首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In yeast and other fungi, cell division, cell shape, and growth depend on the coordinated synthesis and degradation of cell wall polymers. We have developed a reliable and efficient micro method to determine Saccharomyces cerevisiae cell wall composition that distinguishes between beta1,3- and beta1,6-glucan. The method is based on the sequential treatment of cell walls with specific hydrolytic enzymes followed by dialysis. The low molecular weight (MW) products thus separated account for each particular cell wall polymer. The method can be applied to as little as 50-100 mg (wet wt) of radioactively labeled cells. A combination of chitinase and recombinant beta-1,3-glucanase is initially used, releasing all of the chitin and 60-65% of the beta1,3-glucan from the cell walls. Next, recombinant endo-beta-1,6-glucanase from Trichoderma harzianum is utilized to release all the beta-1,6-glucan present in the wall. The chromatographic pattern of endoglucanase digested beta-1,6-glucan provides a characteristic "fingerprint" of beta-1,6-glucan and the fine structure of the oligosaccharides in this pattern was determined by 1H NMR and electrospray ionization mass spectroscopy. The final enzymatic step uses laminarinase and beta-glucosidase to release the remaining beta-1,3-glucan. The cell wall mannan remains as a high MW fraction at the end of the fractionation procedure. Good sensitivity and correlation with cell wall composition determined by traditional methods were observed for wild-type and several cell wall mutants.  相似文献   

2.
Physical and biological properties of the fungal cell wall are determined by the composition and arrangement of the structural polysaccharides. Cell wall polymers of fungi are classically divided into two groups depending on their solubility in hot alkali. We have analyzed the alkali-insoluble fraction of the Aspergillus fumigatus cell wall, which is the fraction believed to be responsible for fungal cell wall rigidity. Using enzymatic digestions with recombinant endo-beta-1,3-glucanase and chitinase, fractionation by gel filtration, affinity chromatography with immobilized lectins, and high performance liquid chromatography, several fractions that contained specific interpolysaccharide covalent linkages were isolated. Unique features of the A. fumigatus cell wall are (i) the absence of beta-1,6-glucan and (ii) the presence of a linear beta-1, 3/1,4-glucan, never previously described in fungi. Galactomannan, chitin, and beta-1,3-glucan were also found in the alkali-insoluble fraction. The beta-1,3-glucan is a branched polymer with 4% of beta-1,6 branch points. Chitin, galactomannan, and the linear beta-1, 3/1,4-glucan were covalently linked to the nonreducing end of beta-1, 3-glucan side chains. As in Saccharomyces cerevisiae, chitin was linked via a beta-1,4 linkage to beta-1,3-glucan. The data obtained suggested that the branching of beta-1,3-glucan is an early event in the construction of the cell wall, resulting in an increase of potential acceptor sites for chitin, galactomannan, and the linear beta-1,3/1,4-glucan.  相似文献   

3.
By screening for the osmotically remediable phenotype, mutations in two genes (orlA and orlB) affecting the cell wall chitin content of Aspergillus nidulans were identified. Strains carrying temperature-sensitive alleles of these genes produce conidia which swell excessively and lyse when germinated at restrictive temperatures. Growth under these conditions is remedied by osmotic stabilizers and by N-acetylglucosamine (GlcNAc). Remediation by GlcNAc suggests that the mutations affect early steps in the synthesis of chitin. Temperature and medium shift experiments indicate that the phenotype is the result of decreased synthesis rather than increased chitin degradation and that osmotic stabilizers act to stabilize a defective wall rather than to stabilize the gene product. Two genes, orlC and orlD, which affect cell wall beta-1,3-glucan content were also identified. Walls from strains carrying mutations in these genes exhibit normal amounts of alpha-1,3-glucan and chitin but reduced amounts of beta-1,3-glucan. As for the chitin-deficient mutants, orlC and orlD mutants spontaneously lyse on conventional media but are remedied by osmotic stabilizers. These results indicate that both chitin and beta-1,3-glucan are likely to contribute to the structural rigidity of the cell wall.  相似文献   

4.
The UDP-glucose:glycoprotein glucosyltransferase (UGGT) is an endoplasmic reticulum sensor for quality control of glycoprotein folding. Saccharomyces cerevisiae is the only eukaryotic organism so far described lacking UGGT-mediated transient reglucosylation of N-linked oligosaccharides. The only gene in S. cerevisiae with similarity to those encoding UGGTs is KRE5. S. cerevisiae KRE5 deletion strains show severely reduced levels of cell wall beta-1,6-glucan polymer, aberrant morphology, and extremely compromised growth or lethality, depending on the strain background. Deletion of both alleles of the Candida albicans KRE5 gene gives rise to viable cells that are larger than those of the wild type (WT), tend to aggregate, have enlarged vacuoles, and show major cell wall defects. C. albicans kre5/kre5 mutants have significantly reduced levels of beta-1,6-glucan and more chitin and beta-1,3-glucan and less mannoprotein than the WT. The remaining beta-1,6-glucan, about 20% of WT levels, exhibits a beta-1,6-endoglucanase digestion pattern, including a branch point-to-linear stretch ratio identical to that of WT strains, suggesting that Kre5p is not a beta-1,6-glucan synthase. C. albicans KRE5 is a functional homologue of S. cerevisiae KRE5; it partially complements both the growth defect and reduced cell wall beta-1,6-glucan content of S. cerevisiae kre5 viable mutants. C. albicans kre5/kre5 homozygous mutant strains are unable to form hyphae in several solid and liquid media, even in the presence of serum, a potent inducer of the dimorphic transition. Surprisingly the mutants do form hyphae in the presence of N-acetylglucosamine. Finally, C. albicans KRE5 homozygous mutant strains exhibit a 50% reduction in adhesion to human epithelial cells and are completely avirulent in a mouse model of systemic infection.  相似文献   

5.
Innate immunity depends upon recognition of surface features common to broad groups of pathogens. The glucose polymer beta-glucan has been implicated in fungal immune recognition. Fungal walls have two kinds of beta-glucan: beta-1,3-glucan and beta-1,6-glucan. Predominance of beta-1,3-glucan has led to the presumption that it is the key immunological determinant for neutrophils. Examining various beta-glucans for their ability to stimulate human neutrophils, we find that the minor cell wall component beta-1,6-glucan mediates neutrophil activity more efficiently than beta-1,3-glucan, as measured by engulfment, production of reactive oxygen species, and expression of heat shock proteins. Neutrophils rapidly ingest beads coated with beta-1,6-glucan while ignoring those coated with beta-1,3-glucan. Complement factors C3b/C3d are deposited on beta-1,6-glucan more readily than on beta-1,3-glucan. Beta-1,6-glucan is also important for efficient engulfment of the human pathogen Candida albicans. These unique stimulatory effects offer potential for directed stimulation of neutrophils in a therapeutic context.  相似文献   

6.
AIM: The polysaccharide composition of the Saccharomyces cerevisiae cell wall was measured under various growth conditions and was compared with the cell wall structure. METHODS AND RESULTS: Chemical and enzymatic methods were used to determine levels of beta-1,3-glucan and 1,6-glucan, mannan and chitin of the yeast cell wall, whereas the structure/resistance of the wall was qualitatively assessed by the sensibility to the lytic action by zymolyase. It was found that the dry mass and polysaccharides content of the cell wall could vary by more than 50% with the nature of the carbon source, nitrogen limitation, pH, temperature and aeration, and with the mode of cell cultivation (shake flasks vs controlled fermentors). While no obvious correlation could be found between beta-glucan or mannan levels and the susceptibility of whole yeast cells to zymolyase, increase of beta-1,6-glucan levels, albeit modest with respect to the growth conditions investigated, and to a lesser extent that of chitin, was associated with decreased sensitivity of yeast cells to the lytic action by zymolyase. SIGNIFICANCE AND IMPACT OF THE STUDY: Our results indicate that the cell wall structure is merely determined by cross-linking between cell wall polymers, pointed out the role of beta-1,6-glucan in this process. Hence, this study reinforces the idea that enzymes involved in these cross-linking reactions are potential targets for antifungal drugs.  相似文献   

7.
Yeast and hyphal walls of Candida albicans were extracted with sodium dodecyl sulfate (SDS). Some of the extracted proteins reacted with a specific beta-1,6-glucan antiserum but not with a beta-1,3-glucan antiserum. They lost their beta-1,6-glucan epitope after treatment with ice-cold aqueous hydrofluoric acid, suggesting that beta-1,6-glucan was linked to the protein through a phosphodiester bridge. When yeast and hyphal walls extracted with SDS were subsequently extracted with a pure beta-1,3-glucanase, several mannoproteins that were recognized by both the beta-1,6-glucan antiserum and the beta-1,3-glucan antiserum were released. Both epitopes were sensitive to aqueous hydrofluoric acid treatment, suggesting that beta-1,3-glucan and beta-1,6-glucan are linked to proteins by phosphodiester linkages. The possible role of beta-glucans in the retention of cell wall proteins is discussed.  相似文献   

8.
Beta1,6-Glucan is a key component of the yeast cell wall, interconnecting cell wall proteins, beta1,3-glucan, and chitin. It has been postulated that the synthesis of beta1,6-glucan begins in the endoplasmic reticulum with the formation of protein-bound primer structures and that these primer structures are extended in the Golgi complex by two putative glucosyltransferases that are functionally redundant, Kre6 and Skn1. This is followed by maturation steps at the cell surface and by coupling to other cell wall macromolecules. We have reinvestigated the role of Kre6 and Skn1 in the biogenesis of beta1,6-glucan. Using hydrophobic cluster analysis, we found that Kre6 and Skn1 show significant similarities to family 16 glycoside hydrolases but not to nucleotide diphospho-sugar glycosyltransferases, indicating that they are glucosyl hydrolases or transglucosylases instead of genuine glucosyltransferases. Next, using immunogold labeling, we tried to visualize intracellular beta1,6-glucan in cryofixed sec1-1 cells which had accumulated secretory vesicles at the restrictive temperature. No intracellular labeling was observed, but the cell surface was heavily labeled. Consistent with this, we could detect substantial amounts of beta1,6-glucan in isolated plasma membrane-derived microsomes but not in post-Golgi secretory vesicles. Taken together, our data indicate that the synthesis of beta1, 6-glucan takes place largely at the cell surface. An alternative function for Kre6 and Skn1 is discussed.  相似文献   

9.
The yeast cell wall contains beta1,3-glucanase-extractable and beta1,3-glucanase-resistant mannoproteins. The beta1,3-glucanase-extractable proteins are retained in the cell wall by attachment to a beta1,6-glucan moiety, which in its turn is linked to beta1,3-glucan (J. C. Kapteyn, R. C. Montijn, E. Vink, J. De La Cruz, A. Llobell, J. E. Douwes, H. Shimoi, P. N. Lipke, and F. M. Klis, Glycobiology 6:337-345, 1996). The beta1,3-glucanase-resistant protein fraction could be largely released by exochitinase treatment and contained the same set of beta1,6-glucosylated proteins, including Cwp1p, as the B1,3-glucanase-extractable fraction. Chitin was linked to the proteins in the beta1,3-glucanase-resistant fraction through a beta1,6-glucan moiety. In wild-type cell walls, the beta1,3-glucanase-resistant protein fraction represented only 1 to 2% of the covalently linked cell wall proteins, whereas in cell walls of fks1 and gas1 deletion strains, which contain much less beta1,3-glucan but more chitin, beta1,3-glucanase-resistant proteins represented about 40% of the total. We propose that the increased cross-linking of cell wall proteins via beta1,6-glucan to chitin represents a cell wall repair mechanism in yeast, which is activated in response to cell wall weakening.  相似文献   

10.
The cell wall of the yeast form of Histoplasma farciminosum contains 13.2% beta-1,3-glucan, 1.0% galactomannan, and 25.8% chitin, whereas the cell wall of mycelial form has 21.8, 4.5, and 40%, respectively, for the same polymers. Also, the cell wall of the yeast form contains alpha-1,3-glucan (13.5%) and an unidentified polymer (21.5%). Chitin, one of the structural polymers of both yeast and mycelial cell walls, is identified as thin isolated fibers (4 nm wide) or in thick bundles (50 nm wide) of fibers. beta-(1-3)-Glucan is also found as thin isolated fibers indistinguishable from isolated fibers of chitin. Fibers 14 nm wide and resembling alpha-(1-3)-glucan fibers of other fungi are found in the yeast form. The results reported here do not give support to the proposal for a different taxonomic classification.  相似文献   

11.
In the presence of MgSo4 as osmotic stabilizer, nucleated protoplasts of Schizophyllum commune developed a large vacuole and could be isolated on the basis of their low buoyant density. All these protoplasts were capable of wall regeneration and about 50 percent reverted to the hyphal mode of growth in liquid medium. The kinetics of the formation of three main cell-wall components, S-glucan (alpha-1,3-glucan), R-glucan (beta-1,3, beta-1,6-glucan) and chitin were studied from the onset of regeneration. S-glucan and chitin accumulation as well as RNA and protein synthesis started simultaneously after a short lag, but R-glucan formation was delayed. The reversion of hyphal tubes only began after several hours of rapid R-glucan synthesis. Cycloheximide (0.5 mug/ml), inhibiting protein synthesis by 98% inhibited the formation of R-glucan and the reversion to hyphal growth but the formation of chitin and S-glucan did start and continued seemingly unimpaired for several hours. This indicates that the enzymes responsible for the synthesis of S-glucan and chitin remained intact during protoplast preparation. Polyoxin D inhibited both the synthesis of chitin and R-glucan and also the reversion to hyphal growth. However, the synthesis of S-glucan was not suppressed. These inhibitor studies as well as the kinetics of R-glucan formation during normal regeneration suggest that the synthesis of R-glucan is required for the initiation of hyphal morphogenesis.  相似文献   

12.
In Candida albicans wild-type cells, the beta1, 6-glucanase-extractable glycosylphosphatidylinositol (GPI)-dependent cell wall proteins (CWPs) account for about 88% of all covalently linked CWPs. Approximately 90% of these GPI-CWPs, including Als1p and Als3p, are attached via beta1,6-glucan to beta1,3-glucan. The remaining GPI-CWPs are linked through beta1,6-glucan to chitin. The beta1,6-glucanase-resistant protein fraction is small and consists of Pir-related CWPs, which are attached to beta1,3-glucan through an alkali-labile linkage. Immunogold labelling and Western analysis, using an antiserum directed against Saccharomyces cerevisiae Pir2p/Hsp150, point to the localization of at least two differentially expressed Pir2 homologues in the cell wall of C. albicans. In mnn9Delta and pmt1Delta mutant strains, which are defective in N- and O-glycosylation of proteins respectively, we observed enhanced chitin levels together with an increased coupling of GPI-CWPs through beta1,6-glucan to chitin. In these cells, the level of Pir-CWPs was slightly upregulated. A slightly increased incorporation of Pir proteins was also observed in a beta1, 6-glucan-deficient hemizygous kre6Delta mutant. Taken together, these observations show that C. albicans follows the same basic rules as S. cerevisiae in constructing a cell wall and indicate that a cell wall salvage mechanism is activated when Candida cells are confronted with cell wall weakening.  相似文献   

13.
Despite its essential role in the yeast cell wall, the exact composition of the β-(1,6)-glucan component is not well characterized. While solubilizing the cell wall alkali-insoluble fraction from a wild type strain of Saccharomyces cerevisiae using a recombinant β-(1,3)-glucanase followed by chromatographic characterization of the digest on an anion exchange column, we observed a soluble polymer that eluted at the end of the solvent gradient run. Further characterization indicated this soluble polymer to have a molecular mass of ∼38 kDa and could be hydrolyzed only by β-(1,6)-glucanase. Gas chromatographymass spectrometry and NMR (1H and 13C) analyses confirmed it to be a β-(1,6)-glucan polymer with, on average, branching at every fifth residue with one or two β-(1,3)-linked glucose units in the side chain. This polymer peak was significantly reduced in the corresponding digests from mutants of the kre genes (kre9 and kre5) that are known to play a crucial role in the β-(1,6)-glucan biosynthesis. In the current study, we have developed a biochemical assay wherein incubation of UDP-[14C]glucose with permeabilized S. cerevisiae yeasts resulted in the synthesis of a polymer chemically identical to the branched β-(1,6)-glucan isolated from the cell wall. Using this assay, parameters essential for β-(1,6)-glucan synthetic activity were defined.The cell wall of Saccharomyces cerevisiae and other yeasts contains two types of β-glucans. In the former yeast, branched β-(1,3)-glucan accounts for ∼50–55%, whereas β-(1,6)-glucan represents 10–15% of the total yeast cell wall polysaccharides, each chain of the latter extending up to 140–350 glucose residues in length. The amount of 3,6-branched glucose residues varies with the yeast species: 7, 15, and 75% in S. cerevisiae, Candida albicans, and Schizosaccharomyces pombe, respectively (1). β-(1,6)-Glucan stabilizes the cell wall, since it plays a central role as a linker for specific cell wall components, including β-(1,3)-glucan, chitin, and mannoproteins (2, 3). However, the exact structure of the β-(1,6)-glucan and the mode of biosynthesis of this polymer are largely unknown. In S. pombe, immunodetection studies suggested that synthesis of this polymer backbone begins in the endoplasmic reticulum, with extension occurring in the Golgi (4) and final processing at the plasma membrane. In S. cerevisiae, Montijn and co-workers (5), by immunogold labeling, detected β-(1,6)-glucan at the plasma membrane, suggesting that the synthesis takes place largely at the cell surface.More than 20 genes, including the KRE gene family (14 members) and their homologues, SKN1 and KNH1, have been reported to be involved in β-(1,6)-glucan synthesis in S. cerevisiae, C. albicans, and Candida glabrata (610). Among all of these genes, the ones that seem to play the major synthetic role are KRE5 and KRE9, since their disruption caused significant reduction (100 and 80%, respectively, relative to wild type) in the cell wall β-(1,6)-glucan content (1113).To date, the biochemical reaction responsible for the synthesis of β-(1,6)-glucan and the product synthesized remained unknown. Indeed, in most cases, when membrane preparations are incubated with UDP-glucose, only linear β-(1,3)-glucan polymers are produced, although some studies have reported the production of low amounts of β-(1,6)-glucans by membrane preparations (1417). These data suggest that disruption of the fungal cell prevents or at least has a strong negative effect on β-(1,6)-glucan synthesis. The use of permeabilized cells, which allows substrates, such as nucleotide sugar precursors, to be readily transported across the plasma membrane, is an alternative method to study in situ cell wall enzyme activities (1822). A number of methods have been developed to permeabilize the yeast cell wall (23), of which osmotic shock was successfully used to demonstrate β-(1,3)-glucan and chitin synthase activities (20, 24). Herein, we describe the biochemical activity responsible for β-(1,6)-glucan synthesis using permeabilized S. cerevisiae cells and UDP-[14C]glucose as a substrate. We also have analyzed the physicochemical parameters of this activity and chemically characterized the end product and its structural organization within the mature yeast cell wall.  相似文献   

14.
A beta-1,6-glucanase was purified to apparent homogeneity from a commercial yeast digestive enzyme prepared from Streptomyces rochei by a series of column chromatographies. The molecular mass of the purified enzyme was 60 kDa by SDS-PAGE. The purified enzyme had an optimum pH range from 4.0 to 6.0 and was stable in the same pH range. The enzyme was stable under 50 degrees C but lost almost all activity at 60 degrees C. The enzyme was specific to beta-1,6-glucan and had little activity towards beta-1,3-glucan and beta-1,4-glucan. When the beta-1,6-glucan was hydrolyzed with the purified enzyme for 5 h, the reaction products contained 20% glucose, 36% gentiobiose, and 44% other oligosaccharides, suggesting that the enzyme is an endo-type glucanase. When the purified enzyme was used for the digestion of the cell wall of Saccharomyces cerevisiae, cell-wall proteins covalently bound to the cell-wall glucan were recovered as soluble forms, suggesting that this enzyme is useful for analysis of yeast-cell wall proteins.  相似文献   

15.
Large-scale screening of genetic and chemical-genetic interactions was used to examine the assembly and regulation of beta-1,3-glucan in Saccharomyces cerevisiae. Using the set of deletion mutants in approximately 4600 nonessential genes, we scored synthetic interactions with genes encoding subunits of the beta-1,3-glucan synthase (FKS1, FKS2), the glucan synthesis regulator (SMI1/KNR4), and a beta-1,3-glucanosyltransferase (GAS1). In the resulting network, FKS1, FKS2, GAS1, and SMI1 are connected to 135 genes in 195 interactions, with 26 of these genes also interacting with CHS3 encoding chitin synthase III. A network core of 51 genes is multiply connected with 112 interactions. Thirty-two of these core genes are known to be involved in cell wall assembly and polarized growth, and 8 genes of unknown function are candidates for involvement in these processes. In parallel, we screened the yeast deletion mutant collection for altered sensitivity to the glucan synthase inhibitor, caspofungin. Deletions in 52 genes led to caspofungin hypersensitivity and those in 39 genes to resistance. Integration of the glucan interaction network with the caspofungin data indicates an overlapping set of genes involved in FKS2 regulation, compensatory chitin synthesis, protein mannosylation, and the PKC1-dependent cell integrity pathway.  相似文献   

16.
KEG1/YFR042w of Saccharomyces cerevisiae is an essential gene that encodes a 200-amino acid polypeptide with four predicted transmembrane domains. The green fluorescent protein- or Myc(6)-tagged Keg1 protein showed the typical characteristics of an integral membrane protein and was found in the endoplasmic reticulum by fluorescence imaging. Immunoprecipitation from the Triton X-100-solubilized cell lysate revealed that Keg1 binds to Kre6, which has been known to participate in beta-1,6-glucan synthesis. To analyze the essential function of Keg1 in more detail, we constructed temperature-sensitive mutant alleles by error-prone polymerase chain reaction. The keg1-1 mutant cells showed a common phenotype with Deltakre6 mutant including hypersensitivity to Calcofluor white, reduced sensitivity to the K1 killer toxin, and reduced content of beta-1,6-glucan in the cell wall. These results suggest that Keg1 and Kre6 have a cooperative role in beta-1,6-glucan synthesis in S. cerevisiae.  相似文献   

17.
An antimicrobial peptide termed BCP-2 was purified from barley grain by chitin-affinity treatment and HPLC. The results of amino acid analysis and mass spectrometry of BCP-2 indicate that the peptide is very similar to barley alpha-thionin. BCP-2 and wheat alpha1-thionin were also bound to beta-glucan but not to starch. The binding of BCP-2 to laminarin (beta-1,3-1,6-glucan) and laminarioligosaccharides was supported by fluorescence polarization data. This is the first report on the binding of alpha-thionins to polysaccharide containing chitin and beta-1,3-glucan, which construct fungal cell walls.  相似文献   

18.
Using a hierarchical approach, 620 non-essential single-gene yeast deletants generated by EUROFAN I were systematically screened for cell-wall-related phenotypes. By analyzing for altered sensitivity to the presence of Calcofluor white or SDS in the growth medium, altered sensitivity to sonication, or abnormal morphology, 145 (23%) mutants showing at least one cell wall-related phenotype were selected. These were screened further to identify genes potentially involved in either the biosynthesis, remodeling or coupling of cell wall macromolecules or genes involved in the overall regulation of cell wall construction and to eliminate those genes with a more general, pleiotropic effect. Ninety percent of the mutants selected from the primary tests showed additional cell wall-related phenotypes. When extrapolated to the entire yeast genome, these data indicate that over 1200 genes may directly or indirectly affect cell wall formation and its regulation. Twenty-one mutants with altered levels of beta1,3-glucan synthase activity and five Calcofluor white-resistant mutants with altered levels of chitin synthase activities were found, indicating that the corresponding genes affect beta1,3-glucan or chitin synthesis. By selecting for increased levels of specific cell wall components in the growth medium, we identified 13 genes that are possibly implicated in different steps of cell wall assembly. Furthermore, 14 mutants showed a constitutive activation of the cell wall integrity pathway, suggesting that they participate in the modulation of the pathway either directly acting as signaling components or by triggering the Slt2-dependent compensatory mechanism. In conclusion, our screening approach represents a comprehensive functional analysis on a genomic scale of gene products involved in various aspects of fungal cell wall formation.  相似文献   

19.
Abstract The cell wall of Candida albicans contains mannoproteins that are covalently associated with β-1,6-glucan. When spheroplasts were allowed to regenerate a new cell wall, initially non-glucosylated cell wall proteins accumulated in the medium. While the spheroplasts became osmotically stable, β-1,6-glucosylated proteins could be identified in their cell wall by SDS-extraction or β-1,3-glucanase digestion. At later stages of regeneration, β-1,3-glucosylated proteins were also found. Hence, incorporation of proteins into the cell wall is accompanied by extracellular coupling to β-1,6-/β-l,3-glucan. The SDS-extractable glucosylated proteins probably represent degradation products of wall proteins rather than their precursors. Tunicamycin delayed, but did not prevent the formation of β-1,6-glucosylated proteins, demonstrating that β-1,6-glucan is not attached to N -glycosidic side-chains of wall proteins.  相似文献   

20.
CWH41 encodes a novel type II integral membrane N-glycoprotein located in the endoplasmic reticulum. Disruption of the CWH41 gene leads to a K1 killer toxin-resistant phenotype and a 50% reduction in the cell wall beta 1,6-glucan level. CWH41 also displays strong genetic interactions with KRE1 and KRE6, two genes known to be involved in the beta 1,6-glucan biosynthetic pathway. The cwh41 delta kre6 delta double mutant is nonviable; and the cwh41 delta kre1 delta double mutation results in strong synergistic defects, with a severely slow-growth phenotype, a 75% reduction in beta 1,6-glucan level, and the secretion of a cell wall glucomannoprotein, Cwp1p. These results provide strong genetic evidence indicating that Cwh41p plays a functional role, possibly as a new synthetic component, in the assembly of cell wall beta 1,6-glucan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号