首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Interaction of ribosomal proteins S5, S6, S11, S12, S18 and S21 with 16 S rRNA   总被引:21,自引:0,他引:21  
We have examined the effects of assembly of ribosomal proteins S5, S6, S11, S12, S18 and S21 on the reactivities of residues in 16 S rRNA towards chemical probes. The results show that S6, S18 and S11 interact with the 690-720 and 790 loop regions of 16 S rRNA in a highly co-operative manner, that is consistent with the previously defined assembly map relationships among these proteins. The results also indicate that these proteins, one of which (S18) has previously been implicated as a component of the ribosomal P-site, interact with residues near some of the recently defined P-site (class II tRNA protection) nucleotides in 16 S rRNA. In addition, assembly of protein S12 has been found to result in the protection of residues in both the 530 stem/loop and the 900 stem regions; the latter group is closely juxtaposed to a segment of 16 S rRNA recently shown to be protected from chemical probes by streptomycin. Interestingly, both S5 and S12 appear to protect, to differing degrees, a well-defined set of residues in the 900 stem/loop and 5'-terminal regions. These observations are discussed in terms of the effects of S5 and S12 on streptomycin binding, and in terms of the class III tRNA protection found in the 900 stem of 16 S rRNA. Altogether these results show that many of the small subunit proteins, which have previously been shown to be functionally important, appear to be associated with functionally implicated segments of 16 S rRNA.  相似文献   

2.
Summary E. coli ribosomal 16S RNA preparted by an acetic acid-urea extraction technique individually binds, in addition to the seven established proteins, 6 new 30S ribosomal proteins (S3, S5, S9, S12, S18 and S11) (Hochkeppel et al., 1976). In this communication we demonstrate the site specificity of these proteins. Binding curves of the individual proteins with acetic acid-urea 16S RNA show that the binding of all six proteins to the RNA reaches a plateau at 0.3–0.97 copies per 16S RNA molecule. No significant binding of these proteins to classical phenol extracted 16S RNA is observed, with the exception of S13 which binds 0.2 copies of protein per molecule of 16S RNA. Specificity of binding of these proteins is also demonstrated in chase experiments. The site specificity of individual [3H]-labeled 30S proteins bound to 16S RNA is tested by the addition of non-radioactive 30S total protein to the reaction mixture.  相似文献   

3.
The cDNAs for the human ribosomal proteins S3, S5, S10, S19, and S26 were introduced into a pET-15b vector and recombinant proteins containing an N-(His)(6)-fusion tag were expressed in high yields. To resolve the problem of frameshift during expression of S26 caused by the presence of tandem arginine codons in its mRNA that are rare in Escherichia coli, we substituted the rare AGA codon with the more frequent arginine codon (CGC) using a primer with this mutation for PCR amplification of S26 cDNA. All proteins were expressed mainly in the form of inclusion bodies and purified to homogeneity by metal affinity chromatography in one step (except for S3). Expression of the full-length S3 was accompanied by the formation of a low molecular weight polypeptide that was co-purified with S3 by metal affinity chromatography. Complete purification of S3 required an additional gel-filtration step. The proteins were refolded by stepwise dialysis. Both identity and purity of the proteins were confirmed by 2D PAGE. The proteins obtained could be used in a wide range of applications in biophysics, biochemistry, and molecular biology.  相似文献   

4.
Neutron scattering distance data are presented for 33 protein pairs in the 30 S ribosomal subunit from Escherichia coli, along with the methods used for measuring distances between its exchangeable components. When combined with prior data, these new results permit the positioning of S2, S13, S16, S17, S19 and S21 in the 30 S ribosomal subunit, completing the mapping of its proteins by neutron scattering. Comparisons with other data suggest that the neutron map is a reliable guide to the quaternary structure of the 30 S subunit.  相似文献   

5.
RNA-protein cross-links were introduced into E. coli 30S ribosomal subunits by treatment with methyl p-azidophenyl acetimidate. After partial nuclease digestion of the RNA moiety, a number of cross-linked RNA-protein complexes were isolated by a new three-step procedure. Protein and RNA analysis of the individual complexes gave the following results: Proteins S3, S4, S5 and S8 are cross-linked to the 5'-terminal tetranucleotide of 16S RNA. S5 is also cross-linked to the 16S RNA within an oligonucleotide encompassing positions 559-561. Proteins S11, S9, S19 and S7 are cross-linked to 16S RNA within oligonucleotides encompassing positions 702-705, 1130-1131, 1223-1231 and 1238-1240, respectively. Protein S13 is cross-linked to an oligonucleotide encompassing positions 1337-1338, and is also involved in an anomalous cross-link within positions 189-191. Protein S21 is cross-linked to the 3'-terminal dodecanucleotide of the 16S RNA.  相似文献   

6.
The (S,S,S,R,S,R)-configurated cyclohexadepsipeptides (CHDPs) represent novel enniatin derivatives with strong in vivo activity against the parasitic nematode Haemonchus contortus Rudolphi in sheep. 2D NMR spectroscopic analysis revealed for the major conformation the asymmetric conformer, containing a cis-amide bond between C(alpha) protons of neighbouring 2-hydroxy-(S)-carboxylic acid and N-methyl-(S)-amino acid. The absolute configuration of the novel CHDPs was determined by X-ray crystallography. A correlation between the major conformer and its anthelmintic activity was found. Here, we report on a simple total synthetic pathway for this particular type of CHDPs.  相似文献   

7.
We have previously reported the development of a technique utilizing nitrocellulose filters, which rapidly separates ribosomal protein-ribosomal RNA complexes from unbound protein. We have used this technique to obtain binding data for the association of proteins S4, S7, S8, S15, S17, and S20 with 16S RNA. With the exception of protein S17, the association behavior for each of these proteins exhibits a single binding site with a unique binding constant. The apparent association constants have been calculated and have been found to have a range from 1.6 x 10(6) M-1 for protein S7 to 7.1 x 10(7) M-1 for protein S17. The Scatchard plot for the protein S17 binding data is biphasic, suggesting that within the RNA population two different binding sites exist, each with a different apparent association constant.  相似文献   

8.
W Y Chooi 《Biochemistry》1980,19(15):3469-3476
The proteins of Drosophila melanogaster embryonic ribosomes were separated into seven groups (A80 through G80) by stepwise elution from carboxymethylcellulose with lithium chloride at pH 6.5 by procedures previously described [Chooi, W. Y., Sabatini, L. M., MacKlin, M. D., & Fraser, W. (1980) Biochemistry 19, 1425-1433]. Three relatively acidic proteins, S14, S25/S27, and 7/8, have now been isolated from group A80 by ion-exchange chromatog raphy on carboxymethylcellulose eluted with a linear gradient of lithium chloride at pH 4.2. Fractions containing the relatively basic proteins (groups B80 through G80) were furher combined into a total of 24 "pools". The criterion for combination was the migration patterns in one-dimensional polyacrylamide gels containing sodium dodecyl sulfate (NaDodS04) of every fifth fraction from the carboxymethylcellulose column. Each pool contained between 1 and 12 major proteins. Proteins S8, S13, S16, S19, S20/L24, S22/L26, S24, S26, S29, L4, L10/L11, L12, L13, L16, L18, L19, L27, 1, 9, and 11 have now been isolated from selected pools by gel filtration through Sephadix G-100. The amount of each protein recovered from a starting amount of 1.8 g of total 80S proteins varied form 0.2 to 10.8 mg. Five proteins had no detectable contamination, and in each of the others the impurities were no greater than 9%. The amino acid composition of the individual purified proteins was determined. The molecular weights of the proteins were estimated by polyacrylamide gel electrophoresis in NaDodSO4.  相似文献   

9.
RNA-protein cross-links were introduced into E. coli 30S ribosomal subunits by treatment with bis-(2-chloroethyl)-methylamine. After partial nuclease digestion of the RNA moiety, a number of cross-linked RNA-protein complexes were isolated by a new three-step procedure. Protein and RNA analysis of the individual complexes gave the following results: proteins S4 and S9 are cross-linked to the 16S RNA at positions 413 and 954, respectively. Proteins S11 and S21 are both cross-linked to the RNA within an oligonucleotide encompassing positions 693-697, and proteins S17, S10, S3 and S7 are cross-linked within oligonucleotides encompassing positions 278-280, 1139-1144, 1155-1158, and 1531-1542, respectively. A cross-link to protein S18 was found by a process of elimination to lie between positions 845 and 851.  相似文献   

10.
We have constructed complexes of ribosomal proteins S8, S15, S8 + S15 and S8 + S15 + S6 + S18 with 16 S ribosomal RNA, and probed the RNA moiety with a set of structure-specific chemical and enzymatic probes. Our results show the following effects of assembly of proteins on the reactivity of specific nucleotides in 16 S rRNA. (1) In agreement with earlier work, S8 protects nucleotides in and around the 588-606/632-651 stem from attack by chemical probes; this is supported by protection in and around these same regions from nucleases. In addition, we observe protection of positions 573-575, 583, 812, 858-861 and 865. Several S8-dependent enhancements of reactivity are found, indicating that assembly of this protein is accompanied by conformational changes in 16 S rRNA. These results imply that protein S8 influences a much larger region of the central domain than was previously suspected. (2) Protein S15 protects nucleotides in the 655-672/734-751 stem, in agreement with previous findings. We also find S15-dependent protection of nucleotides in the 724-730 region. Assembly of S15 causes several enhancements of reactivity, the most striking of which are found at G664, A665, G674, and A718. (3) The effects of proteins S6 and S18 are dependent on the simultaneous presence of both proteins, and on the presence of protein S15. S6 + S18-dependent protections are located in the 673-730 and 777-803 regions. We observed some variability in our results with these proteins, depending on the ratio of protein to RNA used, and in different trials using enzymatic probes, possibly due to the limited solubility of protein S18. Consistently reproducible was protection of nucleotides in the 664-676 and 715-729 regions. Among the latter are three of the nucleotides (G664, G674 and A718) that are strongly enhanced by assembly of protein S15. This result suggests that an S15-induced conformational change involving these nucleotides may play a role in the co-operative assembly of proteins S6 and S18.  相似文献   

11.
Summary Six newSalmonella types isolated in Ghana are described.S. volta, 11: 4: 1,z13, z28 was isolated from a swine;S.agona 4,12: fgs:—,S.wa, 16: b: 1,5S.technimani, 28: c: z6 andS.tafo, 1, 4 12, 27: z35: 1,7 were isolated from cattle;S.mampong, 13,22: z35: 1,6, was isolated from a lizzard.  相似文献   

12.
Salmonella enterica subsp. enterica comprises a number of serovars, many of which pose an epidemiological threat to humans and are a worldwide cause of morbidity and mortality. Most reported food infection outbreaks involve the serovars Salmonella Enteritidis and Salmonella Typhimurium. Rapid identification to determine the primary sources of the bacterial contamination is important to the improvement of public health. In recent years, many DNA-based techniques have been applied to genotype Salmonella. Herein, we report the use of a manual TRS-PCR approach for the differentiation of the Salmonella enterica subspecies enterica serovars in a single-tube assay. One hundred seventy Salmonella strains were examined in this work. These consisted of serovars S. Enteritidis, S. Typhimurium, S. Infantis, S. Virchow, S. Hadar, S. Newport and S. Anatum. Five of the TRS-primers, N6(GTG)4, N6(CAC)4, N6(CGG)4, N6(CCG)4 and N6(CTG)4, perfectly distinguished the S. Enteritidis and S. Typhimurium serovars, and the N6(GTG)4 primer additionally grouped the other five frequently isolated serovars. In our opinion, the TRS-PCR methodology could be recommended for a quick and simple DNA-based test for inter-serovar discrimination of Salmonella strains.  相似文献   

13.
14.
15.
M J Marion  C Marion 《FEBS letters》1988,232(2):281-285
Trypsin immobilized on collagen membranes has been used to digest accessible ribosomal proteins of rat liver 40 S subunits. Six proteins (S2, S6, S10, S14, S15 and S25) have been found to be highly exposed on the surface of 40 S particles. They appear to be in close physical contact and localized in the same region of the subunit, most likely protruding at its surface. Electric birefringence reveals that digestion of these proteins results in unfolding of subunits: the birefringence of 40 S particles becomes negative, like that of RNA, the relaxation time undergoes a 15-fold decrease and the mechanism of orientation is drastically modified.  相似文献   

16.
17.
Results of neutron-scattering experiments to determine the distances between seven pairs of proteins within the 30 S ribosomal subunit are presented. These results, combined with earlier data (Engelman et al., 1975; Moore et al., 1977) lead to the construction of a three-dimensional map of the positions of the centers of mass of proteins S3, S4, S5, S7, S8 and S9. The properties of this map and its relationship to other information on the structure of the 30 S subunit are discussed.  相似文献   

18.
We have used rapid probing methods to follow the changes in reactivity of residues in 16 S rRNA to chemical and enzymatic probes as ribosomal proteins S2, S3, S10, S13 and S14 are assembled into 30 S subunits. Effects observed are confined to the 3' major domain of the RNA and comprise three general classes. (1) Monospecific effects, which are attributable to a single protein. Proteins S13 and S14 each affect the reactivities of different residues which are adjacent to regions previously found protected by S19. S10 effects are located in two separate regions of the domain, the 1120/1150 stem and the 1280 loop; both of these regions are near nucleotides previously found protected by S9. Both S2 and S3 protect different nucleotides between positions 1070 and 1112. In addition, S2 protects residues in the 1160/1170 stem-loop. (2) Co-operative effects, which include residues dependent on the simultaneous presence of both proteins S2 and S3 for their reactivities to appear similar to those observed in native 30 S subunits. (3) Polyspecific effects, where proteins S3 and S2 independently afford the same protection and enhancement pattern in three distal regions of the domain: the 960 stem-loop, the 1050/1200 stem and in the upper part of the domain (nucleotides 1070 to 1190). Proteins S14 and S10 also weakly affect the reactivities of several residues in these regions. We believe that several of the protected residues of the first class are likely sites for protein-RNA contact while the third class is indicative of conformational rearrangement in the RNA during assembly. These results, in combination with the results from our previous study of proteins S7, S9 and S19, are discussed in terms of the assembly, topography and involvement in ribosomal function of the 3' major domain.  相似文献   

19.
4S, 5S, AND 18S + 28S RNA from the newt Taricha granulosa granulosa were iodinated in vitro with carrier-free 125I and hybridized to the denatured chromosomes of Taricha granulosa and Batrachoseps weighti. Iodinated 18S + 28S RNA hybridizes to the telomeric region on the shorter arm of chromosome 2 and close to the centromere on the shorter arm of chromosome 9 from T. granulosa. On this same salamander the label produced by the 5S RNA is located close to or on the centromere of chromosome 7 and the iodinated 4S RNA labels the distal end of the longer arm of chromosome 5. On the chromosomes of B. wrighti, 18S + 28S RNA hybridizes close to the centromeric region on the longer arm of the largest chromosome. Two centromeric sites are hybridized by the iodinated 5S RNA. After hybridization with iodinated 4S RNA, label is found near the end of the shorter arm of chromosome 3. It is concluded that both ribosomal and transfer RNA genes are clustered in the genome of these two salamanders.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号