首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The configuration of the electrotonic potential and the action potential observed by the double sucrose-gap method was similar to that observed with a microelectrode inserted into a cell in the center pool between the gaps. In the taenia and the ureter, the evoked spike was larger in low Na or in Na-free (sucrose substitute) solution than in normal solution. However, the plateau component in the ureter was suppressed in the absence of Na. In Ca-free solution containing Mg (3–5 mM) and Na (137 mM), the membrane potential and membrane resistance were normal, but no spike could be elicited in both the taenia and ureter. Replacement of Ca with Sr did not affect the spike in the taenia, nor the spike component of the ureter but prolonged the plateau component. The prolonged plateau disappeared on removal of Na, while repetitive spikes could still be evoked. It was concluded that the spike activity in the taenia and in the ureter of the guinea pig is due to Ca entry, that the plateau component in the ureter is due to an increase in the Na conductance of the membrane, and that both mechanisms, for the spike and for the plateau, are separately controlled by Ca bound in the membrane.  相似文献   

2.
In the honey bee drone, the decrease in sensitivity to light of a retinula cell exposed to background illumination was found to be accurately reflected by the difference in amplitude between the initial transient depolarization and the lowest steady depolarization evoked by the background light. It is shown that both the decrease in sensitivity to light and the accompanying drop in potential from the transient to the plateau can be prevented by injecting EGTA intracellularly. A decrease in duration and amplitude of responses to short test flashes such as observed immediately after illumination was found to occur too when Ca or Na, but not K, Li, or Mg injected into dark-adapted retinula cells. Injection of EGTA into a retinula cell maintained a steady state of light adaptation, was found to cause an increase in amplitude and duration of the response to a short test flash, thus producing the effects of dark adaptation. It is suggested that, in the retina of the honey bee drone, an increase in intracellular calcium concentration plays a central role in light adaptation and that an increase in intracellular sodium concentration, resulting from the influx of sodium ions during the responses to light, could lead to this increase in intracellular free calcium.  相似文献   

3.
Spike Potentials Recorded from the Insect Photoreceptor   总被引:12,自引:7,他引:5       下载免费PDF全文
Slow and spike potentials were recorded from single cells in the receptor layer of the compound eye of the drone of the honeybee. From electron microscopic observation of the drone ommatidium, it was concluded that the response had been recorded from the retinula cell. The following hypothesis is suggested for the initiation of spike potentials in the drone compound eye: Photic stimulation results in a decrease in the resistance of all or part of the retinula cell membrane, giving rise to the retinal action potential. The retinal action potential causes outflow of the current through the proximal process of the cell. This depolarizing current initiates spike potentials in the proximal process or axon of the retinula cell which are recorded across the soma membrane of the retinula cell.  相似文献   

4.
Action potential-driven current transients were recorded from sensory cilia and used to monitor the spike frequency generated by olfactory receptor neurons, which were maintained in their natural position in the sensory epithelium. Both basal and messenger-induced activities, as elicited with forskolin or cyclic nucleotides, were dependent on the presence of mucosal Na+. The spike rate decreased to approximately 20% when mucosal Na+ was lowered from 120 to 60 mM (replaced by N-methyl-D-glucamine+), without clear changes in amplitude and duration of the recorded action potential-driven transients. Mucosal Ca2+ and Mg2+ blocked spike discharge completely when increased from 1 to 10 mM in Ringer solution. Lowering mucosal Ca2+ below 1 mM increased the spike rate. These results can be explained by the presence of a cyclic nucleotide-dependent, Ca(2+)-sensitive cation conductance, which allows a depolarizing Na+ inward current to flow through the apical membrane of in situ receptor cells. A conductance with these properties, thought to provide the receptor current, was first described for isolated olfactory cells by Nakamura and Gold (1987. Nature (Lond.). 325:442-444). The forskolin-stimulated spike rate decreased when l-cis-diltiazem, a known blocker of the cyclic nucleotide-dependent receptor current, was added to the mucosal solution. Spike rate also decreased when the mucosal K+ concentration was lowered. Mucosal Ba2+ and 4-aminopyridine, presumably by means of cell depolarization, rapidly increased the spike rate. This suggests the presence of apical K+ channels that render the receptor cells sensitive to the K+ concentration of the olfactory mucus. With a slower time course, mucosal Ba2+ and 4-aminopyridine decreased the amplitude and caused rectification of the fast current transients (prolongation of action potentials). Abolishment of the apical Na+ current (by removal of mucosal Na+), as indicated by a strong decrease in spike rate, could be counteracted by adding 10 mM Ba2+ or 1 mM 4-aminopyridine to the mucosal solution, which re-established spiking. Similarly, blockage of the apical cation conductance with 10 mM Ca could be counteracted by adding 10 mM Ba2+ or by raising the mucosal K+ concentration. Thus mucosal concentrations of Na+, K+, and Ca2+ will jointly affect the sensitivity of odor detection.  相似文献   

5.
(1) Replacement of Tris by Na in propionate solution causes depolarizations (3-10 or more than 30 mV) in rat muscles. As a result, the resting potentials are distributed in two groups, one at about -70 mV and the other at about -40 mV. Small inward or outward currents are often sufficient for the membrane potential to switch from one level to the other. The change from the low (more positive) to the high (more negative) resting potential can also be provoked by small increases in [K] and vice versa. (2) High frequency, low-amplitude oscillations are produced by gradually repolarizing the membrane at the low resting potential level. The frequency decreases (from a high 2/sec to 5/min or less) and the amplitude increases (up to 30 mV) with further repolarization. Low amplitude oscillations are sinusoidal, high amplitude oscillations resemble pacemaker potentials in other tissues. (3) The voltage-current relationship in Na propionate solutions containing 2 mM K frequently displays pronounced hysteresis presumably covering a negative conductance region. Hysteresis is about the same in Na and Tris containing solutions at high (more than 20 mM) [K]. The results are discussed in terms of an interaction between depolarizing K inactivation and gNa activation, possibly in a channel not involved in spike production.  相似文献   

6.
The generator potential of both slowly and rapidly adapting crayfish stretch receptor cells can still be elicited by mechanical stimuli when all the Na of the bathing medium is replaced by various organic cations. In the presence of tris(hydroxymethyl)aminomethane (Tris), the generator potential is particularly large, about 30–50 % of that in the control saline, while spike electrogenesis of the cell is abolished. Persistence of the generator response is not due to retention of Na by a diffusion barrier, and ionic contributions to the electrogenesis by Ca and Cl can also be excluded. Thus, whereas the electrogenesis of the generator membrane must be due to an increased permeability to monovalent cations, the active receptor membrane appears to be less selective for different monovalent cations than is the receptor component of some other cells, or the conductile component of the stretch receptor neuron.  相似文献   

7.
The effects of varying the sodium gradient-either by lowering [Na+]o or by increasing [Na+]i on the electromechanical properties of pregnant rat uterine smooth muscle were studied. In normal tissues, complete removal of external sodium ions (choline, Tris or sucrose as substitutes) induced a strong and maintained contraction which was dependent on the presence of extracellular calcium ions, and was sensitive to Ca2+-antagonist drugs (Nifedipine; D 600, Mn2+). Electrical recordings showed that the membrane was transiently hyperpolarized (-10 +/- 2.4 mV, n = 20); after 1 minute depolarization accompanied by a spontaneous spike discharge occurred. Partial withdrawal of external sodium ions resulted in following changes in twitch contractions evoked by electrical stimulation: a linear relationship was found between the time constant of twitch relaxation and the external Na-concentration. In Na-rich tissues, where the Na/K pump was blocked, or in the presence of monensin, Na-free solutions (whatever the substitute, even K+ ions) again triggered strong contractions entirely dependent on external calcium but rather insensitive to Ca-antagonists. The Na-free (K+) induced contraction was larger than the Na-free (choline or Tris)-induced contraction. It was concluded that the sodium gradient was an important factor for the regulation of contractile activity of uterine smooth muscle. Na-Ca exchange appeared to mediate twitch relaxation in normal tissues and was responsible for Ca-influx in Na-rich tissues.  相似文献   

8.
We have studied the effects of several cations on (1) the neuronal uptake of [3H]dopamine ([3H]DA) and (2) the specific binding of 1-[2-(diphenylmethoxy)ethyl]-4-(3-phenyl-2-[1-3H]propenyl)piperazi ne ([3H]GBR 12783) to a site associated with the neuronal carrier of DA, in preparations obtained from rat striatum. When studied under the same experimental conditions, both the uptake of [3H]DA and the binding of [3H]GBR 12783 were similarly impaired by the gradual replacement of NaCl by sucrose. In both processes, no convenient substitute for Na+ was found. Furthermore, potential substitutes of Na+ acted as inhibitors of the uptake with a rank order of potency as follows: K+ = Li+ > or = Cs+ > or = Rb+ > choline+ > Tris+ > sucrose, which was somewhat different from that observed in binding studies, i.e., Cs+ > Rb+ > choline+ > or = K+ > Li+ > Tris+ > sucrose. In the presence of either 36 mM or 136 mM Na+, [3H]DA uptake was optimal with 2 mM Mg2+, 1 mM K+, or 1 mM Ca2+. In contrast, higher concentrations of divalent cations competitively blocked the uptake process. K+ concentrations > 50 mM impaired the specific binding, whereas in the millimolar range of concentrations, K+ noncompetitively inhibited the uptake. Decreasing the Na+ concentration increased the inhibitory effect of K+, Ca2+, and Mg2+ on the specific uptake. An increase in NaCl concentration from 0 to 120 mM elicited a significant decline in the affinity of some substrates for the [3H]GBR 12783 binding site. An uptake study performed using optimal experimental conditions defined in the present study revealed that decreasing Na+ concentration reduces the affinity of DA for the neuronal transport. We propose a hypothetical model for the neuronal transport of DA in which both Na+ and K+ membrane gradients are involved.  相似文献   

9.
Mechanisms underlying action potential generation in the newt olfactory receptor cell were investigated by using the whole-cell version of the patch-clamp technique. Isolated olfactory cells had a resting membrane potential of -70 +/- 9 mV. Injection of a depolarizing current step triggered action potentials under current clamp condition. The amplitude of the action potential was reduced by lowering external Na+ concentration. After a complete removal of Na+, however, cells still showed action potentials which was abolished either by Ca2+ removal or by an application of Ca2+ channel blocker (Co2+ or Ni2+), indicating an involvement of Ca2+ current in spike generation of newt olfactory receptor cells. Under the voltage clamp condition, depolarization of the cell to -40 mV from the holding voltage of -100 mV induced a fast transient inward current, which consisted of Na+ (INa) and T-type Ca2+ (ICa.T) currents. The amplitude of ICa,T was about one fourth of that of INa. Depolarization to more positive voltages also induced L-type Ca2+ current (ICa,L). ICa,L was as small as a few pA in normal Ringer solution. The activating voltage of ICa,T was approximately 10 mV more negative than that of INa. Under current clamp, action potentials generated by a least effective depolarization was almost completely blocked by 0.1 mM Ni2+ (a specific T-type Ca2+ channel blocker) even in the presence of Na+. These results suggest that ICa,T contributes to action potential in the newt olfactory receptor cell and lowers the threshold of spike generation.  相似文献   

10.
The effects of acute omission of extracellular Na+ on pancreatic B-cell function were studied in mouse islets, using choline and lithium salts as impermeant and permeant substitutes, respectively. In the absence of glucose, choline substitution for Na+ hyperpolarized the B-cell membrane, inhibited 86Rb+ and 45Ca2+ efflux, but did not affect insulin release. In contrast, Li+ substitution for Na+ depolarized the B-cell membrane and caused a Ca2+-independent, transient acceleration of 45Ca2+ efflux and insulin release. Na+ replacement by choline in the presence of 10 mM glucose and 2.5 mM Ca2+ again rapidly hyperpolarized the B-cell membrane. This hyperpolarization was then followed by a phase of depolarization with continuous spike activity, before long slow waves of the membrane potential resumed. Under these conditions, 86Rb+ efflux first decreased before accelerating, concomitantly with marked and parallel increases in 45Ca2+ efflux and insulin release. In the absence of Ca2+, 45Ca2+ and 86Rb+ efflux were inhibited and insulin release was unaffected by choline substitution for Na+. Na+ replacement by Li+ in the presence of 10 mM glucose rapidly depolarized the B-cell membrane, caused an intense continuous spike activity, and accelerated 45Ca2+ efflux, 86Rb+ efflux and insulin release. In the absence of extracellular Ca2+, Li+ still caused a rapid but transient increase in 45Ca2+ and 86Rb+ efflux and in insulin release. Although not indispensable for insulin release, Na+ plays an important regulatory role in stimulus-secretion coupling by modulating, among others, membrane potential and ionic fluxes in B-cells.  相似文献   

11.
Current Separations in Myxicola Giant Axons   总被引:7,自引:6,他引:1  
The effect of reducing the external sodium concentration, [Na]o, on resting potential, action potential, membrane current, and transient current reversal potential in Myxicola giant axons was studied. Tris chloride was used as a substitute for NaCl. Preliminary experiments were carried out to insure that the effect of Tris substitution could be attributed entirely to the reduction in [Na]o. Both choline and tetramethylammonium chloride were found to have additional effects on the membrane. The transient current is carried largely by Na, while the delayed current seems to be independent of [Na]o. Transient current reversal potential behaves much like a pure Nernst equilibrium potential for sodium. Small deviations from this behavior are consistent with the possibility of some small nonsodium component in the transient current. An exact PNa/PK for the transient current channels could not be computed from these data, but is certainly well greater than unity and possibly quite large. The peak of the action potential varied with [Na]o as expected for a sodium action potential with some substantial potassium permeability at the time of peak. Resting membrane potential is independent of [Na]o. This finding is inconsistent with the view that the resting membrane potential is determined only by the distribution of K and Na, and PNa/PK. It is suggested that PNa/PK's obtained from resting membrane potential-potassium concentration data do not always have the physical meaning generally attributed to them.  相似文献   

12.
The transport of uridine into rat renal brush-border membrane vesicles was investigated using an inhibitor-stop filtration method. Uridine was not metabolized under these conditions. The rapid efflux of intravesicular uridine was prevented by adding 1 mM phloridzin to the ice-cold stop solution. In the presence of inwardly directed gradients of either Na+ or K+, zero-trans uridine uptake exhibited a transient overshoot phenomenon indicating active transport. The overshoot was much more pronounced with Na+ than K+ and it was not observed when either Na+ or K+ was at equilibrium across the membrane. The K+-induced overshoot was not due to the presence of a membrane potential alone, as an inwardly directed gradient of choline chloride failed to produce it. The amplitude of the overshoot was increased by raising either the Na+ or K+ concentration outside the membrane or by using more lipophilic anions (reactive order was NO3- greater than SCN- greater than Cl- greater than SO4(2-). Zero-trans efflux studies showed that the uridine transport is bidirectional. Li+ could substitute poorly for Na+ but not at all for K+. Stoichiometries of 1:1 and greater than 1:1 were observed for Na+: uridine and K+: uridine coupling, respectively. A preliminary analysis of the interactions between Na+ and K+ for uridine uptake showed complex interactions which can best be explained by the involvement of two different systems for nucleoside transport in the rat renal brush-border membrane, one requiring Na+ and the other K+ as transport coupler.  相似文献   

13.
The influence of voltage-dependent conductances on the receptor potential of Limulus ventral photoreceptors was investigated. During prolonged, bright illumination, the receptor potential consists of an initial transient phase followed by a smaller plateau phase. Generally, a spike appears on the rising edge of the transient phase, and often a dip occurs between the transient and plateau. Block of the rapidly inactivating outward current, iA, by 4-aminopyridine eliminates the dip under some conditions. Block of maintained outward current by internal tetraethylammonium increases the height of the plateau phase, but does not eliminate the dip. Block of the voltage-dependent Na+ and Ca2+ current by external Ni2+ eliminates the spike. The voltage-dependent Ca2+ conductance also influences the sensitivity of the photoreceptor to light as indicated by the following evidence: depolarizing voltage- clamp pulses reduce sensitivity to light. This reduction is blocked by removal of external Ca2+ or by block of inward Ca2+ current with Ni2+. The reduction of sensitivity depends on the amplitude of the pulse, reaching a maximum at or approximately +15 mV. The voltage dependence is consistent with the hypothesis that the desensitization results from passive Ca2+ entry through a voltage-dependent conductance.  相似文献   

14.
Summary The membrane of crayfish medial giant axons is permeable at rest to ions in the rank K>Na>Ca>Cl. With K present, variation of the other ions has little or no effect, but with K absent the axon hyperpolarizes when Na is reduced or eliminated by replacement with Tris (slope ca. 30 mV/decade Na0). The hyperpolarization is independent of the presence of Cl or its absence (substitution with methanesulfonate or isethionate). The resistance increases progressively as Na is removed. These changes persist after the spike is blocked with tetrodotoxin. An increase in Ca causes depolarization (slope ca. 20 mV/decade) provided K, Na and Cl are all absent, but in the presence of Cl there is little or no change in membrane potential on increasing Ca to 150mm. The depolarization induced by Ca is associated with an increased resistance. Spike electrogenesis involves Ca activation as well as Na activation, but the after-depolarization at the end of the spike is due to a conductance increase for Ca. Two alternative equivalent circuits for the resting and active membrane are discussed.  相似文献   

15.
Calcium chelators such as ethylenediaminetetraacetic acid and sodium citrate produce repetitive activity and prolong the spike of internodal cells of Nitella flexilis. Removal of Ca2+, Mg2+, Na+, and K+ from the outside of the cell by washing the preparation with Tris propionate or Tris chloride hyperpolarizes the cells but does not initiate repetitive activity or increase the duration of the spike appreciably. It was concluded that cell-bound Ca2+ controls the threshold for stimulation and the duration of the spike, and that the removal of Ca2+ from the cell membrane, either by chelation or displacement, changes the normal behaviour of the cell by altering its permeability to some other ion or ions.  相似文献   

16.
The effects of tetrodotoxin, procaine, and manganese ions were examined on the Ca spike of the barnacle muscle fiber injected with Ca-binding agent as well as on the action potential of the ventricular muscle fiber of the frog heart. Although tetrodotoxin and procaine very effectively suppress the "Na spike" of other tissues, no suppressing effects are found on "Ca spike" of the barnacle fiber, while the initiation of the Ca spike is competitively inhibited by manganese ions. The initial rate of rise of the ventricular action potential is suppressed by tetrodotoxin and procaine but the plateau phase of the action potential is little affected. In contrast the suppressing effect of manganese ions is mainly on the plateau phase. The results suggest that the plateau phase of the ventricular action potential is related to the conductance increase in the membrane to Ca ions even though Na conductance change may also contribute to the plateau.  相似文献   

17.
Ionic basis of salt-induced receptor potential in frog taste cells   总被引:1,自引:0,他引:1  
1. The ionic basis of the receptor potential elicited by salt stimuli in a frog taste cell was studied with intracellular microelectrodes and lingual artery perfusion. 2. The amplitudes of the receptor potentials induced by salts were decreased by 32-60% when interstitial Na+ and Ca2+ were replaced with choline+, tetramethylammonium+ and tetraethyl-ammonium+. 3. After removal of Na+ and Ca2+ from both interstitial and superficial fluids, the reversal potentials of NaCl induced receptor potentials changed depending upon the stimulus concentrations. 4. These results indicate that the direct influx of Na+ across the receptor membrane, as well as the influx of interstitial Na+ across the basolateral membrane, occurs during NaCl stimulation.  相似文献   

18.
The affinity of binding of the chemotactic peptide N-formylnorleucylleucylphenylalanine to rabbit peritoneal polymorphonuclear leukocytes is increased when sodium ions are removed from the medium. In Hanks' balanced salt solution, the dissociation constant of the binding is about 2 X 10(-8) M, while in Na+-free medium, the dissociation constant is between 3 and 6 X 10(-9) M. Removal of Na+ appears to cause little or no change in receptor number. The change in affinity is rapid and reversible, occurs at 4 degrees C as well as 37 degrees C, and occurs when the Na+ is replaced by K+, choline, or sucrose. The increased binding of low concentrations of peptide is seen on broken as well as whole cells and therefore does not depend on an ion gradient across the membrane. The high affinity receptors are functional in mediating peptide uptake and lysosomal enzyme release. The receptors undergo down-regulation in Na+-free medium, and the dose dependence of the receptor loss is shifted to lower concentrations consistent with the higher affinity of the binding.  相似文献   

19.
The light-induced current as measured using a voltage clamp (holding voltage at resting potential) is attenuated when sodium ions in the bathing solution, Nao, are replaced by Tris, choline, or Li or when NaCl is replaced by sucrose. After replacement of NaCl by sucrose, the reversal voltage, Vrev, for the light response becomes more negative. In this case, the slope of the Vrev vs. log Nao near Nao = 425 mM is approximately 55 mV/decade increase of Nao (mean for 13 cells). The slope decreases at lower values of Nao. Choline is not impermeant and partially substitutes for Na; the slope of Vrev vs. log Nao is 20 mV/decade (mean for three cells). Vrev does not change when Na is replaced by Li. Decreases in the bath concentrations of Ca, Mg, Cl, or K do not affect Vrev. When Nao = 212 mM, Vrev becomes more positive when Ko is increased. Thus, light induces a change in membrane permeability to Na and probably also to K.  相似文献   

20.
Voltage-dependent membrane currents of cells dissociated from tongues of larval tiger salamanders (Ambystoma tigrinum) were studied using whole-cell and single-channel patch-clamp techniques. Nongustatory epithelial cells displayed only passive membrane properties. Cells dissociated from taste buds, presumed to be gustatory receptor cells, generated both inward and outward currents in response to depolarizing voltage steps from a holding potential of -60 or -80 mV. Almost all taste cells displayed a transient inward current that activated at -30 mV, reached a peak between 0 and +10 mV and rapidly inactivated. This inward current was blocked by tetrodotoxin (TTX) or by substitution of choline for Na+ in the bath solution, indicating that it was a Na+ current. Approximately 60% of the taste cells also displayed a sustained inward current which activated slowly at about -30 mV and reached a peak at 0 to +10 mV. The amplitude of the slow inward current was larger when Ca2+ was replaced by Ba2+ and it was blocked by bath applied CO2+, indicating it was a Ca2+ current. Delayed outward K+ currents were observed in all taste cells although in about 10% of the cells, they were small and activated only at voltages more depolarized than +10 mV. Normally, K+ currents activated at -40 mV and usually showed some inactivation during a 25-ms voltage step. The inactivating component of outward current was not observed at holding potentials more depolarized -40 mV. The outward currents were blocked by tetraethylammonium chloride (TEA) and BaCl2 in the bath or by substitution of Cs+ for K+ in the pipette solution. Both transient and noninactivating components of outward current were partially suppressed by CO2+, suggesting the presence of a Ca2(+)-activated K+ current component. Single-channel currents were recorded in cell-attached and outside-out patches of taste cell membranes. Two types of K+ channels were partially characterized, one having a mean unitary conductance of 21 pS, and the other, a conductance of 148 pS. These experiments demonstrate that tiger salamander taste cells have a variety of voltage- and ion-dependent currents including Na+ currents, Ca2+ currents and three types of K+ currents. One or more of these conductances may be modulated either directly by taste stimuli or indirectly by stimulus-regulated second messenger systems to give rise to stimulus-activated receptor potentials. Others may play a role in modulation of neurotransmitter release at synapses with taste nerve fibers.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号