首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Transient electrical birefringence characterization of heavy meromyosin   总被引:3,自引:0,他引:3  
S Highsmith  D Eden 《Biochemistry》1985,24(18):4917-4924
Heavy meromyosin (HMM) and myosin subfragment 1 (S1) were prepared from myosin by using low concentrations of alpha-chymotrypsin. The light chain distribution in HMM was identical with that of myosin, within experimental error, when analyzed on 12% polyacrylamide gels after electrophoresis. Specific birefringences and birefringence decay times were measured by transient electrical birefringence in 5 mM KCl, 5 mM tris(hydroxymethyl)aminomethane (pH 7), and 1 mM MgCl2 at 4 degrees C under gentle conditions that reduced the CaATPase activity by less than 10%. For solutions of HMM, by use of electric field pulses shorter than 0.5 microseconds, the birefringence decay signal from the S1 portions of HMM could be resolved and the rotational motions of the S1 moieties observed directly. The rotation relaxation time, adjusted to 20 degrees C, was 0.34 microseconds; this is in quantitative agreement with previous hydrodynamic results obtained by using covalently attached probes. The assignment of the fast decay time obtained with HMM to the S1 portions was confirmed by birefringence decay measurements on free S1, for which the relaxation time was 0.13 microseconds, corrected to 20 degrees C. The specific birefringences for S1 and HMM, respectively, were 0.37 X 10(-6) and 12.8 X 10(-6) (cm/statvolt)2. Thus, for much longer electric field pulses, the signal from HMM is due almost entirely to its subfragment 2 (S2) portion, and its rotational dynamics can also be monitored directly by using electrical birefringence. The decay of the signal from the S2 portion could be adequately fit without evoking bending of the S2 portion of HMM other than at its junction with S1.  相似文献   

2.
Electric birefringence measurements and depolarized light scattering experiments were performed with HMM, LMM, and rod, the three fragments of myosin, under conditions (0.3 M KCl, 0.02 M PO4, pH 7.3) the medium currently used for biochemical assays of myosin in its native state as well as of its subfragments. The comparison of myosin and rod relaxation times (17.2 and 22.8 microseconds, respectively) suggests that the average bend angle in the tail is sharper in intact myosin (90 degrees) whereas rod, when detached from the heads, is a more elongated species with an average bend angle of 120-135 degrees. The LMM relaxation time (6.4 microseconds) is consistent with a rigid linear stick model of length 78 nm. Flexibility in myosin tail is thus confirmed as located in the HMM-LMM hinge. LMM and rod did not exhibit any significant variation of their apparent relaxation times with concentration and the decay curves were best fitted by a single exponential, evidence that the concentration of parallel staggered dimers was negligible in the concentration range studied here (0-7 g/l). This observation lends support to previous results obtained with myosin. Respective HMM, LMM, and rod molecular weights and homogeneity as evaluated by SDS-PAGE analysis were correlated to the Kerr constants of their solutions. Large variations in LMM Kerr constants could be related to the loss of a COOH-terminal peptide on prolonged chymotryptic digestion. Electric birefringence combined with depolarized light scattering is presented as a potential method for net charge distribution studies.  相似文献   

3.
After removal of the 66 COOH-terminal amino acids from each of its two heavy chains by chymotrypsin digestion, Acanthamoeba myosin II forms only parallel dimers under conditions in which native myosin II forms bipolar filaments (Kuznicki, J., Cote, G. P., Bowers, B., and Korn, E. D. (1985) J. Biol. Chem. 260, 1967-1972). We have studied the solution structure of the chymotrypsin-cleaved myosin II by electric birefringence. Only two species, known to be monomer and parallel dimer from previous studies, were detected. The contribution to the birefringence decay from dimer increased from about 10 to 70% as the KCl concentration was lowered from 100 mM to 0 in 50% glycerol. At all ionic strengths, the monomer had a relaxation time corrected to water at 20 degrees C of 8.2 microseconds, whereas a relaxation time of 10.3 microseconds was expected for monomers with straight rigid rods. This strongly indicates that the myosin rod in solution is bent. On the assumption that there is a single bend 26 nm from the tip of the tail, as suggested by electron microscopy, it was calculated that the average bend angle would be 110 degrees, in solution, if as seems most likely, the average angle between the two globular heads were 180 degrees. The observed relaxation time of the dimer corrected to water at 20 degrees C was 25 microseconds, independent of ionic strength, which, if the motion of the heads were unrestricted, is consistent with a structure for a parallel dimer in which either the two monomer subunits have straight rigid rods and are staggered by about 28 nm or only one is bent and the stagger is 30 nm. As described in the accompanying Appendix, either of these dimers can be assembled into a bipolar filament compatible with the apparent structure of filaments of native myosin II (Pollard, T.D. (1982) J. Cell Biol. 95, 816-825).  相似文献   

4.
Myosin subfragment 1 has tertiary structural domains   总被引:4,自引:0,他引:4  
S Highsmith  D Eden 《Biochemistry》1986,25(8):2237-2242
Transient electrical birefringence measurements were made on skeletal muscle myosin subfragment 1 (S1) at 3.7 degrees C in 10 mM tris(hydroxymethyl)aminomethane-acetate and 0.10 mM MgCl2, pH 7.0. The specific birefringence for 4.5 microM S1 was determined from steady-state measurements to be (8.1 +/- 0.3) X 10(-7) (cm/statvolt)2. For electric fields in the range of 2.47-24.7 statvolts/cm, the alignment was due to a large permanent dipole moment for S1, estimated to be 8500 +/- 2000 D. The duration and the strength of the transient electric field was varied, and the temporal response of the decay of the birefringence signal was analyzed. The rate of rotational motion after the field was removed increased with increasing field strength for short (0.35-microseconds) pulses and decreased with increasing pulse lengths for all field strengths. The rate of decay from a steady-state birefringence signal was independent of field strength. A model of S1 structure is proposed, which is consistent with these data and most other data on S1 structure. In this model, S1 is composed of two tertiary structural domains that are connected by a flexible linkage with a substantial restoring force. The electric dipole moments on the two domains are arranged head to tail. The segmental movement of the domains is restricted to certain directions. The average conformation of the molecule is elongated, but it can be made more compact by the torque exerted by an electric field. The structural changes depend on the strength and duration of the pulse.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
S Highsmith  D Eden 《Biochemistry》1987,26(10):2747-2750
The effects of limited trypsinolysis of myosin subfragment 1 (S1) on its structural dynamics were investigated by using the method of transient electric birefringence. Conversion of S1 by trypsin to produce S1 (T) did not change the specific Kerr constant [(8.1 +/- 0.3) X 10(-7) and (8.0 +/- 0.3) X 10(-7) cm2/statvolt2 for S1(T) and S1, respectively] or the degree of alignment in a weak electric field, suggesting that the size of S1 and its permanent electric dipole moment are not modified by trypsin. On the other hand, the relaxation time for the field-free rotation, after achieving a steady-state birefringence signal, was reduced from 316 ns for S1 to 269 ns for S1(T), at 3.7 degrees C, suggesting that trypsinolysis increases the flexibility of the connections between S1 segments or introduces additional segmental motions. For both S1 and S1(T), the rate of decay for a steady-state signal was independent of the field strength, between 3.34 and 20.3 statvolt/cm. Shortening the duration of the weak electric field pulses to 0.35 microseconds, so that steady-state signals were not achieved, decreased the relaxation times for S1 and S1(T) to 240 and 210 ns, respectively, which is consistent with the segmented flexible S1 structure proposed earlier [Highsmith, S., & Eden, D. (1986) Biochemistry 25, 2237]. When the strength of the electric field was increased to above 10 statvolt/cm, in order to make the interaction energy for the S1(T) electric dipole moment in the electric field greater than the thermal energy, the relaxation time after a 0.35-microseconds pulse decreased from 210 to 170 ns as the field was increased from 7 to 20 statvolt/cm. (ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The birefringence of isolated skinned fibers from rabbit psoas muscle was measured continuously during relaxation from rigor produced by photolysis of caged ATP at sarcomere length 2.8-2.9 microns, ionic strength 0.1 M, 15 degrees C. Birefringence, the difference in refractive index between light components polarized parallel and perpendicular to the fiber axis, depends on the average degree of alignment of the myosin head domain with the fiber axis. After ATP release birefringence increased by 5.8 +/- 0.7% (mean +/- SE, n = 6) with two temporal components. A small fast component had an amplitude of 0.9 +/- 0.2% and rate constant of 63 s-1. By the completion of this component, the instantaneous stiffness had decreased to about half the rigor value, and the force response to a step stretch showed a rapid (approximately 1000 s-1) recovery phase. Subsequently a large slow birefringence component with rate constant 5.1 s-1 accompanied isometric force relaxation. Inorganic phosphate (10 mM) did not affect the fast birefringence component but accelerated the slow component and force relaxation. The fast birefringence component was probably caused by formation of myosin.ATP or myosin.ADP.Pi states that are weakly bound to actin. The average myosin head orientation at the end of this component is slightly more parallel to the fiber axis than in rigor.  相似文献   

7.
Rigidity of myosin and myosin rod by electric birefringence   总被引:1,自引:0,他引:1  
S Hvidt  T Chang  H Yu 《Biopolymers》1984,23(7):1283-1294
The rotational relaxation times of rabbit myosin and myosin rod have been determined by electric birefringence measurement. The relaxation time of myosin measured in 10 mM pyrophosphate buffers in a pH range of 7.6–9.5 was found to have substantial concentration and pH dependences. The infinite-dilution limit of the relaxation time, τ°, was determined as 38 ± 2 μs, and it was found to be independent of pH. For myosin rod, a possible thermally induced conformational change was investigated in a temperature range of 1–43°C. The rotational relaxation time of myosin rod shows no clear indication of conformational change in this temperature range, and the radius of gyration measurement by light scattering was shown to be consistent with this observation. The steady-state birefringence, however, decreases substantially above around 40°C. This, the myosin rod appears to be only slightly flexible even at physiological temperature, but the possibility of a “melting” or “hinging” of the myosin rod cannot completely be ruled out on the basis of these experiments.  相似文献   

8.
Members of the spectrin protein family can be found in many different cells and organisms. In all cases studied, the major functional role of these proteins is believed to be structural rather than enzymatic. All spectrin proteins are highly elongated and consist mainly of homologous repeats that constitute rigid segments connected in tandem. It is commonly believed that the details of the spectrin function depend critically on the flexibility of the links between the segments. Here we report on a work addressing this question by studying the transient electric birefringence of recombinant spectrin fragments consisting of segments 14, 14-15, 14-16, and 14-17, respectively, from Drosophila alpha-spectrin. Transient electric birefringence depends sharply on both molecular length and flexibility. We found that the birefringence relaxation time of segment 14 measured at 4 degrees C, but scaled to what is expected at 20 degrees C, equals 16 ns (+/-15%) at pH 7.5 and ionic strength 6 mM. This is consistent with this single segment being rigid, 5 nm long and having an axial ratio equal to about two. Under the same conditions, segments 14-15, 14-16 and 14-17 show relaxation times of 45, 39 and 164 ns (all +/-20%), respectively, scaled to what is expected at 20 degrees C. When the temperature is increased to 37 degrees C the main relaxation time for each of these multisegment fragments, scaled to what is expected at 20 degrees C, increased to 46, 80, and 229 ns (all +/-20%), respectively. When the ionic strength and the Debye shielding is low, the dynamics of these short fragments even at physiological temperature is nearly the same as for fully extended weakly bending rods with the same lengths and axial ratios. When the ionic strength is increased to 85 mM, the main relaxation time for each of these multisegment fragments is reduced 20-50% which suggests that at physiological salt and temperature conditions the links in 2-4-segment-long fragments exhibit significant thermally induced flexing. Provided that the recombinant spectrin fragments can serve as a model for native spectrin, this implies that, at physiological conditions, the overall conformational dynamics of a native spectrin protein containing 20-40 segments equals that of a flexible polymer.  相似文献   

9.
The changes in birefringence in the rigor to relax transition of single triton-extracted rabbit psoas muscle fibers have been investigated with quantitative polarized light techniques. The total birefringence of rest lenght fibers in rigor was (1.46 +/- 0.08) x 10(-3) and increased to (1.67 +/- 0.05) x 10(-3) after Mg-ATP relaxation. Pyrophosphate relaxation increased the total birefringence only slightly, whereas subsequent Mg-ATP relaxation elicited the maximum increase in birefringence. Changes in lattice spacing did not account for the total increase in birefrigence during relaxation. Moreover, the increase in total birefringence was attributable to increases in intrinsic birefringence as well as form birefringence. No change in birefringence was exhibited upon exposure to a relaxation solution after myosin extraction. Synthetic myosin filaments were prepared and treated with relaxation and rigor solutions. The negatively stained filaments treated with a rigor solution had gross irregular projections at either end, while the filaments treated with a relaxing solution were more spindle shaped. The results are compatible with the view that the subfragment-2 moieties of myosin angle away from the myosin aggregates (light meromyosin) to permit the attachment of the subfragment-1 moieties to actin.  相似文献   

10.
Dynamic Kerr effect measurements were performed with dilute aqueous suspensions of monodisperse spherical vesicles (~1μm diameter), isolated from the rod outer segment of bovine retina. A large birefringence, amounting to the specific Kerr constant of 10?3 esu, can be observed. When a sufficiently long duration pulse (1 s) is applied, the decay of birefringence can be represented by a single exponential profile, yielding a relaxation time of 100 ± 20 ms in 1 mM imidazole buffer. This is consistent with the rotatory relaxation time of these spherical membrane vesicles. When a short duration is applied, the birefringence increases more steeply and the decay profile contains several components. The slowest (terminal) relaxation time is 86 ± 15 ms and is due to the same process as the one observed in the slow pulse case.  相似文献   

11.
We have measured the microsecond rotational motions of myosin heads in contracting rabbit psoas muscle fibers by detecting the transient phosphorescence anisotropy of eosin-5-maleimide attached specifically to the myosin head. Experiments were performed on small bundles (10-20 fibers) of glycerinated rabbit psoas muscle fibers at 4 degrees C. The isometric tension and physiological ATPase activity of activated fibers were unaffected by labeling 60-80% of the heads. Following excitation of the probes by a 10-ns laser pulse polarized parallel to the fiber axis, the time-resolved emission anisotropy of muscle fibers in rigor (no ATP) showed no decay from 1 microsecond to 1 ms (r infinity = 0.095), indicating that all heads are rigidly attached to actin on this time scale. In relaxation (5 mM MgATP but no Ca2+), the anisotropy decayed substantially over the microsecond time range, from an initial anisotropy (r0) of 0.066 to a final anisotropy (r infinity) of 0.034, indicating large-amplitude rotational motions with correlation times of about 10 and 150 microseconds and an overall angular range of 40-50 degrees. In isometric contraction (MgATP plus saturating Ca2+), the amplitude of the anisotropy decay (and thus the amplitude of the microsecond motion) is slightly less than in relaxation, and the rotational correlation times are about twice as long, indicating slower motions than those observed in relaxation. While the residual anisotropy (at 1 ms) in contraction is much closer to that in relaxation than in rigor, the initial anisotropy (at 1 microsecond) is approximately equidistant between those of rigor and relaxation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The electric dipole moment of rabbit skeletal myosin was estimated from the electric and flow birefringence properties. Myosin formed small polydisperse aggregates (0.2-1.1 microM in length) with an apparent electric dipole moment of 5,000-20,000 Debye in aqueous urea or sodium pyrophosphate at low ionic strength. Permanent dipole moment contributed substantially to the apparent dipole moment. An anti-parallel association of myosin was suggested from the dependence of the apparent dipole moment on myosin concentration. Some interactions between myosin and C-protein were detected in 1 M urea by flow birefringence and analytical ultracentrifugation studies. The apparent dipole moment of myosin aggregates was less dependent on myosin concentration in the presence of C-protein.  相似文献   

13.
Bends in nucleic acid helices can be quantified in a transient electric birefringence (TEB) experiment from the ratio of the terminal decay times of the bent molecule and its fully duplex counterpart (tau-ratio method). The apparent bend angles can be extracted from the experimental tau-ratios through the application of static (equilibrium-ensemble) hydrodynamic models; however, such models do not properly address the faster component(s) of the birefringence decay profile, which can represent up to 80% of the total birefringence signal for large band angles. To address this latter issue, the relative amplitudes of the components in the birefringence decay profile have been analyzed through a series of Brownian dynamics (BD) simulations. Decay profiles have been simulated for three-, five-, and nine-bead models representing RNA molecules with central bends of 30 degrees, 60 degrees, and 90 degrees, and with various degrees of associated angle dispersion. The BD simulations are in close agreement with experimental results for the fractional amplitudes, suggesting that both amplitudes and terminal tau-ratios can be used as a measure of the magnitudes of bends in the helix axis. Although the current results indicate that it is generally not possible to distinguish between relatively fixed and highly flexible bends from single tau-ratio measurements, because they can lead to similar reductions in terminal decay time and amplitude, measurements of the dependence of the fractional amplitudes on helix length may afford such a distinction.  相似文献   

14.
Effects of ionic strength and proteolytic digestion on the conformation of chromatin fibers were studied by electric birefringence and relaxation measurements. The results confirm that at low ionic strength chromatin presents structural features reflecting those observed in the presence of cations. Soluble chromatin prepared from rat liver nuclei by brief nuclease digestion exhibits a positive birefringence. As the salt concentration is increased, the transition to a compact solenoidal structure is deduced from changes in electro-optical properties: the positive birefringence gradually decreases and the observed reduction in 40 mM NaCl is nearly 95%; the relaxation time decreases dramatically and the character of the kinetic changes since the decay of birefringence described initially by a spectrum of relaxation times becomes monoexponential. On digestion with proteases at low ionic strength we observe at first a rapid increase of the positive birefringence concomitant with an increase of the relaxation time. Then the birefringence decreases and becomes negative. Chromatin undergoes two successive transitions: the first transition is explained by a lengthening of nucleosomal chains without modification of the orientation of nucleosomes within the superstructure and the second one by the unwinding of the DNA tails and internucleosomal segments. When chromatin is digested at 30 mM NaCl we find a single unfolding transition characterized by the decrease of birefringence and a slight increase in the relaxation time. The results imply that the positive birefringence of chromatin does not depend on the presence of whole histone H1 and that a salt concentration of 30 mM NaCl is sufficient to modify the initial site or/and the effects of proteolytic attack.  相似文献   

15.
Abstract

Effects of ionic strength and proteolytic digestion on the conformation of chromatin fibers were studied by electric birefringence and relaxation measurements. The results confirm that at low ionic strength chromatin presents structural features reflecting those observed in the presence of cations. Soluble chromatin prepared from rat liver nuclei by brief nuclease digestion exhibits a positive birefringence. As the salt concentration is increased, the transition to a compact solenoidal structure is deduced from changes in electro-optical properties: the positive birefringence gradually decreases and the observed reduction in 40 mM NaCl is nearly 95%; the relaxation time decreases dramatically and the character of the kinetic changes since the decay of birefringence described initially by a spectrum of relaxation times becomes monoexponential.

On digestion with proteases at low ionic strength we observe at first a rapid increase of the positive birefringence concomitant with an increase of the relaxation time. Then the birefringence decreases and becomes negative. Chromatin undergoes two successive transitions: the first transition is explained by a lengthening of nucleosomal chains without modification of the orientation of nucleosomes within the superstructure and the second one by the unwinding of the DNA tails and internucleosomal segments.

When chromatin is digested at 30 mM NaCl we find a single unfolding transition characterized by the decrease of birefringence and a slight increase in the relaxation time. The results imply that the positive birefringence of chromatin does not depend on the presence of whole histone HI and that a salt concentration of 30 mM NaCl is sufficient to modify the initial site or/and the effects of proteolytic attack.  相似文献   

16.
The behavior of the sodium indicator sodium-binding benzofuran isophthalate (SBFI) is investigated in HeLa cells by time-resolved fluorescence microscopy. The fluorescence relaxation of SBFI in HeLa cells can be described by a triexponential for intracellular sodium concentration ([Na(+)](i)) between 0 and 90 mM. Changes in [Na(+)](i) affect neither the fluorescence relaxation times (0.21, 0. 60, and 2.7 ns) nor the average decay time (2.2 ns). The preexponential factor of the shortest decay time is negative. However, the ratio of the fluorescence excitation signal at 340 nm to that at 380 nm increases with [Na(+)](i). To elucidate the behavior of SBFI in cells, experiments are performed on SBFI in buffer at various concentrations of sodium, potassium, and bovine serum albumin (BSA) and at various viscosities. The fluorescence decay is triexponential only in the presence of BSA. The relaxation times are independent of [Na(+)] and [BSA]. The preexponential factor of the shortest decay time is negative from a certain [BSA] on, which depends on [Na(+)]. The data indicate that interactions with intracellular components rather than microviscosity influence the SBFI behavior in cells. A model is suggested in which the fluorescence intensities are mainly determined by the signals from the Na(+) subsetSBFI and SBFI subsetprotein complexes.  相似文献   

17.
Intact single twitch fibers from frog muscle were stretched to long sarcomere length, micro-injected with the pH indicator dye phenol red, and activated by action potential stimulation. Indicator-related absorbance changes (denoted by delta A0 and delta A90) were measured with 0 degree and 90 degrees polarized light (oriented, respectively, parallel and perpendicular to the fiber axis). Two components of delta A were detected that had generally similar time courses. The "isotropic" component, calculated as the weighted average (delta A0 + 2 delta A90)/3, had the wavelength dependence expected for a change in myoplasmic pH. If calibrated in pH units, this signal's peak amplitude, which occurred 15-20 ms after stimulation, corresponded to a myoplasmic alkalization of average value 0.0025 +/- 0.0002 (+/- SEM; n = 9). The time course of this change, as judged from a comparison with that of the fibers' intrinsic birefringence signal, was delayed slightly with respect to that of the myoplasmic free [Ca2+] transient. On average, the times to half-peak and peak of the phenol red isotropic signal lagged those of the birefringence signal by 2.4 +/- 0.2 ms (+/- SEM; n = 8) and 8.4 +/- 0.5 ms (+/- SEM; n = 4), respectively. The other component of the phenol red signal was "dichroic," i.e., detected as a difference (delta A0-delta A90 greater than 0) between the two polarized absorbance changes. The wavelength dependence of this signal was similar to that of the phenol red resting dichroic signal (Baylor and Hollingworth. 1990. J. Gen. Physiol. 96:449-471). Because of the presence of the active dichroic signal, and because approximately 80% of the phenol red molecules appear to be bound in the resting state to either soluble or structural sites, the possibility exists that myoplasmic events other than a change in pH underlie the phenol red isotropic signal.  相似文献   

18.
We have measured the rotational motion of myosin heads in synthetic thick filaments at 4 degrees C in the time range from 10(-7) to 10(-4) seconds, by measuring transient absorption anisotropy of an eosin probe attached to a reactive sulfhydryl on the myosin head. Under conditions that result in monomeric myosin (500 mM ionic strength), the anisotropy decay is independent of pH in the range from 7.0 to 8.2 and [Mg2+] in the range from 0.1 to 10 mM; the anisotropy decays bi-exponentially with correlation times of 0.4 and 2 microseconds to a constant value of 0.016. Under more physiological conditions (115 mM ionic strength), resulting in filament formation, the anisotropy decay is sensitive to both pH and [Mg2+]. The anisotropy at pH 8.2 and 0.1 mM-Mg2+ decays with correlation times of 0.5 and 3.8 microseconds to a constant limiting anisotropy of 0.038. When the [Mg2+] is increased to 10 mM, the correlation times are 0.6 and 5.7 microseconds and the limiting anisotropy value is 0.055. Identical changes in the anisotropy decay are caused by an increase in [H+] to pH 7.0, in the presence of 0.1 mM-Mg2+. Increasing the total ionic strength to 187 mM decreases the amplitude of the cation effects. These results provide direct evidence that the rotational dynamics of myosin heads in thick filaments are influenced by physiological concentrations of cations. The results are qualitatively consistent with the proposal that these and other ionic conditions regulate transitions between "spread" and "compact" cross-bridge conformations, but the quantitative results indicate that cross-bridges undergo large-amplitude microsecond rotations even under conditions where the compact state should predominate.  相似文献   

19.
Lu Y  Weers B  Stellwagen NC 《Biopolymers》2001,61(4):261-275
DNA restriction fragments ranging from 79 to 789 base pairs in length have been characterized by transient electric birefringence (TEB) measurements at various temperatures between 4 and 43 degrees C. The DNA fragments do not contain runs of four or more adenine residues in a row and migrate with normal electrophoretic mobilities in polyacrylamide gels, indicating that they are not intrinsically curved or bent. The low ionic strength buffers used for the measurements contained 1 mM Tris Cl, pH 8.0, EDTA, and variable concentrations of Na(+) or Mg(2+) ions. The rotational relaxation times were obtained by fitting the TEB field-free decay signals with a nonlinear least-squared fitting program; the decay of the birefringence was monoexponential for fragments < or = 241 base pair (bp) in length and multiexponential for larger fragments. The terminal relaxation times, characteristic of the end-over-end rotation of the DNA molecules, were then used to determine the persistence length (p) and hydrodynamic radius (r) of DNA as a function of temperature and ionic strength, using several different hydrodynamic models. The specific values obtained for p and r are model dependent. The wormlike chain model of P. J. Hagerman and B. H. Zimm (Biopolymers 1981, Vol. 20, pp. 1481-1502) combined with the revised Broersma equation (J. Newman et al., Journal of Mol Biol 1997, Vol. 116, pp. 593-606) appears to be the most suitable for describing the flexibility of DNA in low ionic strength solutions. The values of p and r obtained from the global least squares fitting of this equation are independent of DNA length, and the deviations of the individual values from the average are reasonably small. The consensus r value calculated for DNA in various low ionic strength solutions containing 1 mM Tris buffer is 14.7 +/- 0.4 A at 20 degrees C. The consensus p values decrease from 814 approximately 564 A in solutions containing 1 mM Tris buffer plus 0.2-1 mM NaCl and decrease still further to 440 A in solutions containing 0.2 mM Mg(2+) ions. The persistence length exhibits a shallow maximum at 20 degrees C and decreases slowly upon either increasing or decreasing the temperature, regardless of the model used to fit the data. By contrast, the consensus values of the hydrodynamic radius are independent of temperature. The calculated persistence lengths and hydrodynamic radii are compared with other data in the literature.  相似文献   

20.
Separation of intracellular and extracellular sodium nuclear magnetic resonance (NMR) signals would enable nondestructive monitoring of intracellular sodium. It has been proposed that differences between the relaxation times of intracellular and extracellular sodium be used either directly or indirectly to separate the signal from each compartment. However, whereas intracellular sodium relaxation times have been characterized for some systems, these times were unknown for interstitial sodium. In this study, the interstitial sodium NMR relaxation times have been measured in perfused frog and rat hearts under control conditions. This was achieved by eliminating the NMR signal from the extracardiac (perfusate) sodium, and then quantifying the remaining cardiac signal. The intracellular signal was measured to be 8% (frog) or 22% (rat) of the cardiac signal and its subtraction was found to have a negligible effect on the cardiac relaxation times. Therefore this cardiac signal is considered to provide a good estimate of interstitial relaxation behavior. For perfused frog (rat) hearts under control conditions, this signal was found to have a T1 of 31.6 +/- 3.0 ms (27.3 +/- 1.6 ms) and a biexponential T2 of 1.9 +/- 1.0 ms (2.1 +/- 0.3 ms) and 25.2 +/- 1.3 ms (26.3 +/- 3.2 ms). Due to the methods used to separate cardiac signal from perfusate signal, it is possible that this characterized only a part of the signal from the interstitium. The short T2 component attributable to the interstitial signal indicates that separation of the NMR signals from each compartment on the basis of relaxation times alone may be difficult.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号