首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, the effect of antenna element loading on the localized specific absorption rate (SAR) has been analyzed for base station antennas. The analysis was conducted in order to determine whether localized SAR measurements of large multi-element base station antennas can be conducted using standardized procedures and commercially available equipment. More specifically, it was investigated if the antenna shifting measurement procedure, specified in the European base station exposure assessment standard EN 50383, will produce accurate localized SAR results for base station antennas larger than the specified measurement phantom. The obtained results show that SAR accuracy is affected by the presence of lossy material within distances of one wavelength from the tested antennas as a consequence of coupling and redistribution of transmitted power among the antenna elements. It was also found that the existing standardized phantom is not optimal for SAR measurements of large base station antennas. A new methodology is instead proposed based on a larger, box-shaped, whole-body phantom.  相似文献   

2.
This paper investigates the minimum distance for a human body in the near field of a cellular telephone base station antenna for which there is compliance with the IEEE or ICNIRP threshold values for radio frequency electromagnetic energy absorption in the human body. First, local maximum specific absorption rates (SARs), measured and averaged over volumes equivalent to 1 and to 10 g tissue within the trunk region of a physical, liquid filled shell phantom facing and irradiated by a typical GSM 900 base station antenna, were compared to corresponding calculated SAR values. The calculation used a homogeneous Visible Human body model in front of a simulated base station antenna of the same type. Both real and simulated base station antennas operated at 935 MHz. Antenna-body distances were between 1 and 65 cm. The agreement between measurements and calculations was excellent. This gave confidence in the subsequent calculated SAR values for the heterogeneous Visible Human model, for which each tissue was assigned the currently accepted values for permittivity and conductivity at 935 MHz. Calculated SAR values within the trunk of the body were found to be about double those for the homogeneous case. When the IEEE standard and the ICNIRP guidelines are both to be complied with, the local SAR averaged over 1 g tissue was found to be the determining parameter. Emitted power values from the antenna that produced the maximum SAR value over 1 g specified in the IEEE standard at the base station are less than those needed to reach the ICNIRP threshold specified for the local SAR averaged over 10 g. For the GSM base station antenna investigated here operating at 935 MHz with 40 W emitted power, the model indicates that the human body should not be closer to the antenna than 18 cm for controlled environment exposure, or about 95 cm for uncontrolled environment exposure. These safe distance limits are for SARs averaged over 1 g tissue. The corresponding safety distance limits under the ICNIRP guidelines for SAR taken over 10 g tissue are 5 cm for occupational exposure and about 75 cm for general-public exposure.  相似文献   

3.
This study investigates occupational exposure to electromagnetic fields in front of a multi‐band base station antenna for mobile communications at 900, 1800, and 2100 MHz. Finite‐difference time‐domain method was used to first validate the antenna model against measurement results published in the literature and then investigate the specific absorption rate (SAR) in two heterogeneous, anatomically correct human models (Virtual Family male and female) at distances from 10 to 1000 mm. Special attention was given to simultaneous exposure to fields of three different frequencies, their interaction and the additivity of SAR resulting from each frequency. The results show that the highest frequency—2100 MHz—results in the highest spatial‐peak SAR averaged over 10 g of tissue, while the whole‐body SAR is similar at all three frequencies. At distances >200 mm from the antenna, the whole‐body SAR is a more limiting factor for compliance to exposure guidelines, while at shorter distances the spatial‐peak SAR may be more limiting. For the evaluation of combined exposure, a simple summation of spatial‐peak SAR maxima at each frequency gives a good estimation for combined exposure, which was also found to depend on the distribution of transmitting power between the different frequency bands. Bioelectromagnetics 32:234–242, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
In this work, the numerical dosimetry in human exposure to the electromagnetic fields from antennas of wireless devices, such as those of wireless local area networks (WLAN) access points or phone and computer peripherals with Bluetooth antennas, is analyzed with the objective of assessing guidelines compliance. Several geometrical configurations are considered to simulate possible exposure situations of a person to the fields from WLAN or Bluetooth antennas operating at 2400 MHz. The exposure to radiation from two sources of different frequencies when using a 1800 MHz GSM mobile phone connected via Bluetooth with a hands-free car kit is also considered. The finite-difference time-domain (FDTD) method is used to calculate electric and magnetic field values in the vicinity of the antennas and specific absorption rates (SAR) in a high-resolution model of the human head and torso, to be compared with the limits from the guidelines (reference levels and basic restrictions, respectively). Results show that the exposure levels in worst-case situations studied are lower than those obtained when analyzing the exposure to mobile phones, as could be expected because of the low power of the signals and the distance between the human and the antennas, with both field and SAR values being far below the limits established by the guidelines, even when considering the combined exposure to both a GSM and a Bluetooth antenna.  相似文献   

5.
In this article, the exposure to radio frequency electromagnetic fields was studied in close proximity (distances of 10, 100, 300, and 600 mm) to six base station antennas. The specific absorption rate (SAR) in 800 mm × 500 mm × 200 mm box phantom as well as unperturbed electric field (E) in air was measured. The results were used to determine whether the measurement of local maximum of unperturbed electric field can be used as a compliance check for local exposure. Also, the conservativeness of this assessment method compared to the ICNIRP basic restriction was studied. Moreover, the assessment of whole‐body exposure was discussed and the distance ranges presented in which the ICNIRP limit for local exposure could be exceeded before the limit for whole‐body SAR. These results show that the electric field measurement alone can be used for easy compliance check for the local exposure at all distances and for all antenna types studied. However, in some cases when the local peak value of E was compared directly to the ICNIRP reference level for unperturbed E, the exposure was overestimated only very slightly (by factor 1.1) compared to the basic restriction for localized SAR in a human, and hence these results can not be generalized to all antenna types. Moreover, it was shown that the limit for localized exposure could be exceeded before the limit for the whole‐body average SAR, if the distance to the antenna was less than 240 mm. Bioelectromagnetics 30:307–312, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Bahr A  Dorn H  Bolz T 《Bioelectromagnetics》2006,27(4):320-327
An exposure system for investigation of volunteers during simulated GSM and WCDMA mobile phone usage has been designed. The apparatus consists of a dual band antenna with enhanced carrying properties that enables exposure for at least 8 h a day. For GSM a 900 MHz pulse modulated carrier was used. The QPSK modulated WCDMA signal at 1966 MHz comprises a power control scheme, which was designed for investigations of biological effects. The dosimetry of the exposure system by measurements and calculations is described in detail within this paper. It is shown that the SAR distribution of the antenna shows similar characteristics to mobile phones with an integrated antenna. The 10 g averaged localized SAR, normalized to an antenna input power of 1 W and measured in the flat phantom area of the SAM phantom, amounts to 7.82 mW/g (900 MHz) and 10.98 mW/g (1966 MHz). The simulated SAR(10 g) in the Visible Human head model agrees with measured values to within 20%. A variation of the antenna rotation angle results in an SAR(10 g) change below 17%. The increase of the antenna distance by 2 mm with respect to the human head leads to an SAR(10 g) change of 9%.  相似文献   

7.
Implantable neural interfaces are designed to provide a high spatial and temporal precision control signal implementing high degree of freedom real-time prosthetic systems. The development of a Radio Frequency (RF) wireless neural interface has the potential to expand the number of applications as well as extend the robustness and longevity compared to wired neural interfaces. However, it is well known that RF signal is absorbed by the body and can result in tissue heating. In this work, numerical studies with analytical validations are performed to provide an assessment of power, heating and specific absorption rate (SAR) associated with the wireless RF transmitting within the human head. The receiving antenna on the neural interface is designed with different geometries and modeled at a range of implanted depths within the brain in order to estimate the maximum receiving power without violating SAR and tissue temperature elevation safety regulations. Based on the size of the designed antenna, sets of frequencies between 1 GHz to 4 GHz have been investigated. As expected the simulations demonstrate that longer receiving antennas (dipole) and lower working frequencies result in greater power availability prior to violating SAR regulations. For a 15 mm dipole antenna operating at 1.24 GHz on the surface of the brain, 730 uW of power could be harvested at the Federal Communications Commission (FCC) SAR violation limit. At approximately 5 cm inside the head, this same antenna would receive 190 uW of power prior to violating SAR regulations. Finally, the 3-D bio-heat simulation results show that for all evaluated antennas and frequency combinations we reach FCC SAR limits well before 1 °C. It is clear that powering neural interfaces via RF is possible, but ultra-low power circuit designs combined with advanced simulation will be required to develop a functional antenna that meets all system requirements.  相似文献   

8.
ABSTRACT

Malignant liver tumors are the sixth most common and deadly cancer in the world and the third most common cause of cancer mortality. Hepatocellular carcinoma (primary liver cancer) is one of the most common malignancies worldwide with one of the highest mortality rates. Microwave ablation (MWA) is a new, promising, and multidisciplinary technology designed to destroy unhealthy tissue of various natures by radiating electromagnetic waves with microwave antennas. The finite element method (FEM) has been used in the present work to generate the simulated models of tapered cap floating sleeve antenna for validation of its design concepts, because FEM allows modeling of complex geometries that cannot be solved by analytical methods or finite difference models. The performances have been evaluated in terms of objective metrics, ablation zone, antenna matching, power absorption and SAR pattern.  相似文献   

9.
Human exposure to electromagnetic fields produced by two wearable antennas operating in the 2.4 GHz frequency band was assessed by computational tools. Both antennas were designed to be attached to the skin, but they were intended for different applications. The first antenna was designed for off-body applications, i.e. to communicate with a device placed outside the body, while the second antenna model was optimized to communicate with a device located inside the body. The power absorption in human tissues was determined at several locations of adult male and female body models. The maximum specific absorption rate (SAR) value obtained with the off-body antenna was found on the torso of the woman model and was equal to 0.037 W/kg at 2.45 GHz. SAR levels increased significantly for the antenna transmitting inside the body. In this case, SAR values ranged between 0.23 and 0.45 W/kg at the same body location. The power absorbed in different body tissues and total power absorbed in the body were also calculated; the maximum total power absorbed was equal to 5.2 mW for an antenna input power equal to 10 mW. Bioelectromagnetics. 2020;41:73–79 © 2019 Wiley Periodicals, Inc.  相似文献   

10.
A new head exposure system for double-blind provocation studies investigating possible effects of 2.45 GHz Wi-Fi exposure on human sleep was developed and dosimetrically analyzed. The exposure system includes six simultaneously radiating directional antennas arranged along a circle (radius 0.6 m) around the test subject's head, and enables a virtually uniform head exposure, i.e. without any preferred direction of incidence, during sleep. The system is fully computer-controlled and applies a real wireless local area network (WLAN) signal representing different transmission patterns as expected in real WLAN scenarios, i.e. phases of “beacon only” as well as phases of different data transmission rates. Sham and verum are applied in a double-blind crossover study design and all relevant exposure data, i.e. forward and reverse power at all six antenna inputs, are continuously recorded for quality control. For a total antenna input power (sum of all antennas) of 220 mW, typical specific absorption rate (SAR) in cortical brain regions is approximately 1–2 mW/kg (mass average SAR over respective brain region), which can be seen as a realistic worst-case exposure level in real WLAN scenarios. Taking into account variations of head positions during the experiments, the resulting exposure of different brain regions may deviate from the given average SAR levels up to 10 dB. Peak spatial 10 g average SAR in all brain and all head tissues is between 1.5–3.5 and 10.4–25 mW/kg, respectively. Bioelectromagnetics. © 2020 Bioelectromagnetics Society.  相似文献   

11.
This study reports the dosimetry performed to support an experiment that measured physiological responses of seated volunteer human subjects exposed to 220 MHz fields. Exposures were performed in an anechoic chamber which was designed to provide uniform fields for frequencies of 100 MHz or greater. A vertical half-wave dipole with a 90 degrees reflector was used to optimize the field at the subject's location. The vertically polarized E field was incident on the dorsal side of the phantoms and human volunteers. The dosimetry plan required measurement of stationary probe drift, field strengths as a function of distance, electric and magnetic field maps at 200, 225, and 250 cm from the dipole antenna, and specific absorption rate (SAR) measurements using a human phantom, as well as theoretical predictions of SAR with the finite difference time domain (FDTD) method. A NBS (National Bureau of Standards, now NIST, National Institute of Standards and Technology, Boulder, CO) 10 cm loop antenna was positioned 150 cm to the right, 100 cm above and 60 cm behind the subject (toward the transmitting antenna) and was read prior to each subject's exposure and at 5 min intervals during all RF exposures. Transmitter stability was determined by measuring plate voltage, plate current, screen voltage and grid voltage for the driver and final amplifiers before and at 5 min intervals throughout the RF exposures. These dosimetry measurements assured accurate and consistent exposures. FDTD calculations were used to determine SAR distribution in a seated human subject. This study reports the necessary dosimetry to precisely control exposure levels for studies of the physiological consequences of human volunteer exposures to 220 MHz.  相似文献   

12.
In this paper, effects of a brain tumor located in a dispersive human head model on specific absorption rate (SAR) and temperature rise distributions due to different types of RF sources at 4G and 5G cellular frequencies are investigated with the use of a multiphysics model. This multiphysics model analyzes the dispersive human head with the brain tumor and provides the SAR and temperature rise distributions in the head due to the RF source operated at 4G and 5G cellular frequencies in a single finite-difference time-domain simulation. An adjacent antenna operated at 4G and 5G cellular frequencies to the human head is considered as the RF source for near-field exposure, while a plane wave field radiated by base stations operated at 4G and 5G cellular frequencies is considered as the RF source for far-field exposure. Numerical results show that the brain tumor in the head slightly affects the SAR and temperature rise distributions due to different RF sources at 4G and 5G cellular frequencies.  相似文献   

13.
This study reports the dosimetry performed to support an experiment that measured physiological responses of volunteer human subjects exposed to the resonant frequency for a seated human adult at 100 MHz. Exposures were performed in an anechoic chamber which was designed to provide uniform fields for frequencies of 100 MHz or greater. A half wave dipole with a 90 degrees reflector was used to optimize the field at the subject location. The dosimetry plan required measurement of transmitter harmonics, stationary probe drift, field strengths as a function of distance, electric and magnetic field maps at 200, 225, and 250 cm from the dipole antenna, and specific absorption rate (SAR) measurements using a human phantom, as well as theoretical predictions of SAR with the finite difference time domain (FDTD) method. On each exposure test day, a measurement was taken at 225 cm on the beam centerline with a NBS E field probe to assure consistently precise exposures. A NBS 10 cm loop antenna was positioned 150 cm to the right, 100 cm above, and 60 cm behind the subject and was read at 5 min intervals during all RF exposures. These dosimetry measurements assured accurate and consistent exposures. FDTD calculations were used to determine SAR distribution in a seated human subject. This study reports the necessary dosimetry for work on physiological consequences of human volunteer exposures to 100 MHz.  相似文献   

14.
Rapid increase in the use of numerical techniques to predict current density or specific absorption rate (SAR) in sophisticated three dimensional anatomical computer models of man and animals has resulted in the need to understand how numerical solutions of the complex electrodynamics equations match with empirical measurements. This aspect is particularly important because different numerical codes and computer models are used in research settings as a guide in designing clinical devices, telecommunication systems, and safety standards. To ensure compliance with safety guidelines during equipment design, manufacturing and maintenance, realistic and accurate models could be used as a bridge between empirical data and actual exposure conditions. Before these tools are transitioned into the hands of health safety officers and system designers, their accuracy and limitations must be verified under a variety of exposure conditions using available analytical and empirical dosimetry techniques. In this paper, empirical validation of SAR values predicted by finite difference time domain (FDTD) numerical code on sphere and rat is presented. The results of this study show a good agreement between empirical and theoretical methods and, thus, offer a relatively high confidence in SAR predictions obtained from digital anatomical models based on the FDTD numerical code.  相似文献   

15.
The 1998 International Commission for Non-Ionising Radiation (ICNIRP) Guidelines for human exposure to radiofrequency (RF) fields contain a recommendation to assess the potential impact of metallic implants in workers exposed up to the allowable occupational field limits. This study provides an example of how numerical electromagnetic (EM) and thermal modelling can be used to determine whether scattered RF fields around metallic implants in workers exposed to allowable occupational ambient field limits will comply with the recommendations of relevant standards and guidelines. A case study is performed for plane wave exposures of a 50 mm diameter titanium cranioplasty plate, implanted around 5-6 mm under the surface of the forehead. The level of exposures was set to the ambient power flux density limits for occupational exposures specified in the 1998 ICNIRP guidelines and the current 1999 IEEE C95.1 standard over the frequency range 100-3000 MHz. Two distinct peak responses were observed. There was a resonant response for the whole implant at 200-300 MHz where the maximum dimension of the implant is around a third of the wavelength of the RF exposure. This, however, resulted in relatively low peak specific energy absorption rate (SAR) levels around the implant at the exposure limits. Between 2100-2800 MHz, a second SAR concentrating mechanism of constructive interference of the wave reflected back and forth between the air-scalp interface and the scalp-plate interface resulted in higher peak SARs that were within the allowable limits for the ICNIRP exposures, but not for the IEEE C95.1 exposures. Moreover, the IEEE peak SAR limits were also exceeded, to a lesser degree, even when the implant was not present. However, thermal modelling indicated that the peak SAR concentrations around the implant did not result in any peak temperature rise above 1 degrees C for occupational exposures recommended in the ICNIRP guidelines, and hence would not pose any significant health risk.  相似文献   

16.
Energy deposition in a model of man in the near field   总被引:3,自引:0,他引:3  
The spatial distribution of the specific absorption rate (SAR) was measured in a full-scale model of man using implantable electric field probes. The model was exposed in the near-field of linear and aperture antennas at 350 MHz. Effects of the wave polarization, antenna position and antenna gain on the SAR distribution and the average SAR in the whole-body and body parts are reported.  相似文献   

17.
Thermal ablation therapies, based on electromagnetic field sources (interstitial or intracavitary antennas) at radio and microwave frequencies, are increasingly used in medicine due to their proven efficacy in the treatment of many diseases (tumours, stenosis, etc). Such techniques need standardized procedures, still not completely consolidated, as to analyze the behaviour of antennas for treatment optimisation. Several tissue-equivalent dielectric simulators (also named phantoms) have been developed to represent human head tissues, and extensively used in the analysis of human exposure to the electromagnetic emissions from hand-held devices; yet, very few studies have considered other tissues, as those met in ablation therapies. The objective of this study was to develop phantoms of liver and kidney tissue to experimentally characterise interstitial microwave antennas in reference conditions. Phantom properties depend on the simulated target tissue (liver or kidney) and the considered frequency (2.45 GHz in this work), addressing the need for a transparent liquid to easily control the positioning of the probe with respect to the antenna under test. An experimental set-up was also developed and used to characterise microwave ablation antenna performances. Finally, a comparison between measurements and numerical simulations was performed for the cross-validation of the experimental set-up and the numerical model. The obtained results highlight the fundamental role played by dielectric simulators in the development of microwave ablation devices, representing the first step towards the definition of a procedure for the ablation treatment planning.  相似文献   

18.
According to international guidelines, the assessment of biophysical effects of exposure to electromagnetic fields (EMF) generated by hand-operated sources needs the evaluation of induced electric field (E in) or specific energy absorption rate (SAR) caused by EMF inside a worker's body and is usually done by the numerical simulations with different protocols applied to these two exposure cases. The crucial element of these simulations is the numerical phantom of the human body. Procedures of E in and SAR evaluation due to compliance analysis with exposure limits have been defined in Institute of Electrical and Electronics Engineers standards and International Commission on Non-Ionizing Radiation Protection guidelines, but a detailed specification of human body phantoms has not been described. An analysis of the properties of over 30 human body numerical phantoms was performed which has been used in recently published investigations related to the assessment of EMF exposure by various sources. The differences in applicability of these phantoms in the evaluation of E in and SAR while operating industrial devices and SAR while using mobile communication handsets are discussed. The whole human body numerical phantom dimensions, posture, spatial resolution and electric contact with the ground constitute the key parameters in modeling the exposure related to industrial devices, while modeling the exposure from mobile communication handsets, which needs only to represent the exposed part of the human body nearest to the handset, mainly depends on spatial resolution of the phantom. The specification and standardization of these parameters of numerical human body phantoms are key requirements to achieve comparable and reliable results from numerical simulations carried out for compliance analysis against exposure limits or within the exposure assessment in EMF-related epidemiological studies.  相似文献   

19.
Previous studies comparing SAR difference in the head of children and adults used highly simplified generic models or half-wave dipole antennas. The objective of this study was to investigate the SAR difference in the head of children and adults using realistic EMF sources based on CAD models of commercial mobile phones. Four MRI-based head phantoms were used in the study. CAD models of Nokia 8310 and 6630 mobile phones were used as exposure sources. Commercially available FDTD software was used for the SAR calculations. SAR values were simulated at frequencies 900 MHz and 1747 MHz for Nokia 8310, and 900 MHz, 1747 MHz and 1950 MHz for Nokia 6630. The main finding of this study was that the SAR distribution/variation in the head models highly depends on the structure of the antenna and phone model, which suggests that the type of the exposure source is the main parameter in EMF exposure studies to be focused on. Although the previous findings regarding significant role of the anatomy of the head, phone position, frequency, local tissue inhomogeneity and tissue composition specifically in the exposed area on SAR difference were confirmed, the SAR values and SAR distributions caused by generic source models cannot be extrapolated to the real device exposures. The general conclusion is that from a volume averaged SAR point of view, no systematic differences between child and adult heads were found.  相似文献   

20.
The aim of this project was to develop an animal exposure system for the biological effect studies of radio frequency fields from handheld wireless telephones, with energy deposition in animal brains comparable to those in humans. The finite‐difference time‐domain (FDTD) method was initially used to compute specific absorption rate (SAR) in an ellipsoidal rat model exposed with various size loop antennas at different distances from the model. A 3 × 1 cm rectangular loop produced acceptable SAR patterns. A numerical rat model based on CT images was developed by curve‐fitting Hounsfield Units of CT image pixels to tissue dielectric properties and densities. To design a loop for operating at high power levels, energy coupling and impedance matching were optimized using capacitively coupled feed lines embedded in a Teflon rod. Sprague Dawley rats were exposed with the 3 × 1 cm loop antennas, tuned to 837 or 1957 MHz for thermographically determined SAR distributions. Point SARs in brains of restrained rats were also determined thermometrically using fiberoptic probes. Calculated and measured SAR patterns and results from the various exposure configurations are in general agreement. The FDTD computed average brain SAR and ratio of head to whole body absorption were 23.8 W/kg/W and 62% at 837 MHz, and 22.6 W/kg/W and 89% at 1957 MHz. The average brain to whole body SAR ratio was 20 to 1 for both frequencies. At 837 MHz, the maximum measured SAR in the restrained rat brains was 51 W/kg/W in the cerebellum and 40 W/kg/W at the top of the cerebrum. An exposure system operating at 837 MHz is ready for in vivo biological effect studies of radio frequency fields from portable cellular telephones. Two‐tenths of a watt input power to the loop antenna will produce 10 W/kg maximum SAR, and an estimated 4.8 W/kg average brain SAR in a 300 g medium size rat. Bioelectromagnetics 20:75–92, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号