首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Burkholderia pseudomallei, a Gram-negative bacterium that causes melioidosis may be differentiated from closely related species of Burkholderia mallei that causes glanders and non-pathogenic species of Burkholderia thailandensis by multiplex PCR. The multiplex PCR consists of primers that flank a 10-bp repetitive element in B. pseudomallei and B. mallei amplifying PCR fragment of varying sizes between 400-700 bp, a unique sequence in B. thailandensis amplifying a PCR fragment of 308 bp and the metalloprotease gene amplifying a PCR fragment of 245 bp in B. pseudomallei and B. thailandensis. The multiplex PCR not only can differentiate the three Burkholderia species but can also be used for epidemiological typing of B. pseudomallei and B. mallei strains.  相似文献   

2.
【背景】伯克霍尔德氏菌(Burkholderia)是一类重要的植物根际促生细菌,许多菌株具有抑制植物病原菌生长和促进植物生长等功能。【目的】探究高效解磷促生细菌多噬伯克霍尔德氏菌(B. multivorans) WS-FJ9对不同林木病原菌物的抑菌作用。【方法】采用平板对峙法检测菌株WS-FJ9对5株林木病原真菌和卵菌的抑制效果;基于比色法检测经菌株WS-FJ9处理后病原菌菌丝细胞内含物的变化;使用antiSMASH 5.0在线预测网站对其次生代谢物质进行预测;通过菌丝生长抑制速率法对其无菌发酵滤液的抑菌活性和稳定性进行研究。【结果】菌株WS-FJ9对5种林木病原菌均具有不同程度的抑制作用,其中菌悬液对樟疫霉(Phytophthora cinnamomi)的抑制作用最好,抑菌带宽度为14.82±0.20mm,无菌发酵滤液对真菌拟茎点霉(Phomopsismacrospore)和松杉球壳孢(Sphaeropsis sapinea)的抑制效果显著,抑菌率分别为62.22%和62.78%;经无菌发酵滤液处理后的病原菌菌丝内的丙二醛含量增高,还原糖和可溶性蛋白含量显著降低。WS-FJ9菌株的基因组中含27个不同的次级代谢产物编码基因簇,其中包含编码嗜铁素、细菌素和抗生素等抑菌基因簇;该菌株发酵液在高温、紫外照射和强酸强碱环境条件下及经蛋白酶处理后,其抑菌活性均未受到影响。【结论】多噬伯克霍尔德氏菌WS-FJ9对林木病原菌物具有很好的生防潜力。  相似文献   

3.
Amotile Burkholderia mallei and motile Burkholderia pseudomallei display a high similarity with regard to phenotype and clinical syndromes, glanders and melioidosis. The aim of this study was to establish a fast and reliable molecular method for identification and differentiation. Despite amotility, the gene of the filament forming flagellin (fliC) could be completely sequenced in two B. mallei strains. Only one mutation was identified discriminating between B. mallei and B. pseudomallei. A polymerase chain reaction-restriction fragment length polymorphism assay was designed making use of the absence of an AvaII recognition site in B. mallei. All seven B. mallei, 12 out of 15 B. pseudomallei and 36 closely related apathogenic Burkholderia thailandensis strains were identified correctly. However, in three B. pseudomallei strains a point mutation at gene position 798 (G to C) disrupted the AvaII site. Therefore, molecular systems based on the fliC sequence can be used for a reliable proof of strains of the three species but not for the differentiation of B. mallei and B. pseudomallei isolates.  相似文献   

4.
Burkholderia pseudomallei and Burkholderia thailandensis express similar O-antigens (O-PS II) in which their 6-deoxy-alpha-L-talopyranosyl (L-6dTalp) residues are variably substituted with O-acetyl groups at the O-2 or O-4 positions. In previous studies we demonstrated that the protective monoclonal antibody, Pp-PS-W, reacted with O-PS II expressed by wild-type B. pseudomallei strains but not by a B. pseudomallei wbiA null mutant. In the present study we demonstrate that WbiA activity is required for the acetylation of the L-6dTalp residues at the O-2 position and that structural modification of O-PS II molecules at this site is critical for recognition by Pp-PS-W.  相似文献   

5.
The main objective of this study was to determine the Burkholderia community structure associated with areas under different agricultural management and to evaluate to which extent this community structure is affected by changes in agricultural management. Two fields with distinct soil history (arable land and permanent grassland) were exposed to three agricultural management regimes (crop rotation, maize monoculture, and grassland). By using a culture-independent approach, based on a Burkholderia-specific polymerase chain reaction–denaturing gradient gel electrophoresis system, it was possible to observe the conversion of Burkholderia communities typical for permanent grassland to those of arable land after four consecutive years. However, the time needed to achieve the reverse transition, i.e., converting the Burkholderia community associated with arable land to that of grassland, was beyond the duration of the field experiment. In addition, by applying principal response curves, the direction and extent of the conversion from grassland to arable land (maize monoculture and to crop rotation) were determined. Hence, the results suggested that agricultural practices, such as fertilization and tillage, were more effective in changing the Burkholderia community structure than agricultural management regime. To determine the effect of agricultural management on the Burkholderia population with biocontrol abilities, the culturable fraction of the Burkholderia community was assessed. The areas under permanent grassland and grassland converted to maize monoculture had the highest percentages of Burkholderia strains with antagonistic activity against Rhizoctonia solani AG-3, mainly Burkholderia pyrrocinia and Burkholderia sp. LMG 22929. The isolation frequency of antagonistic isolates from arable land was extremely low. Our results indicate that (changes in) agricultural management, mainly crop rotation, affect the frequency of isolation of antagonistic Burkholderia strains and that grassland represents a reservoir of Burkholderia species with great potential for agricultural applications.  相似文献   

6.
We reported previously two biochemically and antigenically distinct biotypes of Burkholderia pseudomallei. These two distinct biotypes could be distinguished by their ability to assimilate L-arabinose. Some B. pseudomallei isolated from soil samples could utilize this substrate (Ara+), whereas the other soil isolates and all clinical isolates could not (Ara-). Only the Ara isolates were virulent in animals and reacted with monoclonal antibody directed at the surface envelope, most likely the exopolysaccharide component. In the present study, pulsed-field gel electrophoresis was employed for karyotyping of these previously identified B. pseudomallei strains. We demonstrate here that the DNA macrorestriction pattern allows the differentiation between B. pseudomallei, which can assimilate L-arabinose, and the proposed B. thailandensis, which cannot do so. Bacterial strains from 80 melioidosis patients and 33 soil samples were examined by genomic DNA digestion with NcoI. Two major reproducible restriction patterns were observed. All clinical (Ara-) isolates and 9 Ara- soil isolates exhibited macrorestriction pattern I (MPI), while 24 soil isolates (Ara+) from central and northeastern Thailand displayed macrorestriction pattern II (MPII). The study here demonstrated pulsed-field gel electrophoresis to be a useful tool in epidemiological investigation possibly distinguishing virulent B. pseudomallei from avirulent B. thailandensis or even identifying closely related species of Burkholderia.  相似文献   

7.
Burkholderia pseudomallei and B. mallei are the causative agents of melioidosis and glanders, respectively. As iron regulation of gene expression is common in bacteria, in the present studies, we have used microarray analysis to examine the effects of growth in different iron concentrations on the regulation of gene expression in B. pseudomallei and B. mallei. Gene expression profiles for these two bacterial species were similar under high and low iron growth conditions irrespective of growth phase. Growth in low iron led to reduced expression of genes encoding most respiratory metabolic systems and proteins of putative function, such as NADH-dehydrogenases, cytochrome oxidases, and ATP-synthases. In contrast, genes encoding siderophore-mediated iron transport, heme-hemin receptors, and a variety of metabolic enzymes for alternative metabolism were induced under low iron conditions. The overall gene expression profiles suggest that B. pseudomallei and B. mallei are able to adapt to the iron-restricted conditions in the host environment by up-regulating an iron-acquisition system and by using alternative metabolic pathways for energy production. The observations relative to the induction of specific metabolic enzymes during bacterial growth under low iron conditions warrants further experimentation.  相似文献   

8.
Burkholderia pseudomallei and Burkholderia mallei are causative agents of distinct diseases, namely, melioidosis and glanders, respectively. The two species are very closely related, based on DNA-DNA homology, base sequence of the 16S rRNA, and phenotypic characteristics. Based on the use of polyclonal antisera, B. pseudomallei and B. mallei are also found to be antigenically closely related to one another. We previously reported the production of monoclonal antibodies (MAbs) against B. pseudomallei antigens; one group was specific for the 200-kDa exopolysaccharide present on the surface of all B. pseudomallei isolates, and the other was specific for the lipopolysaccharide (LPS) structure present on more than 95% of the B. pseudomallei tested. In the present study, we showed that the MAbs against 200-kDa antigen of B. pseudomallei cross-reacted with a component present also in some B. mallei isolates (3/6), but the positive immunoblot reaction was noted below the 200-kDa position. On the other hand, none of the six B. mallei isolates reacted with the MAb specific for B. pseudomallei LPS. It was of interest to observe that only the 3 exopolysaccharide-positive B. mallei isolates reacted with a commercial MAb against B. mallei LPS. The data presented suggest that B. mallei can be classified antigenically into two types based on their reactivities with different MAbs, i.e., the presence or absence of exopolysaccharide and the types of lipopolysaccharide. The heterogeneity of the LPS from these two closely related organisms is most likely related to the differences in its O-polysaccharide side chain.  相似文献   

9.
Burkholderia pseudomallei is a gram-negative bacterium and the causative agent of melioidosis, one of the important lethal diseases in tropical regions. In this article, we demonstrate the crucial role of the B. pseudomallei rpoE locus in the response to heat stress. The rpoE operon knockout mutant exhibited growth retardation and reduced survival when exposed to a high temperature. Expression analysis using rpoH promoter-lacZ fusion revealed that heat stress induction of rpoH, which encodes heat shock sigma factor (sigma(H)), was abolished in the B. pseudomallei rpoE mutant. Analysis of the rpoH promoter region revealed sequences sharing high homology to the consensus sequence of sigma(E)-dependent promoters. Moreover, the putative heat-induced sigma(H)-regulated heat shock proteins (i.e. GroEL and HtpG) were also absent in the rpoE operon mutant. Altogether, our data suggest that the rpoE operon regulates B. pseudomallei heat stress response through the function of rpoH.  相似文献   

10.
A subtraction library of Burkholderia pseudomallei was constructed by subtractive hybridisation of B. pseudomallei genomic DNA with Burkholderia thailandensis genomic DNA. Two clones were found to have significant sequence similarity to insertion sequences which have previously not been found in B. pseudomallei (designated ISA and ISB); and two clones showed sequence similarity to different regions of Burkholderia cepacia IS407 that has recently been detected in B. pseudomallei. The former, though possibly non-functional, represents new transposable genetic elements of B. pseudomallei. All three sequences were found to be present in multi-copy in the genomes of a number of B. pseudomallei strains and in B. thailandensis, which are the first transposable elements identified in this species.  相似文献   

11.
Glycosylation of proteins is known to impart novel physical properties and biological roles to proteins from both eukaryotes and prokaryotes. In this study, gel-based glycoproteomics were used to identify glycoproteins of the potential biothreat agent Burkholderia pseudomallei and the closely related but nonpathogenic B. thailandensis. Top-down and bottom-up mass spectrometry (MS) analyses identified that the flagellin proteins of both species were posttranslationally modified by novel glycans. Analysis of proteins from two strains of each species demonstrated that B. pseudomallei flagellin proteins were modified with a glycan with a mass of 291 Da, while B. thailandensis flagellin protein was modified with related glycans with a mass of 300 or 342 Da. Structural characterization of the B. thailandensis carbohydrate moiety suggests that it is an acetylated hexuronic acid. In addition, we have identified through mutagenesis a gene from the lipopolysaccharide (LPS) O-antigen biosynthetic cluster which is involved in flagellar glycosylation, and inactivation of this gene eliminates flagellar glycosylation and motility in B. pseudomallei. This is the first report to conclusively demonstrate the presence of a carbohydrate covalently linked to a protein in B. pseudomallei and B. thailandensis, and it suggests new avenues to explore in order to examine the marked differences in virulence between these two species.  相似文献   

12.
Burkholderia pseudomallei is the etiological agent of melioidosis, a potentially fatal disease occurring in man and animals. The aim of this study was to investigate the pathophysiological course of experimental melioidosis, and to identify the target organs, in an animal model. For this purpose SWISS mice were infected intraperitoneally with the virulent strain B. pseudomallei 6068. The bacterial load of various organs was quantified daily by bacteriological analysis and by an enzyme-linked immunosorbent assay (ELISA) based on a monoclonal antibody specific to B. pseudomallei exopolysaccharide (EPS). Electron microscopic investigation of the spleen was performed to locate the bacteria at the cellular level. In this model of acute melioidosis, B. pseudomallei had a marked organ tropism for liver and spleen, and showed evidence of in vivo growth with a bacterial burden of 1.6x10(9) colony forming units (CFU) per gram of spleen 5 days after infection with 200 CFU. The highest bacterial loads were detected in the spleen at all time points, in a range from 2x10(6) to 2x10(9) CFU g(-1). They were still 50-80 times greater than the load of the liver at the time of peak burden. Other investigated organs such as lungs, kidneys, and bone marrow were 10(2)-10(4)-fold less infected than the spleen, with loads ranging from 3x10(2) to 3x10(6) CFU g(-1). The heart and the brain were sites of a delayed infection, with counts in a range from 10(3) to 10(7) times lower than bacterial counts in the spleen. The EPS-specific ELISA proved to be highly sensitive, particularly at the level of those tissues in which colony counting on agar revealed low contamination. In the blood, EPS was detected at concentrations corresponding to bacterial loads ranging from 8x10(3) to 6x10(4) CFU ml(-1). Electron microscopic examination of the spleen revealed figures of phagocytosis, and the presence of large numbers of intact bacteria, which occurred either as single cells or densely packed into vacuoles. Sparse figures suggesting bacterial replication were also observed. In addition, some bacteria could be seen in vacuoles that seemed to have lost their membrane. These observations provide a basis for further investigations on the pathogenesis of the disease.  相似文献   

13.
Burkholderia pseudomallei, the cause of the severe disease melioidosis in humans and animals, is a gram-negative saprophyte living in soil and water of areas of endemicity such as tropical northern Australia and Southeast Asia. Infection occurs mainly by contact with wet contaminated soil. The environmental distribution of B. pseudomallei in northern Australia is still unclear. We developed and evaluated a direct soil B. pseudomallei DNA detection method based on the recently published real-time PCR targeting the B. pseudomallei type III secretion system. The method was evaluated by inoculating different soil types with B. pseudomallei dilution series and by comparing B. pseudomallei detection rate with culture-based detection rate for 104 randomly collected soil samples from the Darwin rural area in northern Australia. We found that direct soil B. pseudomallei DNA detection not only was substantially faster than culture but also proved to be more sensitive with no evident false-positive results. This assay provides a new tool to detect B. pseudomallei in soil samples in a fast and highly sensitive and specific manner and is applicable for large-scale B. pseudomallei environmental screening studies or in outbreak situations. Furthermore, analysis of the 104 collected soil samples revealed a significant association between B. pseudomallei-positive sites and the presence of animals at these locations and also with moist, reddish brown-to-reddish gray soils.  相似文献   

14.
类鼻疽是由类鼻疽伯克霍尔德菌(Burkholderia pseudomallei,B. pseudomallei)(简称类鼻疽菌)感染引起的一种热带医学疾病。该病临床表现复杂多样,严重感染时可快速发展为败血症,病死率高达40%。越来越多的证据表明,它是一种正在扩散的人兽共患传染病。本文就近年来关于类鼻疽菌感染的重要毒力因子以及其在免疫逃逸中的作用机制研究进展进行总结,以期了解类鼻疽菌的致病机制,为将来有效疫苗和治疗药物的研发提供理论指导。  相似文献   

15.
Filamentous phage random peptide libraries were used to identify the epitopes of Burkholderia pseudomallei protease by panning against IgG polyclonal sera that exhibited protease neutralizing properties. The isolated fusion peptides presented a consensus peptide sequence, TKSMALSG, which closely resembles part of the active site sequence, 435GTSMATPHVAG445, of B. pseudomallei serine metalloprotease. By comparing the consensus sequence, TKSMALSG, with the predicted three-dimensional molecular model of B. pseudomallei serine metalloprotease, it appears that the potential antibody binding epitope was buried within the molecule. This active site was conformational whereby one continuous sub-region (SMA) was located between two discontinuous sub-regions, supplied by the flanking residues in the same polypeptide. All phages selected from the biopanning with IgG polyclonal sera showed good binding towards the polyclonal antibodies when compared to the negative control. In addition, these peptide-bearing phages showed competitive inhibition of B. pseudomallei serine metalloprotease binding to the polyclonal IgG.  相似文献   

16.
Melioidosis is a major cause of morbidity and mortality in Southeast Asia, where the causative organism (Burkholderia pseudomallei) is present in the soil. In the Lao People's Democratic Republic (Laos), B. pseudomallei is a significant cause of sepsis around the capital, Vientiane, and has been isolated in soil near the city, adjacent to the Mekong River. We explored whether B. pseudomallei occurs in Lao soil distant from the Mekong River, drawing three axes across northwest, northeast, and southern Laos to create nine sampling areas in six provinces. Within each sampling area, a random rice field site containing a grid of 100 sampling points each 5 m apart was selected. Soil was obtained from a depth of 30 cm and cultured for B. pseudomallei. Four of nine sites (44%) were positive for B. pseudomallei, including all three sites in Saravane Province, southern Laos. The highest isolation frequency was in east Saravane, where 94% of soil samples were B. pseudomallei positive with a geometric mean concentration of 464 CFU/g soil (95% confidence interval, 372 to 579 CFU/g soil; range, 25 to 10,850 CFU/g soil). At one site in northwest Laos (Luangnamtha), only one sample (1%) was positive for B. pseudomallei, at a concentration of 80 CFU/g soil. Therefore, B. pseudomallei occurs in Lao soils beyond the immediate vicinity of the Mekong River, alerting physicians to the likelihood of melioidosis in these areas. Further studies are needed to investigate potential climatic, soil, and biological determinants of this heterogeneity.  相似文献   

17.
Burkholderia pseudomallei, a Gram-negative saprophytic bacterium, is the causative agent of the potentially fatal melioidosis disease in humans. In this study, environmental parameters including temperature, nutrient content, pH and the presence of glucose were shown to play a role in in vitro biofilm formation by 28 B. pseudomallei clinical isolates, including four isolates with large colony variants (LCVs) and small colony variants (SCVs) morphotypes. Enhanced biofilm formation was observed when the isolates were tested in LB medium, at 30°C, at pH 7.2, and in the presence of as little as 2 mM glucose respectively. It was also shown that all SVCs displayed significantly greater capacity to form biofilms than the corresponding LCVs when cultured in LB at 37°C. In addition, octanoyl-homoserine lactone (C(8)-HSL), a quorum sensing molecule, was identified by mass spectrometry analysis in bacterial isolates referred to as LCV CTH, LCV VIT, SCV TOM, SCV CTH, 1 and 3, and the presence of other AHL's with higher masses; decanoyl-homoserine lactone (C(10)-HSL) and dodecanoyl-homoserine lactone (C(12)-HSL) were also found in all tested strain in this study. Last but not least, we had successfully acquired two Bacillus sp. soil isolates, termed KW and SA respectively, which possessed strong AHLs degradation activity. Biofilm formation of B. pseudomallei isolates was significantly decreased after treated with culture supernatants of KW and SA strains, demonstrating that AHLs may play a role in B. pseudomallei biofilm formation.  相似文献   

18.
The soil bacterium and potential biothreat agent Burkholderia pseudomallei causes the infectious disease melioidosis, which is naturally acquired through environmental contact with the bacterium. Environmental detection of B. pseudomallei represents the basis for the development of a geographical risk map for humans and livestock. The aim of the present study was to develop a highly sensitive, culture-independent, DNA-based method that allows direct quantification of B. pseudomallei from soil. We established a protocol for B. pseudomallei soil DNA isolation, purification, and quantification by quantitative PCR (qPCR) targeting a type three secretion system 1 single-copy gene. This assay was validated using 40 soil samples from Northeast Thailand that underwent parallel bacteriological culture. All 26 samples that were B. pseudomallei positive by direct culture were B. pseudomallei qPCR positive, with a median of 1.84 × 10(4) genome equivalents (range, 3.65 × 10(2) to 7.85 × 10(5)) per gram of soil, assuming complete recovery of DNA. This was 10.6-fold (geometric mean; range, 1.1- to 151.3-fold) higher than the bacterial count defined by direct culture. Moreover, the qPCR detected B. pseudomallei in seven samples (median, 36.9 genome equivalents per g of soil; range, 9.4 to 47.3) which were negative by direct culture. These seven positive results were reproduced using a nested PCR targeting a second, independent B. pseudomallei-specific sequence. Two samples were direct culture and qPCR negative but nested PCR positive. Five samples were negative by both PCR methods and culture. In conclusion, our PCR-based system provides a highly specific and sensitive tool for the quantitative environmental surveillance of B. pseudomallei.  相似文献   

19.
Burkholderia pseudomallei, the etiological agent of melioidosis, is an animal pathogen capable of inducing a highly fatal septicemia. B. pseudomallei possesses three type III secretion system (TTSS) clusters, two of which (TTSS1 and TTSS2) are homologous to the TTSS of the plant pathogen Ralstonia solanacearum, and one (TTSS3) is homologous to the Salmonella SPI-1 mammalian pathogenicity island. We have demonstrated that TTSS3 is required for the full virulence of B. pseudomallei in a hamster model of infection. We have also examined the virulence of B. pseudomallei mutants deficient in several putative TTSS3 effector molecules, and found no significant attenuation of B. pseudomallei virulence in the hamster model.  相似文献   

20.
Previous studies have identified specific Burkholderia cepacia complex strains that are common to multiple persons with cystic fibrosis (CF). Such so-called epidemic strains have an apparent enhanced capacity for inter-patient spread and reside primarily in Burkholderia cenocepacia (formerly B. cepacia complex genomovar III). We sought to identify strains from B. cepacia complex species other than B. cenocepacia that are similarly shared by multiple CF patients. We performed genotype analysis of 360 recent sputum culture isolates from 360 persons residing in 29 cities by using repetitive extragenic palendromic polymerase chain reaction (rep-PCR) and pulsed field gel electrophoresis. The results indicate that sharing of a common Burkholderia multivorans strain occurs relatively infrequently; however, several small clusters of patients infected with the same strain were identified. A cluster of seven patients infected with the same B. cepacia (genomovar I) strain was found. We also identified a large group of 28 patients receiving care in the same treatment center and infected with the same Burkholderia dolosa strain. These observations suggest that B. cepacia complex strains in species other than B. cenocepacia may be spread among CF patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号