentration. Inhibin production of the Sertoli cell is stimulated by androgens. In the ovary, androgens produced by the theca interna are used as precursors for the aromatization of estradiol, which stimulates together with FSH the mitosis of granulosa cells. The feedback control of androgen secretion is complicated, as the direct feedback mechanisms are joined by indirect feedback regulations like the peptide inhibin, which can be stimulated by androgens. Intragonadal mechanisms regulating androgen production are the cybernins for testicles and ovaries. In the testicle, estrogens from the Sertoli cells regulate the Leydig cell testosterone biosynthesis. In the ovary, nonaromatizable androgens are potent inhibitors of the aromatization activity in the granulosa cell. A peptide with a FSH receptor binding inhibiting activity is found in male and female gonads. Finally, LH-RH-like peptides have been found in the testicle, which are capable of inhibiting steroidogenesis. These gonadocrinins are similarly produced in granulosa cells of the ovary.  相似文献   

18.
Testicular biopsies from 82 oligo-or azoospermic male patients were subjected to immunostaining using anti-human FSH antibodies. Histological evaluation showed normal spermatogenesis (nspg) in 7 (FSH: 2.7±0.7), mixed atrophy (ma) in 63 (FSH:5.3±0.5), and bilateral or unilateral Sertoli Cell Only syndrome (SCO) in 12 (FSH:21.7±3.5) patients. For the relationship between FSH values and testicular histology, see Bergmann et al. (1994). FSH immunoreactivity was found exclusively in Sertoli cells and in some interstitial cells. Seminiferous epithelium showing normal or impaired spermatogenesis displayed only weak immunoreactivity compared to intense immunoreaction, i.e. large and numerous vesicles in Sertoli cells of SCO tubules in biopsies showing mixed atrophy or SCO. In addition, h-FSH receptor mRNA was demonstrated by in situ hydridization using biotinylated cDNA antisense oligonucleotides. Hybridization signals were found within the seminiferous epithelium exclusively in Sertoli cell cytoplasm associated with normal spermatogenesis and in epithelia showing different signs of impairment, including SCO. It is concluded that: (1) Sertoli cells are the only cells within the seminiferous epithelium expressing FSH receptors; (2) the accumulation of FSH immunoreactivity in Sertoli cells of SCO tubules appears to be a sign of impaired Sertoli cell function.  相似文献   

19.
Immunohistochemical localization of sulphydryloxidase was examined in the testis of the Djungarian hamster from Day 0 to Day 31 of post-natal development. The sulphydryloxidase antibody labelled prespermatogonia and the first population of spermatogonia type A within the seminiferous epithelium. Additionally, Sertoli cells exhibited immunoreactivity from Day 2 to Day 11 after birth. From Day 11 onwards, sulphydryloxidase immunoreactivity was found in germ cells after the initiation spermatogenesis from pachytene primary spermatocytes, showing the highest intensity in mid-pachytene spermatocytes. The pattern of sulphydryloxidase expression during spermatogenesis was identical to that found in adult animals. It is concluded that sulphydryloxidase immunoreactivity not only serves as a marker for early stages of spermatogenesis, especially pachytene spermatocytes, confirming earlier reports, but also for spermatogonial precursors.  相似文献   

20.
Primary cultures of immature rat Sertoli cells, maintained in serum-free medium, secrete two types of plasminogen activator (PA). When cultured under basal conditions, the preparations predominantly produce PA having a relative molecular weight (Mr) of 45,000 to 48,000. This PA activity is inactivated by antiserum against urokinase-type PA. When Sertoli cells are stimulated by follicle-stimulating hormone (FSH) or by dibutyryl cyclic adenosine 3',5'-monophosphate (dbcAMP), PA secretion is increased. The PA produced under these conditions has an Mr of 70,000, and is inactivated by antiserum against tissue-type PA but not by antiserum against urokinase-type PA. We conclude that, under basal conditions, Sertoli cells primarily secrete PA having the characteristics of urokinase-like PA (mu PA), and that Sertoli cells stimulated by FSH or by dbcAMP predominantly produce PA having the properties of tissue-type PA (tPA). Segments of adult rat seminiferous tubules, at defined stages of the cycle of the seminiferous epithelium, also produce and secrete two types of PA into the medium when maintained in organ culture. Segments at all stages examined release primarily mu PA in preparations cultured under basal conditions. In contrast, segments cultured in the presence of FSH synthesize larger amounts of PA, predominantly of the tPA type. An additional protease, which is independent of plasminogen, is secreted by tubule segments stimulated by FSH. The activity of this novel protease is not detectable in cultures maintained under basal conditions. We discuss the data in relation to the possible role of proteases in the restructuring of the seminiferous tubule during spermatogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号