首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new spionid polychaete, Polydora robi, is described from intertidal and shallow subtidal areas in the Philippine Islands and Bali, Indonesia. Polydora robi belongs to the Polydora ciliata/ websteri species group and is characterized by a rounded prostomium, triangular occipital tentacle, needlelike posterior notosetae, and a pygidium with digitiform composite cirri surrounding the anus. Adults burrow into empty gastropod shells inhabited by hermit crabs. The burrows of the worms typically extend from an external opening in the apex of the shells to an opening in the central body whorls along the columella. The species was found to ingest the fertilized eggs and developing embryos attached to the pleopods of host hermit crabs. The occurrence of egg predation and the symbiotic relationship between polydorids and hermit crabs is discussed. Known egg predators of hermit crabs are reviewed.  相似文献   

2.
Abstract. The polychaete Dipolydora commensalis is an obligate symbiont of hermit crabs and produces a burrow along the columella of the gastropod shells they inhabit. Adults of D. commensalis have short palps that they use to feed on particles dropped or brought in by the respiratory currents of hosts. To determine whether hermit crabs influence palp length, specimens of D. commensalis were isolated in glass capillary tubes and the growth of palps was measured over a 3‐week period. Palp length was also measured in worms isolated in gastropod shells with or without hermit crabs for 2 weeks. In addition, to determine whether adults of D. commensalis have regeneration capabilities like those of free‐living relatives, worms were cut at the fifth or 15th setiger and then monitored for 35 d. Worms extracted from shells and placed into capillary tubes had initial palp lengths of 1.0±0.4 mm (n=17); after isolation, palps were 40% longer (1.4±0.4 mm, n=17). Worms in gastropod shells with hermit crabs had an average palp length of 0.9±0.4 mm (n=31), whereas worms in shells without hermit crabs had palps that were 33% longer (1.2±0.5 mm, n=40). Adults of D. commensalis are capable of regeneration; 35 d after ablation at setigers 5 or 15, the average number of anterior setigers regenerated was 5 (n=15) and 9±1.3 (n=13), respectively. The average number of posterior setigers regenerated from the 15 setiger anterior fragments was 11±6 (n=10). The findings suggest that the palps (and sometimes anterior ends) of the worms are exposed during feeding and are cut during movement of the hermit crab. In the laboratory worms can live for >4 years, considerably longer than the functional life span of most gastropod shells inhabited by hermit crabs.  相似文献   

3.
Most hermit crabs depend on empty gastropod shells for shelter; competition for appropriate shells is often severe. This study determined whether shells that have been drilled by naticid gastropods are suitable for occupancy by the hermit crab Pagurus longicarpus. Differences in the characteristics of empty shells and those occupied by hermit crabs were assessed at two adjacent field sites in Nahant, Massachusetts. Drilling damage was far more frequent in empty gastropod shells than in shells occupied by hermit crabs, suggesting that individuals of P. longicarpus avoid drilled shells. They did not appear to avoid shells with other forms of damage. Laboratory experiments confirmed that these hermit crabs preferentially chose intact shells over drilled shells, even when the intact shells offered were most suitable for crabs half the weight of those tested. Final shell choices were generally made within 1 h. The hermit crabs apparently discriminated between intact and drilled shells based on tactile cues, since crabs kept in the dark showed the same preference for intact shells. The hermit crabs strongly avoided, to nearly the same extent, artificially drilled shells, naturally drilled shells, and shells with holes artificially drilled on the opposite side of the shell from where they would normally be located. Possible selective forces causing P. longicarpus to show such strong behavioral avoidance of drilled shells include increased vulnerability of crabs in drilled shells to osmotic stress, predation, and eviction by conspecifics.  相似文献   

4.
Aim To examine patterns of abundance, density, size and shell use in land hermit crabs, Coenobita clypeatus (Herbst), occurring on three groups of small islands, and to determine how these variables change among islands. Location Small islands in the Central Exuma Cays and near Great Exuma, Bahamas. Methods Land hermit crabs were captured in baited pitfall traps and were separately attracted to baits. A mark–recapture technique was used in conjunction with some pitfall traps monitored for three consecutive days. The size of each crab and the type of adopted gastropod shell were recorded, along with physical island variables such as total island area, vegetated area, island perimeter, elevation and distance to the nearest mainland island. Results Relative abundances, densities and sizes of crabs differed significantly among the three island groups. Densities of land hermit crabs were as high as 46 m−2 of vegetated island area. In simple and multiple linear regressions, the only variable that was a significant predictor of the abundance of hermit crabs was the perimeter to area ratio of the island. Patterns of gastropod shell use varied significantly among the island groups, and the vast majority of adopted shells originated from gastropod species that inhabit the high intertidal and supratidal shorelines of the islands. Main conclusions Although densities of land hermit crabs varied, they were relatively high on many islands, and land hermit crabs may play an important role in these insular food webs. Patterns of shell use may be strongly restricted by island geomorphology: irregular shorelines provide relatively more habitat for the gastropod species that account for the majority of adopted shells and the steep sides of the islands prevent the accumulation of marine gastropod shells. The size of adult hermit crabs appears to be limited by the relatively small gastropod shells available, while the abundance of hermit crabs may be limited by the number of shells available.  相似文献   

5.
Hermit crabs are critically dependent upon gastropod shells for their survival and reproductive fitness. While anecdotal reports have suggested that hermit crabs may be capable of removing live gastropods from their shells to access the essential shell resource, no systematic experiments have been conducted to investigate this possibility. This paper reports experiments on both marine (Pagurus bernhardus) and terrestrial (Coenobita compressus) hermit crabs in which crabs were paired in the laboratory with the gastropods whose shells they inhabit in the field. Pairings included both shelled and naked crabs and spanned the full range of the gastropod life cycle. Neither marine nor terrestrial hermit crabs were successful at removing live gastropods from their shells. Furthermore, only a small fraction of the crabs (5.7%) were capable of accessing shells in which the gastropod had been killed in advance, with its body left intact inside the shell. Finally, although hermit crabs readily entered empty shells positioned on the surface, few crabs (14.3%) were able to access empty shells that were buried just centimeters beneath them. These results suggest that hermit crabs are constrained consumers, with the shells they seek only being accessible during a narrow time window, which begins following natural gastropod death and bodily decomposition and which typically ends when the gastropod's remnant shell has been buried by tidal forces. Further experiments are needed on more species of hermit crabs as well as fine-grained measurements of (i) the mechanical force required to pull a gastropod body from its shell and (ii) the maximum corresponding force that can be generated by different hermit crab species' chelipeds.  相似文献   

6.
The epifauna on gastropod shells occupied by the hermit crabs Pagurus pollicaris (Say) and P. longicarpus (Say) was examined, as was the utilization of shells by these two hermit crabs. In the study area in Tampa Bay, Florida, shells were not a limiting factor to the hermit crab population, and there apparently was little competition for shells. Interspecific competition for shells was limited because the two hermit crab species differed in size and hence occupied shells of different sizes. The total number and density of most epifaunal species were higher on shells occupied by hermit crabs than on unoccupied shells, possibly because hermit crabs prevent their shells from being buried and hence lengthen the time the epifaunal community can grow and develop. The hermit crab species also appeared to affect the epifaunal community, for the total number and density of most epifaunal species were larger on shells occupied by P. pollicaris than P. longicarpus. With increasing shell size, the populations of most epifaunal species, also were larger but not their density. Least influential in affecting the epifaunal community was the species of shells.  相似文献   

7.
Ovigerous hermit crabs, Clibanarius vittatus (Bosc), were examined in the laboratory to (1) determine if the time of larval release is a synchronous event, (2) determine the influence of a damaged gastropod shell during the egg hatching process, and (3) describe larval release behaviors. Ovigerous hermit crabs from natural light:dark (LD) and tidal cycles were moved to constant conditions 2-3 days prior to the predicted time of larval release. Larval release was synchronous, occurring near the time of expected sunset. Females with early-stage embryos placed under constant conditions displayed a free-running circadian rhythm, suggesting that the rhythm is under endogenous control. Hermit crabs with early-stage embryos that were placed under a shifted LD cycle (advanced 12 h relative to the ambient photoperiod) before being placed under constant conditions advanced their larval release rhythm by 12 h, indicating the rhythm can be entrained by the LD cycle. Hermit crabs with an intact shell released larvae in bursts at sunset over several consecutive nights (period = 24.2 h). In contrast, hermit crabs with damaged shells released larvae at different times over the course of a single day. Ovigerous females with intact shells exhibit several stereotypical hatching behaviors. The female stands on her walking legs and thrusts her abdomen, moving the shell in an oscillating motion. This movement may assist in breaking the outer membrane of the egg case. The female generates a water current inside the shell with her scaphognathite and mouthparts, which transports the newly hatched larvae out of the shell. Females in damaged shells did not display these behaviors; instead, larval release was a prolonged event with little movement of the female, and often the newly hatched larvae were not viable. These results indicate that an intact shell plays an important role in the hatching process for this hermit crab.  相似文献   

8.
The marine gastropod Crepidula plana has an extensive latitudinal range along the eastern coast of the United States. It is usually found living within gastropod shells occupied by hermit crabs, although individuals can sometimes also be found living on rocks and on the exposed surfaces of shells. Our study sought to determine the extent to which residing inside periwinkle (Littorina littorea) shells occupied by the hermit crab Pagurus longicarpus at a study site in coastal Massachusetts compromises the fecundity of C. plana, through size limitation. The egg masses of symbiotic and free‐living females of C. plana included comparable numbers of egg capsules and embryos per female despite the smaller sizes of the symbionts; symbiotic females compensated for their smaller size by producing significantly more embryos per milligram of female body tissue than their free‐living counterparts. These data raise interesting questions about why—unlike its congener C. fornicataC. plana has not yet become a successful invasive species.  相似文献   

9.
Gastropod shells: A potentially limiting resource for hermit crabs   总被引:1,自引:0,他引:1  
The availability of gastropod shells to hermit crabs in the Newport River Estuary, Beaufort, N.C. has been assessed by determining the numbers of usuable shells occurring in characteristic subtidal habitats and by measuring shell size adequacy. The proportion of useable shells occupied by hermit crabs ranged from 58–99 % and many of the shells not used by hermit crabs were judged unavailable because they were occupied by sipunculids or only uncovered by the dredge. The shell adequacy index (shell size occupied/shell size preferred) was significantly below 1.0 for the largest species (Pagurus pollicaris Say) in the one location where sufficient numbers were collected and for the next largest species (P. longicarpus Say) in three of the four locations where it was collected. The shell size adequacy index for the smallest species (P. annulipes Stimpson) did not differ significantly from 1.0 in either of the two locations in which it was found. These observations suggest that the availability of gastropod shells plays a significant rôle in limiting the abundance of at least the larger hermit crabs.  相似文献   

10.
11.

Many studies have investigated shell‐related behaviour in hermit crabs. Few studies, however, have focused specifically on the intraspecies aggression associated with shell competition. We examined intraspecies aggression in hermit crab (Pagurus samuelis) pairs as it relates to competition for a limiting resource, gastropod shells. Pairs of hermit crabs were observed in the laboratory in four different treatments that varied the presence or absence of shells for one or both of the crabs. Measurements of the latency to respond, the number of bouts, and the fight durations were recorded. There was a significant difference among treatments for all three measurements, and naked hermit crabs were much more aggressive than housed hermit crabs. There was no significant difference in aggression between males and females in any of the three treatments. The heightened aggression observed in naked P. samuelis is likely in service of acquiring a protective shell.  相似文献   

12.
The rate of changing shells in the hermit crabPagurus geminus was investigated to determine how many hermit crabs are satisfied with their shells. Animal collected from the coast of Oya, Tanabe, Wakayama Prefecture, were presented with fresh gastropod shells newly made by removing the soft parts. Approximately 80% of the hermit crabs changed from their original shells acquired in the natural habitat into fresh shells experimentally given to them and, thus, were regarded as dissatisfied with the shells possessed in the natural habitat. This condition was thought to lead to the fact that hermit crabs occasionally attempted to exchange shells between 2 individuals and even to attack living snails in the natural habitat.  相似文献   

13.
The small-scale distribution and resource utilization patterns of hermit crabs living in symbiosis with sea anemones were investigated in the Aegean Sea. Four hermit crab species, occupying shells of nine gastropod species, were found in symbiosis with the sea anemone Calliactis parasitica. Shell resource utilization patterns varied among hermit crabs, with Dardanus species utilizing a wide variety of shells. The size structure of hermit crab populations also affected shell resource utilization, with small-sized individuals inhabiting a larger variety of shells. Sea anemone utilization patterns varied both among hermit crab species and among residence shells, with larger crabs and shells hosting an increased abundance and biomass of C. parasitica. The examined biometric relationships suggested that small-sized crabs carry, proportionally to their weight, heavier shells and increased anemone biomass than larger ones. Exceptions to the above patterns are related either to local resource availability or to other environmental factors.  相似文献   

14.
Species in which individuals experience predictable and uniform environments should be most finely adapted to their environment. Many hydrozoan species in the genus Hydractinia simultaneously occupy similar microhabitats (gastropod shells inhabited by hermit crabs) but experience considerable differences in their immediate environment (size and species of shells and hosts). In the present study, hydroid species experience differences in environmental predictability and traits that mediate competitive ability (growth form and growth rate). The inferred competitive ability was directly proportional to the extent to which the gastropod environment promotes interactions between small, juvenile colonies, which always end in competitive elimination. Extensive intraspecific variation in competitive ability was explained primarily by crab host species or site. Dense host populations impose more severe disturbance regimes that favour competitively inferior, but disturbance-resistant, phenotypes. Interplay between different types of variation (gastropods and hermit crabs) provides a possible mechanism for the maintenance of intraspecific growth form variation.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 322–338.  相似文献   

15.
John C.  Markham 《Journal of Zoology》1977,181(2):131-136
Calcinus verrilli (Rathbun), evidently the only species of hermit crab endemic to Bermuda, frequently occupies vermetid gastropod shells which are cemented fast to offshore reefs and the bottoms of shallow tidepools. This choice of shells poses several interesting ecological problems for the hermit crabs.  相似文献   

16.
This study was designed to evaluate the effect of interference and exploitation competition in shell partitioning between two hermit crab species (Pagurus criniticornis and Clibanarius antillensis). Field samples revealed that shells of the gastropod Cerithium atratum were the main resource used by both hermit crab species and that Pagurus used eroded or damaged shells in higher frequency than Clibanarius. The exploitative ability of each species was compared between species in the laboratory using dead gastropod (Cerithium) baits to simulate predation events and signalize newly available shells to hermit crabs. Pagurus reached the baits more rapidly than Clibanarius, but this higher exploitative ability did not explain shell utilization patterns in nature. Another experiment evaluated the dominance hierarchy between these two hermit crab species and revealed that Clibanarius was able to outcompete Pagurus for higher quality shells in agonistic encounters. This higher interference competitive ability of Clibanarius in relation to Pagurus may explain field observations. Nevertheless, Pagurus may be responsible to enhance shell availability to other hermit crab species that have lower ability to find and use newly available shells. Differently, the poorer condition of shells used by Pagurus, the higher ability of this species to attend gastropod predation events and its higher consumption rate by shell-breaking crabs (Menippe nodifrons) may increase its predation risks, thus revealing the disadvantages of such an exploitative competitive strategy for hermit crabs.  相似文献   

17.
Examination of modern gastropod associations from the low intertidal zone of Isla Santa Cruz suggests that fossil rocky intertidal deposits from this tropical locality will be taphonomically compromised in three ways: (1) Marine hermit crabs, by their use of empty gastropod shells, will mix the shells from varying tidal heights and habitats, thus facilitating mixed associations of such shells in the fossil record, (2) encrusting organisms on crab-inhabited shells are abundant, while boring organisms are almost non-existent, indicating possible differences in postmortem shell retention, and (3) intertidal shells are further taphonomically altered by terrestrial hermit crabs, which transport the shells onto land as well as physically modify the shells. Gastropod fossils from beach and terrace deposits on Isla Santa Fe are interpreted to be a mixed assemblage of rocky intertidal assemblage with few shells indicating influence from marine hermit crabs. Modification of the shell by marine and terrestrial hermit crabs was also evident. A unique polish to the shells at one locality is attributed to the marine iguanas and is only found in the terrace site biologically bulldozed by egg-laying iguanas. Few studies exist on modern rocky intertidal associations in the Galápagos, and the fossil record of rocky shores may provide a baseline for future studies in how community structure has changed over since the advent of humans. Galapagos, C oenobita C ompressus , gastropods, humans, Gulf of California, bionts, nutrients.
Sally E. Walker, Department of Geology, The University of Georgia, Athens, Georgia, USA; 8th September, 1994; revised 28th June, 1995.  相似文献   

18.
The symbiotic lifestyle is widespread among porcellanid crabs, which maintain ecological and co-evolutionary associations with annelid polychaetes, poriferans, cnidarians, echinoderms, gastropod mollusks, and other crustaceans such as shrimps and hermit crabs, among others. We investigated the ecological association between the hermit crab Dardanus insignis and the porcellanid Porcellana sayana, in southeastern Brazil. Porcellanid crabs, hermit crabs, and available shells were collected monthly from July 2001 to June 2003, with a shrimp boat equipped with two double-rig trawl nets. The majority of P. sayana specimens were collected in shells occupied by D. insignis (96.6%); a few were found in empty shells (3.4%). The catch of both symbionts and hosts increased with increasing depth, with the highest occurrence at 35 m. The P. sayana crabs of various sizes could be found solitary or forming aggregations of up to 14 individuals per host, showing no sex or size segregation. In spite of the high diversity of shell species occupied by the hermit crabs and also available in the field, only a few of them were also utilized by P. sayana. The majority (93%) of shells utilized by P. sayana also hosted other symbiont species, constituting the basis of extensive symbiotic complexes. Thus, the ecological relationship between D. insignis and P. sayana may be classified as a non-obligate and non-specific symbiosis that may also involve other facultative organisms such as sea anemones.  相似文献   

19.
Gastropod shells are vital for the majority of hermit crab species, being essential for their survival, growth, protection, and reproduction. Given their importance, shells are acquired and transferred between crabs through several modalities. We conducted observations and experiments at the Asinara Island (Sardinia, Italy) to investigate the efficacy of the different behavioral tactics adopted by the hermit crab Clibanarius erythropus to acquire shells, such as: (1) locomotion and activity at different tidal phases; (2) attendance at shell-supplying sites (simulated predation sites with five different odors: live and dead gastropods, live and dead crabs, predator); and (3) interactions with conspecifics in aggregations on simulated gastropod predation sites. In each tidal phase, locomotion was slow (0.7 cm min− 1) and, as a consequence, the probability of encountering empty shells and conspecifics was low. Simulated gastropod predation sites quickly attracted a larger number of hermit crabs than the other sites tested. Aggregations seemed to function as shell exchange markets, as previously suggested for other species: the first attendant took the experimental shell and a chain of shell exchanges among conspecifics followed. Our results show that, in C. erythropus, aggregation is the most efficient tactic for the acquisition of new shells, whereas in other species, such as Pagurus longicarpus, it is associated with exploitation ability due to the intense locomotion. The interspecific plasticity in hermit crabs' behavior is confirmed.  相似文献   

20.
The symbiotic associates of hermit crabs (excluding parasites and flora) are reviewed worldwide. The review includes species found on the shells occupied by hermit crabs (epibiotic species), species boring into these shells (endolithic species), species living within the lumen of the shell (either free-living or attached to the shell), species attached to the hermit crabs themselves, and hypersymbionts. In total over 550 invertebrates, from 16 phyla are found associated with over 180 species of hermit crabs. Among these associates, 114 appear to be obligate commensals of hermit crabs, 215 are facultative commensals, and 232 are incidental associates. The taxa exhibiting the highest number of associates are arthropods (126), polychaetes (105), and cnidarians (100). The communities of species associated with Dardanus arrosor, Paguristes eremita, Pagurus bernhardus, Pagurus cuanensis, and Pagurus longicarpus are the best studied and harbor the most diverse assemblages of species. While trends in biodiversity of hermit crab assemblages do not follow predicted patterns (e.g., hermit crabs within the Indo-West Pacific do not harbor more species than those from temperate regions), this is suggested to reflect a lack of sampling rather than a true representation of the number of associates. Hermit crabs date to at least the Cretaceous and provided a niche for a number of groups (e.g., hydractinians, bryozoans, polydorids), which were already associates of living gastropods. Apparently hermit crab shells initially supplied a substrate for settlement and then these symbiotic relationships were reinforced by enhanced feeding of symbionts through the activity of the hosts. Through their use and recycling of gastropods shells, hermit crabs are important allogenic ecosystem engineers in marine habitats from the intertidal to the deep sea. Hermit crabs benefit from some symbionts, particularly cnidarians and bryozoans, through extension of shell apertures (alleviating need to switch into new shells) and by providing protection from predators. However, hermit crabs are also negatively impacted (e.g., decreased reproductive success, increased predation) by some symbionts and a review of egg predators is provided. Thus, the symbiotic relationships between hermit crabs and many associates are difficult to characterize and often exhibit temporal changes depending on environmental and biological factors. Research on the biology of these symbionts and the costs/benefits of their associations with hermit crabs are analyzed. While some associates (e.g., Hydractinia spp.) have been studied in considerable detail, for most associations little is known in terms of the impacts of symbionts on hosts, and future experimental studies on the multitude of relationships are suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号