首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Type VI secretion is critical for Vibrio cholerae to successfully combat phagocytic eukaryotes and to survive in the presence of competing bacterial species. V. cholerae type VI secretion system genes are encoded in one large and two small clusters. In V. cholerae, type VI secretion is controlled by quorum sensing, the cell–cell communication process that enables bacteria to orchestrate group behaviours. The quorum‐sensing response regulator LuxO represses type VI secretion genes at low cell density and the quorum‐sensing regulator HapR activates type VI secretion genes at high cell density. We demonstrate that the quorum regulatory small RNAs (Qrr sRNAs) that function between LuxO and HapR in the quorum‐sensing cascade are required for these regulatory effects. The Qrr sRNAs control type VI secretion via two mechanisms: they repress expression of the large type VI secretion system cluster through base pairing and they repress HapR, the activator of the two small type VI secretion clusters. This regulatory arrangement ensures that the large cluster encoding many components of the secretory machine is expressed prior to the two small clusters that encode the secreted effectors. Qrr sRNA‐dependent regulation of the type VI secretion system is conserved in pandemic and non‐pandemic V. cholerae strains.  相似文献   

2.
Small RNAs (sRNAs) exert important functions in pseudomonads. Classical sRNAs comprise the 4.5S, 6S, 10Sa and 10Sb RNAs, which are known in enteric bacteria as part of the signal recognition particle, a regulatory component of RNA polymerase, transfer–messenger RNA (tmRNA) and the RNA component of RNase P, respectively. Their homologues in pseudomonads are presumed to have analogous functions. Other sRNAs of pseudomonads generally have little or no sequence similarity with sRNAs of enteric bacteria. Numerous sRNAs repress or activate the translation of target mRNAs by a base-pairing mechanism. Examples of this group in Pseudomonas aeruginosa are the iron-repressible PrrF1 and PrrF2 sRNAs, which repress the translation of genes encoding iron-containing proteins, and PhrS, an anaerobically inducible sRNA, which activates the expression of PqsR, a regulator of the Pseudomonas quinolone signal. Other sRNAs sequester RNA-binding proteins that act as translational repressors. Examples of this group in P. aeruginosa include RsmY and RsmZ, which are central regulatory elements in the GacS/GacA signal transduction pathway, and CrcZ, which is a key regulator in the CbrA/CbrB signal transduction pathway. These pathways largely control the extracellular activities (including virulence traits) and the selection of the energetically most favourable carbon sources, respectively, in pseudomonads.  相似文献   

3.
Quorum sensing, a cell-to-cell communication system based on small signal molecules, is employed by the human pathogen Pseudomonas aeruginosa to regulate virulence and biofilm development. Moreover, regulation by small trans-encoded RNAs has become a focal issue in studies of virulence gene expression of bacterial pathogens. In this study, we have identified the small RNA PhrS as an activator of PqsR synthesis, one of the key quorum-sensing regulators in P. aeruginosa. Genetic studies revealed a novel mode of regulation by a sRNA, whereby PhrS uses a base-pairing mechanism to activate a short upstream open reading frame to which the pqsR gene is translationally coupled. Expression of phrS requires the oxygen-responsive regulator ANR. Thus, PhrS is the first bacterial sRNA that provides a regulatory link between oxygen availability and quorum sensing, which may impact on oxygen-limited growth in P. aeruginosa biofilms.  相似文献   

4.
5.
6.
7.
Quorum sensing is a mechanism of cell‐to‐cell communication that allows bacteria to coordinately regulate gene expression in response to changes in cell‐population density. At the core of the Vibrio cholerae quorum‐sensing signal transduction pathway reside four homologous small RNAs (sRNAs), named the quorum regulatory RNAs 1–4 (Qrr1–4). The four Qrr sRNAs are functionally redundant. That is, expression of any one of them is sufficient for wild‐type quorum‐sensing behaviour. Here, we show that the combined action of two feedback loops, one involving the sRNA‐activator LuxO and one involving the sRNA‐target HapR, promotes gene dosage compensation between the four qrr genes. Gene dosage compensation adjusts the total Qrr1–4 sRNA pool and provides the molecular mechanism underlying sRNA redundancy. The dosage compensation mechanism is exquisitely sensitive to small perturbations in Qrr levels. Precisely maintained Qrr levels are required to direct the proper timing and correct patterns of expression of quorum‐sensing‐regulated target genes.  相似文献   

8.
9.
Quorum sensing is a chemical communication process that bacteria use to control collective behaviours including bioluminescence, biofilm formation, and virulence factor production. In Vibrio harveyi, five homologous small RNAs (sRNAs) called Qrr1–5, control quorum‐sensing transitions. Here, we identify 16 new targets of the Qrr sRNAs. Mutagenesis reveals that particular sequence differences among the Qrr sRNAs determine their target specificities. Modelling coupled with biochemical and genetic analyses show that all five of the Qrr sRNAs possess four stem‐loops: the first stem‐loop is crucial for base pairing with a subset of targets. This stem‐loop also protects the Qrr sRNAs from RNase E‐mediated degradation. The second stem‐loop contains conserved sequences required for base pairing with the majority of the target mRNAs. The third stem‐loop plays an accessory role in base pairing and stability. The fourth stem‐loop functions as a rho‐independent terminator. In the quorum‐sensing regulon, Qrr sRNAs‐controlled genes are the most rapid to respond to quorum‐sensing autoinducers. The Qrr sRNAs are conserved throughout vibrios, thus insights from this work could apply generally to Vibrio quorum sensing.  相似文献   

10.
11.
sRNA(非编码小RNA)通过碱基配对的方式与靶mRNA结合,抑制或激活转录过程、调节蛋白质的表达,以核酸的形式发挥其生物学功能。随着RNA深度测序(RNAseq)技术、生物信息学预测以及实验分析手段的日渐发展和完善,数以百计的sRNA被发现并得到验证。作为转录后调控因子,sRNA因在诸多生理过程中起到了关键的调节作用而得到了广泛的关注。以革兰氏阳性菌为切入点,总结了近年来sRNA的筛选、鉴定和功能研究等方面取得的进展,梳理分析了sRNA调控与毒力因子、群体感应、铁代谢和双组分系统等之间的内在联系,并展望了sRNA未来的研究方向。  相似文献   

12.
13.
14.
The RNA chaperone protein Hfq is required for the function of all small RNAs (sRNAs) that regulate mRNA stability or translation by limited base pairing in Escherichia coli. While there have been numerous in vitro studies to characterize Hfq activity and the importance of specific residues, there has been only limited characterization of Hfq mutants in vivo. Here, we use a set of reporters as well as co-immunoprecipitation to examine 14 Hfq mutants expressed from the E. coli chromosome. The majority of the proximal face residues, as expected, were important for the function of sRNAs. The failure of sRNAs to regulate target mRNAs in these mutants can be explained by reduced sRNA accumulation. Two of the proximal mutants, D9A and F39A, acted differently from the others in that they had mixed effects on different sRNA/mRNA pairs and, in the case of F39A, showed differential sRNA accumulation. Mutations of charged residues at the rim of Hfq interfered with positive regulation and gave mixed effects for negative regulation. Some, but not all, sRNAs accumulated to lower levels in rim mutants, suggesting qualitative differences in how individual sRNAs are affected by Hfq. The distal face mutants were expected to disrupt binding of ARN motifs found in mRNAs. They were more defective for positive regulation than negative regulation at low mRNA expression, but the defects could be suppressed by higher levels of mRNA expression. We discuss the implications of these observations for Hfq binding to RNA and mechanisms of action.  相似文献   

15.
The RNA chaperone Hfq is a key regulator of the function of small RNAs (sRNAs). Hfq has been shown to facilitate sRNAs binding to target mRNAs and to directly regulate translation through the action of sRNAs. Here, we present evidence that Hfq acts as the repressor of cirA mRNA translation in the absence of sRNA. Hfq binding to cirA prevents translation initiation, which correlates with cirA mRNA instability. In contrast, RyhB pairing to cirA mRNA promotes changes in RNA structure that displace Hfq, thereby allowing efficient translation as well as mRNA stabilization. Because CirA is a receptor for the antibiotic colicin Ia, in addition to acting as an Fur (Ferric Uptake Regulator)‐regulated siderophore transporter, translational activation of cirA mRNA by RyhB promotes colicin sensitivity under conditions of iron starvation. Altogether, these results indicate that Fur and RyhB modulate an unexpected feed‐forward loop mechanism related to iron physiology and colicin sensitivity.  相似文献   

16.
17.
18.
19.
20.
Numerous small RNAs regulators of gene expression exist in bacteria. A large class of them binds to the RNA chaperone Hfq and act by base pairing interactions with their target mRNA, thereby affecting their translation and/or stability. They often have multiple direct targets, some of which may be regulators themselves, and production of a single sRNA can therefore affect the expression of dozens of genes. We show in this study that the synthesis of the Escherichia coli pleiotropic PhoPQ two‐component system is repressed by MicA, a σE‐dependent sRNA regulator of porin biogenesis. MicA directly pairs with phoPQ mRNA in the translation initiation region of phoP and presumably inhibits translation by competing with ribosome binding. Consequently, MicA downregulates several members of the PhoPQ regulon. By linking PhoPQ to σE, our findings suggest that major cellular processes such as Mg2+ transport, virulence, LPS modification or resistance to antimicrobial peptides are modulated in response to envelope stress. In addition, we found that Hfq strongly affects the expression of phoP independently of MicA, raising the possibility that even more sRNAs, which remain to be identified, could regulate PhoPQ synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号