首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examined the effect of high- (75 Hz, 1 min) and low- (5 Hz, 1.5 min) frequency stimulation on contractile and biochemical properties of the diaphragm. Tension was reduced to 21 +/- 1 and 54 +/- 2% (SE) of the initial value after high- and low-frequency stimulation, respectively. After 0, 0.25, 1, and 2 min of recovery from high-frequency stimulation, 5 Hz elicited more force (expressed as % of initial tension) than 75-Hz stimulation. Time 0 recovery values were 21 +/- 1 and 78 +/- 6% of the initial force for 75- and 5-Hz stimulation, respectively. By 1 min of recovery, force elicited by 5-Hz stimulation had returned to the prefatigue value. In contrast, force production with 75-Hz stimulation did not full recover until 10-15 min. After fatigue produced by low-frequency stimulation, force production with 5-Hz stimulation was reduced to 54 +/- 2% of the initial tension, a value significantly lower than the 71 +/- 2% of initial force elicited by 75-Hz stimulation. Force production with 5-Hz stimulation increased rapidly in the first 15 s of recovery (54 +/- 2% at 0 and 70 +/- 2% at 15 s) and by 5 min was significantly greater than the force elicited by 75-Hz stimulation (100 +/- 3 vs. 93 +/- 1%). As before, force production at 75-Hz stimulation did not fully recover until 10-15 min. Both fatigue protocols produced a significant prolongation in isometric twitch contraction and one-half relaxation times. Creatine phosphate (CP) concentration was reduced and muscle lactate increased by both fatigue protocols.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We studied fatigue of rat diaphragm in response to repetitive brief and prolonged electrical stimulation of the phrenic nerve, at 0.2, 1-100 Hz. Low and high frequency of stimulation produced twitch and tetanic contractions in the rat diaphragm. A mean maximum twitch tension of 1.4 +/- 0.1 g was produced at 1 Hz, and a mean maximum tetanic tension of 5.6 +/- 0.3 g was obtained at 100 Hz (means +/- S.E., n = 8). Twitch and tetanic fatigue was produced at all frequencies of stimulations, but with different time scale, or duration, and with different number of stimuli delivered to the muscle. At low rates of stimulation, e.g. 10 Hz, fewer stimuli were needed to fatigue the muscle (3000 in 5 min), whereas at high rates of stimulation, e.g. 50 Hz, more stimuli were needed to fatigue the muscle (6600 in 2.2 min). The amplitude of the tetanic tensions elicited at 10 and 50 Hz, at the end of 5 or 2 min fatiguing stimulation, was 39 +/- 2.7% and 80 +/- 3.1% of their respective control tensions (2.8 +/- 0 2 g and 5.3 +/- 0.5 g, n = 8, P 0.001). It was concluded that fatigue in the rat diaphragm depended on the frequency and duration of stimulation as well as on the number of stimuli delivered to the muscle. Various mechanisms of muscle fatigue are described in the discussion to explain the observations made in the present investigation.  相似文献   

3.
No comparison of the amount of low-frequency fatigue (LFF) produced by different activation frequencies exists, although frequencies ranging from 10 to 100 Hz have been used to induce LFF. The quadriceps femoris of 11 healthy subjects were tested in 5 separate sessions. In each session, the force-generating ability of the muscle was tested before and after fatigue and at 2, approximately 13, and approximately 38 min of recovery. Brief (6-pulse), constant-frequency trains of 9.1, 14.3, 33.3, and 100 Hz and a 6-pulse, variable-frequency train with a mean frequency of 14.3 Hz were delivered at 1 train/s to induce fatigue. Immediately postfatigue, there was a significant effect of fatiguing protocol frequency. Muscles exhibited greater LFF after stimulation with the 9.1-, 14.3-, and variable-frequency trains. These three trains also produced the greatest mean force-time integrals during the fatigue test. At 2, approximately 13, and approximately 38 min of recovery, however, the LFF produced was independent of the fatiguing protocol frequency. The findings are consistent with theories suggesting two independent mechanisms behind LFF and may help identify the optimal activation pattern when functional electrical stimulation is used.  相似文献   

4.
Potential mechanisms of fatigue (metabolic factors) and potentiation (phosphate incorporation by myosin phosphorylatable light chains) were investigated during recovery from a 60-s maximal voluntary isometric contraction (MVC) in the quadriceps muscle of 12 subjects. On separate days before and for 2 h after the 60-s MVC, either a 1-s MVC or electrically stimulated contractions were used as indexes to test muscle performance. Torque at the end of the 60-s MVC was 57% of the initial level, whereas torques from a 1-s MVC and 50-Hz stimulation were most depressed in the immediate recovery period. At this time, muscle biopsy analyses revealed significant decreases in ATP and phosphocreatine and a 19-fold increase in muscle lactate. Conversely, isometric twitch torque and torque from a 10-Hz stimulus were the least depressed of six contractile indexes and demonstrated potentiation of 25 and 34%, respectively, by 4 min of recovery (P less than 0.05). At this time, muscle lactate concentration was still 16 times greater than at rest. An increased phosphate content of the myosin phosphorylatable light chains (P less than 0.05) was also evident both immediately and 4 min after the 60-s MVC. We conclude that the 60-s MVC produced marked force decreases likely due to metabolic displacement, while the limited decline in the twitch and 10-Hz torques and their significant potentiation suggested that myosin phosphorylation may provide a mechanism to enhance contractile force under conditions of submaximal activation during fatigue.  相似文献   

5.
We studied the effects of intravenously administered terbutaline on diaphragmatic force and fatigue during electrical stimulation of the diaphragm in 17 anesthetized dogs. The diaphragm was stimulated indirectly through the phrenic nerves with electrodes placed around the fifth roots and directly with electrodes surgically implanted in the abdominal side of each hemidiaphragm. Transdiaphragmatic pressure (Pdi) during direct or indirect supramaximal 2-s stimulation applied over a frequency range of 10-100 Hz was measured with balloon catheters during tracheal occlusion at functional residual capacity. In seven dogs the administration of terbutaline (0.5 mg) had no effect on Pdi at any stimulation frequency applied directly or indirectly. The effect of terbutaline (0.5 mg) on diaphragmatic fatigue was then tested in 10 other dogs. Diaphragmatic fatigue was produced by continuous 20-Hz electrical supramaxial stimulation of the phrenic nerves during 30 min. At the end of the fatigue procedure Pdi decreased by 50 +/- 5 and 30 +/- 8% of control values at 10 and 100 Hz, respectively, for either direct or indirect stimulation. The decrease in Pdi for low frequencies of stimulation (10 and 20 Hz) lasted 100 +/- 18 min, whereas it lasted only 40 +/- 10 min for the high frequencies (50 and 100 Hz). When terbutaline (0.5 mg) was administered after the fatiguing procedure, Pdi increased within 15 min by 20 +/- 4% at 10 Hz and by 12 +/- 3% at 100 Hz for either direct or indirect stimulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The reduction of neurogenic posttetanic potentiation in the slow twitch, soleus muscle is an index of impaired motor nerve function in cats with organophosphate-induced neuropathy. We have applied the measurement of posttetanic potentiation to study the functional state of the slow, tonic, plantaris muscle and its motor innervation in adult White Leghorn hens with tri-o-tolyl phosphate (TOTP)-induced neuropathy. At suitable intervals following single oral doses of vehicle or TOTP (500 mg/kg), nerve conduction velocity and posttetanic potentiation were measured in anesthetized hens. Conduction in the sciatic nerve was not altered by TOTP. The plantaris muscle of birds treated with vehicle (peanut oil) either failed to contract or responded to nerve stimulation at 0.4 Hz with very small twitches. Following nerve stimulation at frequencies inducing tetanus (50-140 Hz), the muscles responded with large, slow twitches that gradually decayed in amplitude. The area under the curve formed by the amplitude of these twitches over time (posttetanic potentiation) was directly proportional to the frequency and duration of nerve stimulation. In hens at 1,2, and 4 weeks following treatment with TOTP, the average amount of posttetanic potentiation was reduced concomitantly with the development of ataxia, paralysis, and pathological changes in the peripheral nerves. This difference between vehicle- and TOTP-treated hens was not significant, owing to large interbird variations. Since TOTP-treated hens showed greater disturbances in gait following moderate exercise, the fatigue of posttetanic potentiation with periodic neuronal stimulation was measured.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The purpose of this study was to determine the interaction of three factors that modify twitch contraction amplitude in the rat gastrocnemius muscle in situ: posttetanic potentiation, fatigue, and caffeine. Posttetanic (200 Hz for 1 s) twitch responses were observed before and after 15 Hz stimulation for 6 min (group FS), injection of caffeine (75 mg/kg dissolved in saline, group NC), a combination of both repetitive stimulation and caffeine injection (group FC), or no treatment (group NS). Developed tension increased significantly with posttetanic potentiation and caffeine injection and these potentiating factors were additive (group NC). Repetitive stimulation attenuated the twitch response and the fatigued muscle was still responsive to the potentiating factors. Posttetanic potentiation was accomplished primarily by a significant increase in the peak rate of force development whereas caffeine potentiation and fatigue were effected with a proportional change in contraction time. It seems likely that the mechanism of posttetanic potentiation is not the same as the mechanism of caffeine-induced potentiation. Caffeine-induced potentiation is known to be related to increased release of calcium. Because changes in contraction time with fatigue were opposite to those associated with caffeine potentiation, it is proposed that the attenuated twitch response in fatigue results from reduced release of calcium.  相似文献   

8.
Adult cats were used to study the recovery of muscles that had become altered by long-term electrical stimulation. Chronic activation was delivered to the deafferented common peroneal nerve (no pain, no reflexes), and contractile properties were measured for peroneus longus muscle. After 4 wk of great daily amounts of treatment at moderately high pulse rates (30-40 Hz delivered during 50% of daily time), the peroneus longus became considerably weaker, demonstrated a longer time course of twitches and a slower rate of rise of tetanic force, and became less fatigable. Furthermore, its twitch-to-tetanus ratio decreased, and there was no longer any depression of electromyogram (EMG) amplitude during fatigue tests. After 4 wk of subsequent rest it was found that 1) twitch speed and maximum tetanic force had returned to nearly normal values, 2) fatigue resistance showed some return toward normal but was still significantly enhanced, and 3) no significant recovery had yet occurred of the altered twitch-to-tetanus ratio, the abolished EMG depression, or the slowed rate of rise of tetanic tension. During the poststimulation recovery period, the progressive increase of isometric twitch speed was not promoted by the administration of small daily amounts of high-rate stimulation (100-Hz bursts). The results support the conclusions that 1) the time course of recovery differs among physiological properties, 2) the EMG and force reactions that occur during a fatigue test are not strongly coupled, as demonstrated by the alterations of their relationship during poststimulation recovery, and 3) in cat's fast muscles, there is still no evidence for rate-specific effects of chronic stimulation on isometric twitch speed.  相似文献   

9.
Neuromuscular electrical stimulation can generate contractions through peripheral and central mechanisms. Direct activation of motor axons (peripheral mechanism) recruits motor units in an unnatural order, with fatigable muscle fibers often activated early in contractions. The activation of sensory axons can produce contractions through a central mechanism, providing excitatory synaptic input to spinal neurons that recruit motor units in the natural order. Presently, we quantified the effect of stimulation frequency (10-100 Hz), duration (0.25-2 s of high-frequency bursts, or 20 s of constant-frequency stimulation), and intensity [1-5% maximal voluntary contraction (MVC) torque generated by a brief 100-Hz train] on the torque generated centrally. Electrical stimulation (1-ms pulses) was delivered over the triceps surae in eight subjects, and plantar flexion torque was recorded. Stimulation frequency, duration, and intensity all influenced the magnitude of the central contribution to torque. Central torque did not develop at frequencies < or = 20 Hz, and it was maximal at frequencies > or = 80 Hz. Increasing the duration of high-frequency stimulation increased the central contribution to torque, as central torque developed over 11 s. Central torque was greatest at a relatively low contraction intensity. The largest amount of central torque was produced by a 20-s, 100-Hz train (10.7 +/- 5.5 %MVC) and by repeated 2-s bursts of 80- or 100-Hz stimulation (9.2 +/- 4.8 and 10.2 +/- 8.1% MVC, respectively). Therefore, central torque was maximized by applying high-frequency, long-duration stimulation while avoiding antidromic block by stimulating at a relatively low intensity. If, as hypothesized, the central mechanism primarily activates fatigue-resistant muscle fibers, generating muscle contractions through this pathway may improve rehabilitation applications.  相似文献   

10.
To investigate the hypothesis that the rate of fatigue development is not influenced by the absolute duration of contraction (train duration) and relaxation (off-phase of duty cycle) at constant duty cycle, strips of the diaphragm from 36 male adult rats (mean +/- SD wt 152 +/- 21 g) were stimulated directly for periods of 180, 250, and 320 ms at a constant duty cycle of 50%. The frequency of stimulation was adjusted to produce 40% of maximal tetanic tension at supramaximal voltages. After 30 min of stimulation, analysis of twitch characteristics between control and experimental groups indicated a prolongation of contraction time of 9% (P less than 0.05), an increase in relaxation time of 75% (P less than 0.05), and a decrease in twitch tension by 78% (P less than 0.05). Similarly, reductions (P less than 0.05) in isometric force output at high stimulation frequency (100 Hz) of 58% and at low frequency (20 Hz) of 67% were also noted. These changes were accompanied by an approximately 60% reduction in the maximal velocity of shortening. No difference was observed for any of the mechanical measures between experimental conditions. After 30-min stimulation, decreases of between 43 and 46% were noted for ATP (P less than 0.05) and increases of between three- and fourfold noted for IMP (P less than 0.05). No changes were found for either ADP or AMP. Total adenine nucleotide concentrations declined (P less than 0.05) an average of 24%. As with the mechanical data, no differences were found between the different stimulation conditions. It is concluded that for the conditions studied, fatigue mechanisms become manifest early in the stimulation period and are only minimally altered by the duration of specific contractions provided the relaxation period is of equal duration.  相似文献   

11.
Our purpose was to determine the effect of eight different combinations of contraction intensity, duration, and rest on the rate of fatigue in vastus lateralis muscle. A single combination consisted of contractions at 30 or 70% maximal voluntary contraction (MVC), held for 3 or 7 s with 3- or 7-s rest intervals. Contractions were repeated until the subject could not hold the force for the requisite duration. At regular intervals during each experiment, a brief MVC, a single twitch, and the response to eight stimulation pulses at 50 Hz were elicited. The rate of fatigue was the rate of decline of MVC calculated from regression analysis. Mean rate of fatigue (n = 8) ranged from 0.3 to 25% MVC/min and was closely related (r = 0.98) to the product of the relative force and the duty cycle. Force from 50 Hz stimulation fell linearly and in parallel with MVC. Twitch force was first potentiated and then fell twice as fast as 50 Hz stimulation and MVC (p less than 0.05). Differentiated twitch contraction and relaxation rates were higher at potentiation and lower at the limit of endurance, compared with control values (p less than 0.05). The maximal electromyogram decreased 25% and the submaximal EMG increased to maximal by the end of the protocol, indicating that the entire motor unit pool had been recruited. The close relation between rate of fatigue and the force x time product probably reflects the off-setting interaction of contraction amplitude, duration, and rest interval. This occurs despite the changes in twitch characteristics and the apparent recruitment of fast fatiguing motor units.  相似文献   

12.
The contraction and relaxation times of the twitches and the last contractions within 32 unfused tetani of FF and 27 unfused tetani of FR motor units in the rat medial gastrocnemius muscle were studied during prolonged activity. The pattern of the MU stimulation included single pulses (to evoke twitches) and series of three trains of stimuli at 40, 50 and 60 Hz (to evoke unfused tetani), repeated 30 times. The analysis concerned changes of force and time parameters at the beginning of activity, during the potentiation and then during the fatigue. It was found that changes of force during the potentiation and the fatigue were mainly accompanied by changes in the course of relaxation. The significant prolongation of the half-relaxation time during the potentiation of either twitches or unfused tetani was revealed in both types of fast MU. The twitch contraction time did not change markedly, whereas significantly shortened in the last contractions of unfused tetani during the potentiation. These changes of time parameters correlated to the increase of the fusion degree. During the fatigue, the time parameters shortened, however, changes of the half-relaxation times were remarkably higher. The shortening of relaxation was responsible for the decrease of the fusion degree. Changes of the fusion index exceeding 0.75 during the potentiation or decreasing below this value during the fatigue, were accompanied by respective appearance or disappearance of the biphasic relaxation.  相似文献   

13.
Twitch potentiation was studied in the human triceps surae complex before and after intermittent maximal voluntary contractions or electrical stimulation at 20 Hz. Both forms of exercise were conducted with intact circulation for a maximum of 10 min or with circulatory occlusion until force output declined 50%. The relative potentiation was determined when a control twitch was compared to a twitch obtained after 5 s of maximal voluntary plantar flexion. The unpotentiated twitch torque (PT) and potentiated twitch torque (PT*) were reduced most severely after voluntary ischemic exercise (63.2% and 52.5% respectively, (P less than 0.001)). However, the relative potentiation (PT*/PT) immediately after voluntary ischemic exercise increased to 1.65 +/- 0.18 from 1.22 +/- 0.13 at rest. Both PT and PT* recovered quickly after exercise. At rest, twitch contraction time (CT) and one-half relaxation time (1/2 RT) in the unpotentiated twitch were longer than that of contraction (CT*) and one-half relaxation time (1/2 RT*) in the potentiated twitch. Following non-occluded exercise, CT, CT*, 1/2 RT and 1/2 RT* were shortened relative to rest. After ischemic exercise CT and CT* were shortened although 1/2 RT and 1/2 RT* increased relative to rest. Both CT* and 1/2 RT* quickly recovered to pre-exercise values by 5 min post-exercise. Ratios of potentiated/control twitch parameters were not altered after nonoccluded exercise, but were increased after ischemic exercise. These results suggest that the mechanisms of fatigue which depress voluntary torque and twitch and potentiated twitch torques, do not interfere with the extent of potentiation after fatiguing exercise.  相似文献   

14.
The role of muscle potentiation in overcoming low-frequency fatigue (LFF) as it developed during submaximal voluntary exercise was investigated in eight males (age 26.4 +/- 0.7 years, mean +/- SE) performing isometric leg extension at approximately 30% of maximal voluntary contraction for 60 min using a 0.5-duty cycle (1 s contraction, 1 s rest). At 5, 20, 40, and 60 min, exercise was interrupted for 3 min, and the maximum positive rate of force development (+dF/dtmax) and maximal twitch force (Pt) were measured in maximal twitch contractions at 0, 1, 2, and 3 min of rest (R0, R1, R2, R3); they were also measured at 15 min of recovery following the entire 60-min exercise period. These measures were compared with pre-exercise (PRE) as an indicator of potentiation. Force at low frequency (10 Hz) was also measured at R0, R1, R2, and R3, and at 15 min of recovery, while force at high frequency (100 Hz) was measured only at R0 and R3 and in recovery. Voluntary exercise increased twitch +dF/dtmax at R0 following 5, 20, 40, and 60 min of exercise, from 2553 +/- 150 N/s at PRE to 39%, 41%, 42%, and 36% above PRE, respectively (P<0.005). Twitch +dF/dtmax decayed at brief rest (R3) following 20, 40, and 60 min of exercise (P<0.05). Pt at R0 following 5 and 20 min of exercise was above that at PRE (P<0.05), indicating that during the early phase of moderate-intensity repetitive exercise, potentiation occurs in the relative absence of LFF. At 40 and 60 min of exercise, Pt at R0 was unchanged from PRE. The LFF (10 Hz) induced by the protocol was evident at 40 and 60 min (R0-R3; P<0.05) and at 15 min following exercise (P<0.05). High-frequency force was not significantly compromised by the protocol. Since twitch force was maintained, these results suggest that as exercise progresses, LFF develops, which can be compensated for by potentiation.  相似文献   

15.
We hypothesized that the occurrence of spontaneous Ca2+ release from the sarcoplasmic reticulum (SR), in diastole, might be a mechanism for the saturation of twitch potentiation common to a variety of inotropic perturbations that increase the total cell Ca. We used a videomicroscopic technique in single cardiac myocytes to quantify the amplitude of electrically stimulated twitches and to monitor the occurrence of the mechanical manifestation of spontaneous SR Ca2+ release, i.e., the spontaneous contractile wave. In rat myocytes exposed to increasing bathing [Ca2+] (Cao) from 0.25 to 10 mM, the Cao at which the peak twitch amplitude occurred in a given cell was not unique but varied with the rate of stimulation or the presence of drugs: in cells stimulated at 0.2 Hz in the absence of drugs, the maximum twitch amplitude occurred in 2 mM Cao; a brief exposure to 50 nM ryanodine before stimulation at 0.2 Hz shifted the Cao of the maximum twitch amplitude to 7 mM. In cells stimulated at 1 Hz in the absence of drugs, the maximum twitch amplitude occurred in 4 mM Cao; 1 microM isoproterenol shifted the Cao of the maximum twitch amplitude to 3 mM. Regardless of the drug or the stimulation frequency, the Cao at which the twitch amplitude saturated varied linearly with the Cao at which spontaneous Ca2+ release first occurred, and this relationship conformed to a line of identity (r = 0.90, p = less than 0.001, n = 25). The average peak twitch amplitude did not differ among these groups of cells. In other experiments, (a) the extent of rest potentiation of the twitch amplitude in rat myocytes was also limited by the occurrence of spontaneous Ca2+ release, and (b) in both rat and rabbit myocytes continuously stimulated in a given Cao, the twitch amplitude after the addition of ouabain saturated when spontaneous contractile waves first appeared between stimulated twitches. A mathematical model that incorporates this interaction between action potential-mediated SR Ca2+ release and the occurrence of spontaneous Ca2+ release in individual cells predicted the shape of the Cao-twitch relationship observed in other studies in intact muscle. Thus, the occurrence of spontaneous SR Ca2+ release is a plausible mechanism for the saturation of the inotropic response to Ca2+ in the intact myocardium.  相似文献   

16.
The force enhancement of a twitch after a maximal conditioning muscle contraction [i.e., postactivation potentiation (PAP)] is reduced with aging, but its influence on the summation of force in response to repetitive stimulation at different frequencies is not known. The purpose of this work was to compare the electrically evoked mechanical responses of the tibialis anterior muscle between young and elderly adults after a 6-s maximal voluntary contraction (MVC). The results showed that, immediately after the conditioning MVC, twitch torque and its maximal rate of development and relaxation were significantly enhanced in both groups, but the magnitude of potentiation was greater in young (148.0 +/- 14.2, 123.7 +/- 16.5, and 185.4 +/- 36.5%, respectively) compared with elderly adults (87.4 +/- 15.2, 63.8 +/- 9.9, and 62.9 +/- 11.0%, respectively). This age-related difference in potentiation of the twitch disappeared completely 1 min after the conditioning MVC. The potentiation of torque and speed-related parameters in response to two- and three-pulse trains, delivered at a constant interval of 10 ms (100 Hz), was less than for a single pulse for both groups. In young adults, the magnitude of PAP on the successive individual mechanical contributions within a train of stimuli declined progressively such that the third contribution did not differ significantly from the same contribution before the conditioning MVC. In contrast, the second and third contributions did not potentiate (P > 0.05) in elderly adults. Although these contributions did potentiate significantly at a lower frequency of stimulation (20 Hz) in the two groups, the difference in PAP between young and elderly adults still persisted. This overall attenuation of potentiation with aging, however, appears to have a moderate influence on the decrement of the muscular performance.  相似文献   

17.
The aim of this study was to compare the use of transcutaneous vs. motor nerve stimulation in the evaluation of low-frequency fatigue. Nine female and eleven male subjects, all physically active, performed a 30-min downhill run on a motorized treadmill. Knee extensor muscle contractile characteristics were measured before, immediately after (Post), and 30 min after the fatiguing exercise (Post30) by using single twitches and 0.5-s tetani at 20 Hz (P20) and 80 Hz (P80). The P20-to-P80 ratio was calculated. Electrical stimulations were randomly applied either maximally to the femoral nerve or via large surface electrodes (ES) at an intensity sufficient to evoke 50% of maximal voluntary contraction (MVC) during a 80-Hz tetanus. Voluntary activation level was also determined during isometric MVC by the twitch-interpolation technique. Knee extensor MVC and voluntary activation level decreased at all points in time postexercise (P < 0.001). P20 and P80 displayed significant time x gender x stimulation method interactions (P < 0.05 and P < 0.001, respectively). Both stimulation methods detected significant torque reductions at Post and Post30. Overall, ES tended to detect a greater impairment at Post in male and a lesser one in female subjects at both Post and Post30. Interestingly, the P20-P80 ratio relative decrease did not differ between the two methods of stimulation. The low-to-high frequency ratio only demonstrated a significant time effect (P < 0.001). It can be concluded that low-frequency fatigue due to eccentric exercise appears to be accurately assessable by ES.  相似文献   

18.
Shields, Richard K., Laura Frey Law, Brenda Reiling, KellySass, and Jason Wilwert. Effects of electrically induced fatigueon the twitch and tetanus of paralyzed soleus muscle in humans.J. Appl. Physiol. 82(5):1499-1507, 1997.We analyzed the twitch and summated torque(tetanus) during repetitive activation and recovery of the human soleusmuscle in individuals with spinal cord injury. Thirteen individualswith complete paralysis (9 chronic, 4 acute) had the tibial nerveactivated every 1,500 ms with a 20-Hz train (7 stimuli) for 300 ms anda single pulse at 1,100 ms. The stimulation protocol lasted 3 min andincluded 120 twitches and 120 tetani. Minimal changes were found forthe acute group. The chronic group showed a significant reduction inthe torque and a significant slowing of the contractile speeds of boththe twitch and tetanus. The decrease in the peak twitch torque was significantly greater than the decrease in the peak tetanus torque early during the fatigue protocol for the chronic group. The twitch time to peak and half relaxation time were prolonged during fatigue, which was associated with improved fusion of the tetanus torque. At theend of the fatigue protocol, the decrease in the peak twitch torque wasnot significantly different from the decrease in the peak tetanustorque. After 5 min of rest, the contractile speeds recovered causingthe tetanus to become unfused, but the tetanus torque became lessdepressed than the twitch torque. The differential responses for thetwitch and the tetanus suggest an interplay between optimal fusioncreated from contractile speed slowing and excitation contractioncoupling compromise. These issues make the optimal design of functionalelectrical stimulation systems a formidable task.

  相似文献   

19.
Electrical muscle stimulation (Mstim) at a low or high frequency is associated with failure of force production, but the exact mechanisms leading to fatigue in this model are still poorly understood. Using 31P magnetic resonance spectroscopy (31PMRS), we investigated the metabolic changes in rabbit tibialis anterior muscle associated with the force decline during Mstim at low (10 Hz) and high (100 Hz) frequency. We also simultaneously recorded the compound muscle mass action potential (M-wave) evoked by direct muscle stimulation, and we analyzed its post-Mstim variations. The 100-Hz Mstim elicited marked M-wave alterations and induced mild metabolic changes at the onset of stimulation followed by a paradoxical recovery of phosphocreatine (PCr) and pH during the stimulation period. On the contrary, the 10-Hz Mstim produced significant PCr consumption and intracellular acidosis with no paradoxical recovery phenomenon and no significant changes in M-wave characteristics. In addition, the force depression was linearly linked to the stimulation-induced acidosis and PCr breakdown. These results led us to conclude that force failure during 100-Hz Mstim only results from an impaired propagation of muscle action potentials with no metabolic involvement. On the contrary, fatigue induced by 10-Hz Mstim is closely associated with metabolic changes with no alteration of the membrane excitability, thereby underlining the central role of muscle energetics in force depression when muscle is stimulated at low frequency. Finally, our results further indicate a reduction of energy cost of contraction when stimulation frequency is increased from 10 to 100 Hz.  相似文献   

20.
Isometric twitch properties have been compared in two pairs of opposing human limb muscles; these were the brachial biceps and triceps, and the anterior tibial and plantarflexor muscles. All four muscles were examined in each of 24 healthy subjects (16 men and 8 women). The brachial triceps had the shortest contraction and half-relaxation times and the greatest twitch potentiation, while the plantarflexors had the most prolonged twitches and least potentiation; the anterior tibial and brachial biceps muscles had similar characteristics. Susceptibility to fatigue was less in the plantarflexors than in the other three muscles. When muscles were assessed without reference to their anatomical sites, a significant relationship was noted between contraction time and potentiation, but not between either of these features and fatiguability. There was no evidence that muscles were uniformly 'faster' or 'slower' in some subjects than in others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号