首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been known for a long time that the steady-state isometric force after muscle stretch is bigger than the corresponding force obtained in a purely isometric contraction for electrically stimulated and maximal voluntary contractions (MVC). Recent studies using sub-maximal voluntary contractions showed that force enhancement only occurred in a sub-group of subjects suggesting that force enhancement for sub-maximal voluntary contractions has properties different from those of electrically-induced and maximal voluntary contractions. Specifically, force enhancement for sub-maximal voluntary contractions may contain an activation-dependent component that is independent of muscle stretching. To address this hypothesis, we tested for force enhancement using (i) sub-maximal electrically-induced contractions and stretch and (ii) using various activation levels preceding an isometric reference contraction at 30% of MVC (no stretch). All tests were performed on human adductor pollicis muscles. Force enhancement following stretching was found for all subjects (n = 10) and all activation levels (10%, 30%, and 60% of MVC) for electrically-induced contractions. In contrast, force enhancement at 30% of MVC, preceded by 6 s of 10%, 60%, and 100% of MVC was only found in a sub-set of the subjects and only for the 60% and 100% conditions. This result suggests that there is an activation-dependent force enhancement for some subjects for sub-maximal voluntary contractions. This activation-dependent force enhancement was always smaller than the stretch-induced force enhancement obtained at the corresponding activation levels. Active muscle stretching increased the force enhancement in all subjects, independent whether they showed activation dependence or not. It appears that post-activation potentiation, and the associated phosphorylation of the myosin light chains, might account for the stretch-independent force enhancement observed here.  相似文献   

2.
The purpose of the study was to obtain force/velocity relationships for electrically stimulated (80 Hz) human adductor pollicis muscle (n = 6) and to quantify the effects of fatigue. There are two major problems of studying human muscle in situ; the first is the contribution of the series elastic component, and the second is a loss of force consequent upon the extent of loaded shortening. These problems were tackled in two ways. Records obtained from isokinetic releases from maximal isometric tetani showed a late linear phase of force decline, and this was extrapolated back to the time of release to obtain measures of instantaneous force. This method gave usable data up to velocities of shortening equivalent to approximately one-third of maximal velocity. An alternative procedure (short activation, SA) allowed the muscle to begin shortening when isometric force reached a value that could be sustained during shortening (essentially an isotonic protocol). At low velocities both protocols gave very similar data (r2 = 0.96), but for high velocities only the SA procedure could be used. Results obtained using the SA protocol in fresh muscle were compared to those for muscle that had been fatigued by 25 s of ischaemic isometric contractions, induced by electrical stimulation at the ulnar nerve. Fatigue resulted in a decrease of isometric force [to 69 (3)%], an increase in half-relaxation time [to 431 (10)%], and decreases in maximal shortening velocity [to 77 (8)%] and power [to 42 (5)%]. These are the first data for human skeletal muscle to show convincingly that during acute fatigue, power is reduced as a consequence of both the loss of force and slowing of the contractile speed.  相似文献   

3.
The "catchlike" property is defined as the dramatic force increase in skeletal muscles when a single pulse is added at the onset of a sub-tetanic low-frequency stimulation train. This property has been observed in single motor units, whole animal and human muscles. It is an inherent property of muscle fibres and is not related to an increase in motor unit recruitment. Despite an abundance of observations, its origin remains unclear. The aim of this study was to induce the catchlike property in human adductor pollicis and identify its possible origin. Thumb adduction forces were measured using ulnar nerve electrical stimulation at 10Hz for reference trains (RTs) with one extra pulse 8ms after the first stimulation pulse for the experimental trains (ETs). Tests were performed at two muscle length and three stimulation levels and muscle stiffness and potentiation were quantified for all test conditions. The ETs showed higher forces and greater rates of force increase than the RTs. In addition, force increase was more pronounced at short compared to long muscle length, but no differences were found in force increase for the three stimulation levels. Furthermore, potentiation and stiffness were similar across all experimental conditions. Together, these results suggest that the increase in force associated with the catchlike property is neither caused by an increased proportion of attached cross-bridges nor potentiation of the muscle, but appears to be muscle length dependent and present in both slow and fast motor units.  相似文献   

4.
The goals of this study were to investigate adductor pollicis muscle (n = 7) force depression after maximal electrically stimulated and voluntarily activated isovelocity (19 and 306 degrees /s) shortening contractions and the effects of fatigue. After shortening contractions, redeveloped isometric force was significantly (P < 0.05) depressed relative to isometric force obtained without preceding shortening. For voluntarily and electrically stimulated contractions, relative force deficits respectively were (means +/- SE) 25.0 +/- 3.5 and 26.6 +/- 1.9% (19 degrees /s), 7.8 +/- 2.2 and 11.5 +/- 0.6% (306 degrees /s), and 23.9 +/- 4.4 and 31.6 +/- 4.7% (19 degrees /s fatigued). The relative force deficit was significantly smaller after fast compared with slow shortening contractions, whereas activation manner and fatigue did not significantly affect the deficit. It was concluded that in unfatigued and fatigued muscle the velocity-dependent relative force deficit was similar with maximal voluntary activation and electrical stimulation. These findings have important implications for experimental studies of force-velocity relationships. Moreover, if not accounted for in muscle models, they will contribute to differences observed between the predicted and the actually measured performance during in vivo locomotion.  相似文献   

5.
6.
It has been observed consistently and is well accepted that the steady-state isometric force after active muscle stretch is greater than the corresponding isometric force for electrically stimulated muscles and maximal voluntary contractions. However, this so-called force enhancement has not been studied for submaximal voluntary efforts; therefore, it is not known whether this property affects everyday movements. The purpose of this study was to determine whether there was force enhancement during submaximal voluntary contractions. Human adductor pollicis muscles (n = 17) were studied using a custom-built dynamometer, and both force and activation were measured while muscle activation and force were controlled at a level of 30% of maximal voluntary contraction. The steady-state isometric force and activation after active stretch were compared with the corresponding values obtained during isometric reference contractions. There was consistent and reliable force enhancement in 8 of the 17 subjects, whereas there was no force enhancement in the remaining subjects. Subjects with force enhancement had greater postactivation potentiation and a smaller resistance to fatigue in the adductor pollicis. We conclude from these results that force enhancement exists during submaximal voluntary contractions in a subset of the populations and suggest that it may affect everyday voluntary movements in this subset. On the basis of follow-up testing, it appears that force enhancement during voluntary contractions is linked to potentiation and fatigue resistance and therefore possibly to the fiber-type distribution in the adductor pollicis muscle.  相似文献   

7.
The tetanic force development of the human adductor pollicis muscle was studied under light anesthesia with nitrous oxide, oxygen, and Demerol, by the use of tetanic stimulation of the ulnar nerve at frequencies ranging from 10 to 100 Hz. The time necessary for the tetanic contraction to reach a plateau was longest at frequencies between 15 and 20 Hz. Fusion of tetanus occurred between 40 and 45 Hz. The mean maximal force of 6.92 kg was developed at a mean frequency of approximately 75 Hz. The maximal force was well maintained up to a stimulation frequency of 100 Hz. The results indicate that in lightly anesthetized man, the maximal force is developed at higher stimulation frequencies than those observed in conscious man and that it is well sustained at higher frequencies.  相似文献   

8.
Residual force depression (rFD) and residual force enhancement (rFE) are intrinsic contractile properties of muscle. rFD is characterized as a decrease in steady-state isometric force following active shortening compared with a purely isometric contraction at the same muscle length and level of activation. By contrast, isometric force is increased following active lengthening compared to a reference isometric contraction at the same muscle length and level of activation; this is termed rFE. To date, there have been no investigations of rFD and rFE in human muscle fibres, therefore the purpose of this study was to determine whether rFD and rFE occur at the single muscle fibre level in humans. rFD and rFE were investigated in maximally activated single muscle fibres biopsied from the vastus lateralis of healthy adults. To induce rFD, fibres were activated and shortened from an average sarcomere length (SL) of 3.2–2.6 μm. Reference isometric contractions were performed at an average SL of 2.6 μm. To induce rFE, fibres were actively lengthened from an average SL of 2.6–3.2 μm and a reference isometric contraction was performed at an average SL of 3.2 μm. Isometric steady-state force was lower following active shortening (p < 0.05), and higher following active lengthening (p < 0.05), as compared to the reference isometric contractions. We demonstrated rFD and rFE in human single fibres which is consistent with previous animal models. The non-responder phenomenon often reported in rFE studies involving voluntary contractions at the whole human level was not observed at the single fibre level.  相似文献   

9.
Mechanical properties of skeletal muscles are often studied for controlled, electrically induced, maximal, or supra-maximal contractions. However, many mechanical properties, such as the force-length relationship and force enhancement following active muscle stretching, are quite different for maximal and sub-maximal, or electrically induced and voluntary contractions. Force depression, the loss of force observed following active muscle shortening, has been observed and is well documented for electrically induced and maximal voluntary contractions. Since sub-maximal voluntary contractions are arguably the most important for everyday movement analysis and for biomechanical models of skeletal muscle function, it is important to study force depression properties under these conditions. Therefore, the purpose of this study was to examine force depression following sub-maximal, voluntary contractions. Sets of isometric reference and isometric-shortening-isometric test contractions at 30% of maximal voluntary effort were performed with the adductor pollicis muscle. All reference and test contractions were executed by controlling force or activation using a feedback system. Test contractions included adductor pollicis shortening over 10 degrees, 20 degrees, and 30 degrees of thumb adduction. Force depression was assessed by comparing the steady-state isometric forces (activation control) or average electromyograms (EMGs) (force control) following active muscle shortening with those obtained in the corresponding isometric reference contractions. Force was decreased by 20% and average EMG was increased by 18% in the shortening test contractions compared to the isometric reference contractions. Furthermore, force depression was increased with increasing shortening amplitudes, and the relative magnitudes of force depression were similar to those found in electrically stimulated and maximal contractions. We conclude from these results that force depression occurs in sub-maximal voluntary contractions, and that force depression may play a role in the mechanics of everyday movements, and therefore may have to be considered in biomechanical models of human movement.  相似文献   

10.
The purpose of this study was to examine the relative influence of such factors as age, gender, and absolute force on the fatiguability of the human adductor pollicis muscle. 12 young males (YM, 25.3 +/- 2.1 y), 12 young females (YF. 23.5 +/- 2.1 y), 12 older males (OM, 71.7 +/- 5.6 y) and 12 older females (OF, 69.5 +/- 4.6 y) participated. Three minutes of intermittent (5 s contraction, 2 s rest) maximal voluntary contractions (MVC) were used to fatigue the adductor pollicis muscle; the ulnar nerve was also stimulated in each 2 s rest period to evoke a maximal twitch. Males were stronger than females in both voluntary and evoked force (PT) in the young age group (MVC: YM, 10.0 +/- 2.7 kg vs. YF, 6.6 +/- 1.1 kg, P < 0.05) (PT: YM, 0.99 +/- 0.21 kg vs. YF, 0.71 +/- 0.12 kg, P < 0.05). In the older adults, however, males were stronger only in the evoked twitch (OM, 0.73 +/- 0.24 kg vs. OF, 0.48 +/- 0.07 kg, P < 0.05). There was no significant effect of gender or absolute muscle force on relative fatigability; the only variable found to significantly affect fatigability was age. Older adults were significantly less fatigable than young adults as indicated by the voluntary fatigue index (FI) (percentage of force reduction from baseline; FI-young, 40.2 +/- 12.6% vs. FI-old, 25.2 +/- 12.3%). This age effect, however, was more prominent in males than females (FI-YM, 44.7 +/- 10.5% vs. FI-OM, 24.2 +/- 10.7%, P < 0.01; FI-YF, 37.8 +/- 14.1% vs. FI-OF, 26.3 +/- 14.5%, P = 0.13). In conclusion, age was found to be the strongest single predictor of fatigability during short duration, intermittent exercise in human adductor pollicis muscle.  相似文献   

11.
Studies on maximal stimulated muscle have shown that history dependence is an integral part of muscle force production. The purpose of this study was to evaluate the history dependent effects in submaximal stimulated muscle. For this purpose, lengthening and shortening experiments were performed on the medial gastrocnemius muscle of the rat. The length dependence of lengthening induced force enhancement and shortening induced force depression was studied in maximal (80 Hz) and submaximal (30 Hz) stimulated muscles. The most important results of this study are (a) submaximal stimulation reduces the maximal amplitude of the history effects and (b) lengthening induced force enhancement and shortening induced force deficit are affected differently by submaximal stimulation. The implication of these results for the underlying mechanism and functional relevance of the history dependent effects is discussed.  相似文献   

12.
Using a combination of single maximal stimuli and maximum voluntary contractions, a comparison has been made of muscle properties in pre- and post-pubertal male subjects. In the dorsiflexor and plantarflexor muscles of the ankle, the twitch and maximum voluntary torques were approximately twice as large in the older subjects; the mean height and mean weight increased by factors of 1.20 and 1.86 respectively. The only other muscle parameter that changed, as a function of age, was the contraction time of the ankle dorsiflexors; the mean value was significantly longer in the older subjects. In the younger subjects, there were already clear differences between the dorsiflexor and plantarflexor muscles, the former developing smaller torques and having shorter contraction and half-relaxation times, greater post-activation potentiation and more susceptibility to fatigue. Even in the youngest subject, motor unit activation was complete in the ankle dorsiflexors; although this was not always true of the plantarflexors, the difference between the two subject groups was not significant.  相似文献   

13.
The mechanomyogram (MMG) is a signal measured by various vibration sensors for slight vibrations induced by muscle contraction, and it reflects the muscle force during electrically induced-contraction or until 60%–70% maximum voluntary contraction, so the MMG is considered an alternative and novel measurement tool for muscle strength. We simultaneously measured the MMG and muscle force in the gastrocnemius (GC), vastus intermedius (VI), and soleus (SOL) muscles of rats. The muscle force was measured by attaching a hook to the tendon using a load cell, and the MMG was measured using a charged-coupled device-type displacement sensor at the middle of the target muscle. The MMG-twitch waveform was very similar to that of the muscle force; however, the half relaxation time and relaxation time (10%), which are relaxation parameters, were prolonged compared to those of the muscle force. The MMG amplitude correlated with the muscle force. Since stimulation frequencies that are necessary to evoke tetanic progression have a significant correlation with the twitch parameter, there is a close relationship between twitch and tetanus in the MMG signal. Therefore, we suggest that the MMG, which is electrically induced and detected by a laser displacement sensor, may be an alternative tool for measuring muscle strength.  相似文献   

14.
15.
16.
17.
No comparison of the amount of low-frequency fatigue (LFF) produced by different activation frequencies exists, although frequencies ranging from 10 to 100 Hz have been used to induce LFF. The quadriceps femoris of 11 healthy subjects were tested in 5 separate sessions. In each session, the force-generating ability of the muscle was tested before and after fatigue and at 2, approximately 13, and approximately 38 min of recovery. Brief (6-pulse), constant-frequency trains of 9.1, 14.3, 33.3, and 100 Hz and a 6-pulse, variable-frequency train with a mean frequency of 14.3 Hz were delivered at 1 train/s to induce fatigue. Immediately postfatigue, there was a significant effect of fatiguing protocol frequency. Muscles exhibited greater LFF after stimulation with the 9.1-, 14.3-, and variable-frequency trains. These three trains also produced the greatest mean force-time integrals during the fatigue test. At 2, approximately 13, and approximately 38 min of recovery, however, the LFF produced was independent of the fatiguing protocol frequency. The findings are consistent with theories suggesting two independent mechanisms behind LFF and may help identify the optimal activation pattern when functional electrical stimulation is used.  相似文献   

18.
An experimental protocol designed to assess fatigability in motor units has been applied to two hindlimb muscles of anesthetized adult rats to study the effects of whole-muscle fatigue on the isometric twitch. Both soleus and extensor digitorum longus exhibited a linear relationship between fatigability (i.e., force decline after a 360-s fatigue test) and the magnitude of the twitch force following the fatigue test. Twitch force after the fatigue test was potentiated (i.e., greater than the value before the fatigue test) in many muscles, despite the development of considerable fatigue. This coexistence of fatigue and twitch potentiation was observed in 7% (5/70) of soleus and 48% (31/64) of extensor digitorum longus muscles. The coexistence was exhibited only by the least fatigable muscles of the fast-contracting extensor digitorum longus. The extensor digitorum longus muscles that did not exhibit twitch potentiation probably experienced a higher proportion of muscle-fiber inactivation, such as due to failure of neuromuscular propagation, that was induced by the fatigue regimen.  相似文献   

19.
This paper describes a simple computational model of joint torque and impedance in human arm movements that can be used to simulate three-dimensional movements of the (redundant) arm or leg and to design the control of robots and human-machine interfaces. This model, based on recent physiological findings, assumes that (1) the central nervous system learns the force and impedance to perform a task successfully in a given stable or unstable dynamic environment and (2) stiffness is linearly related to the magnitude of the joint torque and increased to compensate for environment instability. Comparison with existing data shows that this simple model is able to predict impedance geometry well.  相似文献   

20.
Skeletal muscles are embedded in an environment of other muscles, connective tissue, and bones, which may transfer transversal forces to the muscle tissue, thereby compressing it. In a recent study we demonstrated that transversal loading of a muscle with 1.3 N cm−2 reduces maximum isometric force (Fim) and rate of force development by approximately 5% and 25%, respectively. The aim of the present study was to examine the influence of increasing transversal muscle loading on contraction dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号