首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated hydroxyl free radical mediated damage to pBR322 DNA produced by ascorbate/iron and oxygen in a phosphate-buffered in vitro system. An observed lag phase in DNA nicking suggests a multi-target model of hydroxyl free radical attack on DNA. In the present report we further examine the model system and show that there is a "heat labile" component of the ascorbate/iron system which can be completely restored by the readdition of ascorbate. These observations have allowed us to rule out the possibility that intermediates build up in the reaction and act independently of ascorbate to increase the reaction rate. We have investigated the initial rate of OH production with two OH trapping agents, salicylate and deoxyguanosine, and find that the lag in DNA nicking is not due to a corresponding lag in the production of OH as assessed by formation of the products, dihydroxybenzoic acids and 8-hydroxydeoxyguanosine, respectively. We have found that the energy of activation for DNA supercoiled nicking is 13.9 kcal/mole and for OH trapping by salicylate is 21.1 kcal/nmole. These two activation energies are sufficiently different to suggest that the rate-limiting steps of these two reactions are different. Investigation of the rate of oxygen consumption during the ascorbate/iron-mediated DNA damage showed that oxygen was not a limiting component at any point in the reaction. The addition of catalase slowed down oxygen consumption by 31% and this data taken together with our previous observations on the model implicate hydrogen peroxide as a key intermediate in DNA damage caused by hydroxyl free radical.  相似文献   

2.
Erythrocytes can reduce extracellular ascorbate free radicals by a plasma membrane redox system using intracellular ascorbate as an electron donor. In order to test whether the redox system has electrogenic properties, we studied the effect of ascorbate free radical reduction on the membrane potential of the cells using the fluorescent dye 3,3'-dipropylthiadicarbocyanine iodide. It was found that the erythrocyte membrane depolarized when ascorbate free radicals were reduced. Also, the activity of the redox system proved to be susceptible to changes in the membrane potential. Hyperpolarized cells could reduce ascorbate free radical at a higher rate than depolarized cells. These results show that the ascorbate-driven reduction of extracellular ascorbate free radicals is an electrogenic process, indicating that vectorial electron transport is involved in the reduction of extracellular ascorbate free radical.  相似文献   

3.
Ascorbate is readily oxidized in aqueous solution by ascorbate oxidase. Ascorbate radicals are formed, which disproportionate to ascorbate and dehydroascorbic acid. Addition of erythrocytes with increasing intracellular ascorbate concentrations decreased the oxidation of ascorbate in a concentration-dependent manner. Concurrently, it was found, utilizing electron spin resonance spectroscopy, that extracellular ascorbate radical levels were decreased. Control experiments showed that these results could not be explained by leakage of ascorbate from the cells, inactivation of ascorbate oxidase, or oxygen depletion. Thus, this means that intracellular ascorbate is directly responsible for the decreased oxidation of extracellular ascorbate. Exposure of ascorbate-loaded erythrocytes to higher levels of extracellular ascorbate radicals resulted in the detection of intracellular ascorbate radicals. Moreover, efflux of dehydroascorbic acid was observed under these conditions. These data confirm the view that intracellular ascorbate donates electrons to extracellular ascorbate free radical via a plasma membrane redox system. Such a redox system enables the cells to effectively counteract oxidative processes and thereby prevent depletion of extracellular ascorbate.  相似文献   

4.
Summary Ascorbate free radical is considered to be a substrate for a plasma membrane redox system in eukaryotic cells. Moreover, it might be involved in stimulation of cell proliferation. Ascorbate free radical can be generated by autoxidation of the ascorbate dianion, by transition metal-dependent oxidation of ascorbate, or by an equilibrium reaction of ascorbate with dehydroascorbic acid. In this study, we investigated the formation of ascorbate free radical, at physiological pH, in mixtures of ascorbate and dehydroascorbic acid by electron spin resonance spectroscopy. It was found that at ascorbate concentrations lower than 2.5 mM, ascorbate-free radical formation was not dependent on the presence of dehydroascorbic acid. Removal of metal ions by treatment with Chelex 100 showed that autoxidation under these conditions was less than 20%. Therefore, it is concluded that at low ascorbate concentrations generation of ascorbate free radical mainly proceeds through metal-ion-dependent reactions. When ascorbate was present at concentrations higher than 2.5 mM, the presence of dehydroascorbic acid increased the ascorbate free-radical signal intensity. This indicates that under these conditions ascorbate free radical is formed by a disproportionation reaction between ascorbate and dehydroascorbic acid, having aK equil of 6 × 10–17 M. Finally, it was found that the presence of excess ferricyanide completely abolished ascorbate free-radical signals, and that the reaction between ascorbate and ferricyanide yields dehydroascorbic acid. We conclude that, for studies under physiological conditions, ascorbate free-radical concentrations cannot be calculated from the disproportionation reaction, but should be determined experimentally.Abbreviations AFR ascorbate free radical - DHA dehydroascorbic acid - EDTA ethylenediaminetetraacetic acid - DTPA diethylenetri-aminepentaacetic acid - TEMPO 2,2,6,6-tetramethylpiperidinoxy  相似文献   

5.
To study the interaction of the antioxidant vitamins C and E in a biological system, we used electron spin resonance (ESR) spectroscopy to make serial measurement of ascorbate tocopheroxyl free radicals in plasma subjected to continuous free radical-mediated oxidative stress. Upon initiation of a continuous oxidative stress, we observed an immediate increase in the concentration of ascorbate radical, which reached a peak, and then steadily declined. Only after the virtual disappearance of the ascorbate radical did we observe the appearance of the tocopheroxyl radical. These data are consistent with the hypothesis that ascorbate is the terminal small-molecule antioxidant in biological systems. This is the first experimental demonstration that the predicted thermodynamic hierarchy of ascorbate, -tocopherol, and their free radicals holds in a biological system containing endogenous levels of these antioxidant vitamins.  相似文献   

6.
R J Heckly  J Quay 《Cryobiology》1983,20(5):613-624
Free radicals have been associated with loss of viability of lyophilized bacteria exposed to oxygen. Free radical concentration was proportional to the log of the oxygen pressure in the sample. Sugars, such as lactose or sucrose, preserved viability and inhibited free radical production. Lyophilized tissue, particularly liver and spleen, also reacted with oxygen to produce free radicals, which appear to be associated with ascorbic acid in the tissues. Pure ascorbic acid in air does not produce free radicals, but when mixed with protein before lyophilization it reacts with oxygen in air. When a mixture of sodium ascorbate and phenylalanine or tryptophan is lyophilized, free radicals identical to those observed in tissue are obtained. Propyl gallate and di- or trihydroxybenzoates also react with oxygen when lyophilized with phenylalanine, but the g value of the free radical is significantly less than that obtained with ascorbate. A number of amino acids and similar nitrogenous compounds act as catalysts to form propyl gallate free radicals. As with the bacterial or tissue preparations, various sugars or similar carbohydrates inhibited free radical production by either ascorbate or gallate. In the absence of water the free radicals produced by the action of oxygen on lyophilized samples are stable for years. The rate of free radical production is increased by small amounts of moisture (exposure to moist air), but at humidities over 30% rh the radicals are unstable.  相似文献   

7.
E.F. Elstner  R. Kramer 《BBA》1973,314(3):340-353
The mechanism of ascorbate photooxidation in isolated chloroplasts has been studied. The enzyme superoxide dismutase has been used as a tool to show that ascorbate is oxidized by the superoxide free radical ion, which is formed during the autooxidation of a low-potential electron acceptor.

In the absence of an artificial, low-potential electron acceptor, addition of ascorbate stimulates photophosphorylation in isolated chloroplasts. This effect of ascorbate is abolished by superoxide dismutase, indicating that both the superoxide free radical ion and ascorbate are responsible for the stimulation of photophosphorylation. In this case, the superoxide free radical ion seems to be formed during the autooxidation of an endogenous electron acceptor.

In the presence of ferredoxin and NADP+, photophosphorylation in isolated chloroplasts stops as soon as the available NADP+ is fully reduced. If ascorbate is present in this system, however, a linear rate of photophosphorylation is maintained in spite of the fact, that NADP+ is fully reduced. This ascorbate-mediated photophosphorylation again is abolished by superoxide dismutase.

During the catalysis of this oxygen-dependent photophosphorylation, ascorbate consumption is not observed. These findings support the idea, that in chloroplasts ascorbate together with the superoxide free radical ion may function in providing additional ATP by an oxygen-dependent photophosphorylation.  相似文献   


8.
Rooting hastened in onions by ascorbate and ascorbate free radical   总被引:3,自引:0,他引:3  
Treatment of onion bulbs with ascorbate or its free radical hastened root emergence on the basal plate in relation to treatments with water or dehydroascorbate. This stimulation was accompanied by a significant increase of DNA synthesis per primordium. After a 24-h imbibition, ascorbate and ascorbate free radical also increased cell length. Ascorbate and ascorbate free radical apparently activated the onset of cell proliferation in root primordia, resulting in a shortening in G1-S transition. The possible action of the ascorbate system at the plasma membrane level is discussed.Abbreviations ASC ascorbic acid - AFR ascorbate free radical - DHA dehydroascorbate  相似文献   

9.
Summary We report that ascorbate free radical stimulates onion root growth at 15 °C and 25 °C. The fully reduced form, ascorbate, also stimulates root elongation if culture conditions allow its oxidation. When ascorbate oxidation was inhibited, no stimulation of root growth was found. The effect of the fully oxidized form, dehydroascorbate, was inhibitory. We show also that ascorbate free radical generated by ascorbate oxidation, is reduced back probably by a transplasmalemma reductase. These results are discussed on the basis of an activation of a transplasma membrane redox system likely involved in processes related to cell growth.Abbreviations AFR ascorbate free radical - ASC ascorbate - DHA dehydroascorbate  相似文献   

10.
The acetaminophen phenoxyl radical was generated by the oxidation of acetaminophen by horseradish peroxidase in a fast-flow ESR experiment, and its reaction with glutathione and ascorbate was studied. Glutathione reduces the phenoxyl radical of acetaminophen to regenerate acetaminophen and form the thiyl radical of glutathione. This thiyl radical reacts with the thiolate anion of glutathione to form the disulfide radical anion, which was detected and characterized by ESR spectroscopy. In the presence of ascorbate, the ascorbyl radical was produced by the reduction of the acetaminophen phenoxyl radical by ascorbate. This reaction results in the complete reduction of the free radical of acetaminophen, whereas the glutathione reduction of the phenoxyl radical of acetaminophen was not complete on the fast-flow ESR time scale of milliseconds. This suggests that ascorbate rather than glutathione is more likely to react with the acetaminophen phenoxyl free radical in vivo. In the presence of both ascorbate and higher concentrations of glutathione, the reaction with ascorbate is dominant. When cysteine was used in the place of reduced glutathione in the above assay system, the disulfide radical anion of cystine was observed in a manner similar to glutathione. These reactions may have significance in the detoxification of acetaminophen and the free radical metabolites of xenobiotics in general. Only in cells containing low levels of ascorbate can glutathione play a direct role in the detoxification of the acetaminophen phenoxyl radical.  相似文献   

11.
The mechanism of ascorbate oxidation was studied in rat liver microsomes. A continuous consumption of the added ascorbate was observed, which was accompanied with a prompt appearance of ascorbyl free radical and dehydroascorbate. Microsomes sustained steady-state level of ascorbyl free radical and dehydroascorbate till ascorbate was present in the medium. Ascorbyl free radical formation was diminished when microsomes had been pretreated with heat or trypsine. It was also decreased by addition of quercetin, econazole or metal chelators, including the copper specific neocuproine. Enzymatic (superoxide dismutase, catalase) and nonenzymatic (dimethyl sulfoxide, mannitol) antioxidants did not modify the microsomal production of ascorbyl free radical. Investigation of the subcellular distribution of ascorbate oxidation showed that the microsomal fraction of liver had the highest activity. The decrease of ascorbate oxidation after protease treatment and the negligible increase upon permeabilization of microsomal vesicles showed that a membrane protein is responsible for the activity, which is exposed to the outer surface of the endoplasmic reticulum. The results indicate the presence of a primary enzymatic ascorbate oxidation in rat liver endoplasmic reticulum which is able to generate dehydroascorbate, an important source of the oxidizing environment in the endoplasmic reticulum.  相似文献   

12.
Long-term treatments with ascorbate free radical-stimulated glucose, fucose, sucrose, and nitrate uptake in Allium cepa roots. Glucose and fucose showed saturation kinetics in untreated roots, but after treatment with the ascorbate free radical, uptake was linear with time. Although the rates of nitrate and sucrose uptake increased after treatment with ascorbate free radical, the kinetics were similar to those observed in the controls. Ascorbate and dehydroascorbate inhibited nutrient uptake. The uptake rates for all nutrients increased throughout the 48-h period of pretreatment with ascorbate free radical. During the treatment an increase in the vacuole volume and tonoplast surface area also occurred. These results show the relationship between an increase in vacuolar volume and stimulated nutrient uptake from ascorbate-free radical, resulting in enhanced root elongation. These results suggest that activation of a transplasma membrane redox system by ascorbate-free radical is involved in these responses.  相似文献   

13.
Selenium is connected to three small molecule antioxidant compounds, ascorbate, α-tocopherol, and ergothioneine. Ascorbate and α-tocopherol are true vitamins, while ergothioneine is a “vitamin-like” compound. Here we review how selenium is connected to all three. Selenium and vitamin E work together as a team to prevent lipid peroxidation. Vitamin E quenches lipid hydroperoxyl radicals and the resulting lipid hydroperoxide is then converted to the lipid alcohol by selenocysteine-containing glutathione peroxidase. Ascorbate reduces the resulting α-tocopheroxyl radical in this reaction back to α-tocopherol with concomitant production of the ascorbyl radical. The ascorbyl radical can be reduced back to ascorbate by selenocysteine-containing thioredoxin reductase. Ergothioneine and ascorbate are both water soluble, small molecule reductants that can reduce free radicals and redox-active metals. Thioredoxin reductase can reduce oxidized forms of ergothioneine. While the biological significance of this is not yet realized, this discovery underscores the centrality of selenium to all three antioxidants.  相似文献   

14.
A growing body of evidence supports an important role for oxidative stress in the pathogenesis of Alzheimer's disease. Recently, a number of papers have shown a synergistic neurotoxicity of amyloid beta peptide and cupric ions. We hypothesized that complexes of cupric ions with neurotoxic amyloid beta peptides (Abeta) can stimulate copper-mediated free radical formation. We found that neurotoxic Abeta (1-42), Abeta (1-40), and Abeta (25-35) stimulated copper-mediated oxidation of ascorbate, whereas nontoxic Abeta (40-1) did not. Formation of ascorbate free radical was significantly increased by Abeta (1-42) in the presence of ceruloplasmin. Once cupric ion is reduced to cuprous ion, it can be oxidized by oxygen to generate superoxide radical or it can react with hydrogen peroxide to form hydroxyl radical. Hydrogen peroxide greatly increased the oxidation of cyclic hydroxylamines and ascorbate by cupric-amyloid beta peptide complexes, implying redox cycling of copper ions. Using the spin-trapping technique, we have shown that toxic amyloid beta peptides led to a 4-fold increase in copper-mediated hydroxyl radical formation. We conclude that toxic Abeta peptides do indeed stimulate copper-mediated oxidation of ascorbate and generation of hydroxyl radicals. Therefore, cupric-amyloid beta peptide-stimulated free radical generation may be involved in the pathogenesis of Alzheimer's disease.  相似文献   

15.
In our earlier communication we have shown that Lupeol inhibits early responses of tumour induction in murine skin. The free radical mediated damage to the cellular macromolecules such as DNA, proteins, lipids and alteration in the activities of quinone reductase and xanthine oxidase are important biochemical parameters of tumor development. The suppression of free radical mediated damage to cellular macromolecules and induction of quinone reductase along with depletion of xanthine oxidase are prominent characteristics of chemopreventive agents. In the present investigation, we have elucidated the mechanism of action of lupeol (Lup-20 (29)-en-3beta-ol), a triterpene found in moderate amount in many vegetables, fruits and anti-tumor herbs. In the present investigation, lupeol significantly reduced the free radical mediated DNA-sugar damage and microsomal lipid peroxidation in an iron/ascorbate free radical generating system in vitro. Benzoyl peroxide, a known free radical generating tumor promoter mediated oxidation of proteins and modulation in the activities of quinone reductase as well as xanthine oxidase was significantly prevented by lupeol when tested on murine skin in vivo. It was concluded from this study that lupeol acts as an effective chemopreventive agent against cutaneous toxicity.  相似文献   

16.
Previous studies indicate that ascorbic acid, when combined with copper or iron cleaves several viral DNA. ln this study, we generated the ascorbate radical anion electrochemically in a simple chemical environment without the participation of a metal ion. This solution possesses viral DNA scission activity. Ohe absence of catalytic metal ions [Fe (III) and Cu(II)] in the incubation medium was evidenced by metal chelating agents such as desferrioxamine and EDTA. Ohe radical quenching at high EDTA concentration was attributed to ionic strength of EDTA rather than metal chelation. Ohe effects of antioxidants, radical scavangers, catalase, superoxide dismutase and some proteins on DNA cleavage have been tested. Cleavage may not arise directly from ascorbate free radical but the reaction of the radical form of ascorbate with oxygen may produce the actual reactive species. Aerobic oxidation of ascorbate itself strictly requires transition metal catalysts, however electrochemically produced ascorbyl radical avoided the kinetic barrier that prevented direct oxidation of ascorbic acid with oxygen and eliminated the need for the transition metal ion catalysts.  相似文献   

17.
Melatonin, an endogenous hormone, is used as an antioxidant drug in doses quite higher than the endogenous circulating levels of this hormone. Hepatic endoplasmic reticulum contains the cytochrome P450 (CYP450) system, which catalyzes one biotransformation pathway of melatonin; this organelle is also one of the main sources of reactive oxygen species in cells. Therefore, we proposed that the antioxidant activity of this hormone may have a biological relevance in the organelle where it is biotransformed. To evaluate this postulate, we used Fe3+/ascorbate, an oxygen free radical generating system that leads to lipid peroxidation, loss of protein-thiol content, and activation of UDP-glucuronyltransferase in rat liver microsomes. We found that mM concentrations of melatonin prevented all these oxidative phenomena. We also found that Fe3+/ascorbate leads to structural alterations in the CYP450 monooxygenase, the enzyme that binds the substrate in the CYP450 system catalytic cycle, probably through direct oxidation of the protein, and also inhibited p-nitroanisole O-demethylation, a reaction catalyzed by the CYP450 system. Notably, melatonin prevented both phenomena at μM concentrations. We provide evidence suggesting that melatonin may be oxidized by oxygen free radicals. Thus, we postulate that melatonin may be acting as an oxygen free radical scavenger, and Fe3+/ascorbate-modified melatonin would be directly protecting the CYP450 system through an additional specific mechanism. Pharmacological relevance of this phenomenon is discussed.  相似文献   

18.
Reactive oxygen species (ROS) are known to be primarily responsible for the impairment of cellular function under numerous abiotic and biotic stress conditions. In this paper, using non-invasive microelectrode ion flux measuring (MIFE) system, we show that the application of a hydroxyl radical (OH*)-generating Cu2+/ascorbate (Cu/a) mixture to Arabidopsis roots results in a massive, dose-dependent efflux of K+ from epidermal cells in the elongation zone. Pharmacological experiments suggest that both outward-rectifying K+ channels and non-selective cation channels (NSCCs) mediate such effluxes. Low (5 mM) concentrations of compatible solutes (glycine betaine, proline, mannitol, trehalose or myo-inositol) significantly reduces OH*-induced K+ efflux, similar to our previous reports for NaCl-induced K+ efflux. Importantly, a significant reduction in K+ efflux was found using osmolytes with no reported free radical scavenging activity, as well as those for which a role in free radical scavenging has been demonstrated. This indicates that compatible solutes must play other (regulatory) roles, in addition to free radical scavenging, in mitigating the damaging effects of oxidative stress.  相似文献   

19.
Oxidative stress may contribute to many pathophysiologic changes that occur after traumatic brain injury. In the current study, contemporary methods of detecting oxidative stress were used in a rodent model of traumatic brain injury. The level of the stable product derived from peroxidation of arachidonyl residues in phospholipids, 8-epi-prostaglandin F(2alpha), was increased at 6 and 24 h after traumatic brain injury. Furthermore, relative amounts of fluorescent end products of lipid peroxidation in brain extracts were increased at 6 and 24 h after trauma compared with sham-operated controls. The total antioxidant reserves of brain homogenates and water-soluble antioxidant reserves as well as tissue concentrations of ascorbate, GSH, and protein sulfhydryls were reduced after traumatic brain injury. A selective inhibitor of cyclooxygenase-2, SC 58125, prevented depletion of ascorbate and thiols, the two major water-soluble antioxidants in traumatized brain. Electron paramagnetic resonance (EPR) spectroscopy of rat cortex homogenates failed to detect any radical adducts with a spin trap, 5,5-dimethyl-1-pyrroline N:-oxide, but did detect ascorbate radical signals. The ascorbate radical EPR signals increased in brain homogenates derived from traumatized brain samples compared with sham-operated controls. These results along with detailed model experiments in vitro indicate that ascorbate is a major antioxidant in brain and that the EPR assay of ascorbate radicals may be used to monitor production of free radicals in brain tissue after traumatic brain injury.  相似文献   

20.
Ascorbate free radical and its role in growth control   总被引:4,自引:0,他引:4  
Summary Ascorbate and its free radical potentiates proliferation of HL-60 cells in serum-limiting media. Dehydroascorbate does not affect growth. This stimulation of growth is due to a general shortening of the cell cycle. The incubation of HL-60 cells with ascorbate free radical produces a significant change of the redox potential of cells. The presence of cells in culture media avoids the total oxidation of ascorbate, and also HL-60 cells induce the short-term stabilization of ascorbate. Ascorbate free radical potentiates also the onset of DNA synthesis in CCL39 cells induced by fetal calf serum, although itself does not affect quiescense to proliferation transition. This transition induced by fetal calf serum also potentiates the capacity of CCL39 cells to stabilize ascorbate. We discuss here the role of ascorbate free radical on growth control by its reduction by the plasma membrane redox system and its meaning for cell physioslogy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号