首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The availability of amino acids in the brain is regulated by the blood-brain barrier (BBB) large neutral amino acid transporter type 1 (LAT1) isoform, which is characterized by a high affinity (low Km) for substrate large neutral amino acids. The hypothesis that brain amino acid transport activity can be altered with single nucleotide polymorphisms was tested in the present studies with site-directed mutagenesis of the BBB LAT1. The rabbit has a high Km LAT1 large neutral amino acid transporter, as compared to the low Km neutral amino acid transporter at the human or rat BBB. The rabbit LAT1 was cloned from a rabbit brain capillary cDNA library. Alignment of the amino acid sequences of rabbit, human, and rat LAT1 revealed two radical amino acid residues that differ in the rabbit relative to the rat or human LAT1. The G219D mutation had a modest effect on the Km and Vmax of tryptophan transport via cloned rabbit LAT1 in frog oocytes, but the W234L variant reduced the Km by 64% and the Vmax by 96%. Conversely, LAT1 transport of either tryptophan or phenylalanine was nearly normalized when the double mutation W234L/G219D variant was produced. These studies show that marked changes in the affinity and capacity of the LAT1 are caused by single nucleotide polymorphisms and that phenotype can be restored with a double mutation.  相似文献   

2.
The specificity of the puromycin-sensitive aminopeptidase from rat brain was examined. Using L-alanyl-beta-naphthylamide as substrate Vmax of the reaction was shown to be pH independent over the range of 5.5-9.0, while Km exhibited a pKa of 7.7. This latter value corresponds to the pKa of the amino group of the substrate. Using X-Ala and X-Leu to examine the specificity of the P1 site it was found that Arg and Lys exhibit the highest affinity, followed by Met, Val, Leu, Trp, and Phe, which bind congruent to 5- to 20-fold less well. Although Km varied more than 20-fold within this series, Vmax showed considerably less variation. Significantly weaker binding was observed with a P1 Gly, Ala, Ser, or Pro with no binding detectable with a P1 Glu. The presence of a P'1 Leu compared to P'1 Ala results in an approximate 10-fold decrease in Km with little change in Vmax. The effect of varying P'1 residues was examined with the series Leu-X. In this case basic and hydrophobic amino acids, with the exception of Val, all exhibit nearly the same Km. The binding of Arg-Arg and Lys-Lys showed the same Km as obtained for Arg-Leu or Lys-Leu, respectively. When Leu-Ser-Phe was compared to Leu-Ser the P'2 residue led to a 100-fold decrease in Km and slightly less than a 5-fold increase in Vmax. In contrast the addition of a P'2 Met to Leu-Trp results in only a 3-fold decrease in Km and a 3-fold increase in Vmax. The results indicate a preference for a basic or hydrophobic residue in the P1 and P'1 sites and indicate subsite-subsite interactions which primarily affect binding.  相似文献   

3.
Arginine and methionine transport by Aspergillus nidulans mycelium was investigated. A single uptake system is responsible for the transport of arginine, lysine and ornithine. Transport is energy-dependent and specific for these basic amino acids. The Km value for arginine is 1 X 10(-5) M, and Vmax is 2-8 nmol/mg dry wt/min; Km for lysine is 8 X 10(-6) M; Kt for lysine as inhibitor of arginine uptake is 12 muM, and Ki for ornithine is mM. On minimal medium, methionine is transported with a Km of 0-I mM and Vmax about I nmol/mg dry wt/min; transport is inhibited by azide. Neutral amnio acids such as serine, phenylalanine and leucine are probably transported by the same system, as indicated by their inhibition of methionine uptake and the existence of a mutant specifically impaired in their transport. The recessive mutant nap3, unable to transport neutral amino acids, was isolated as resistant to selenomethionine and p-fluorophenylanine. This mutant has unchanged transport of methionine by general and specific sulphur-regulated permeases.  相似文献   

4.
Casein kinase I has been shown to phosphorylate Ser123 and possibly Thr124, in simian virus 40 (SV40) large T antigen; the same sites are also modified in cultured cells incubated with 32Pi [Friedrich A. Gr?sser, Karl H. Scheidtmann, Polygena T. Tuazon, Jolinda A. Traugh & Gernot Walter (1988) Virology 165, 13-22]. The peptide, A-D-S-Q-H-S-T-P-P, which corresponds to the amino acid sequence 118-125 of SV40 large T antigen, was synthesized together with peptides containing changes in specific amino acid residues on either side of Ser123. These peptides were used as model substrates to determine the amino acids in the SV40 large T antigen important for recognition by casein kinase I. The native peptide identified above, with aspartate at the -4 position, was a poor substrate for casein kinase I in vitro. Peptides with acidic residues added at the -2 and -3 positions, preceding Ser123, were phosphorylated by casein kinase I with apparent Km values around 2 mM and Vmax values up to 500 pmol.min-1.ml-1. When acidic residues were added at both sides of the phosphorylatable serine, the peptide had a first-order rate constant over 20-fold higher than peptides with acidic amino acid residues at the N-terminus only; the apparent Km value was 0.65 mM with a Vmax of 2900 pmol.min-1.ml-1. The effects of modifying Ser120 to phosphoserine were examined by addition of a recognition sequence for the cAMP-dependent protein kinase prior to Ser120. Prior phosphorylation of the peptide at Ser120 lowered the apparent Km to 0.061 mM and increased the Vmax to 360 pmol.min-1.ml-1, a 50-fold decrease in Km for casein kinase I and a 6-fold increase in Vmax as compared to the non-phosphorylated peptide. This indicates that Ser120, which has been shown to be phosphorylated in vivo, provides an appropriate recognition determinant for casein kinase I.  相似文献   

5.
Leucine uptake into membrane vesicles from larvae of the midge Chironomus riparius was studied. The membrane preparation was highly enriched in typical brush border membrane enzymes and depleted of other membrane contaminants. In the absence of cations, there was a stereospecific uptake of l-leucine, which exhibited saturation kinetics. Parameters were determined both at neutral (Km 33 +/- 5 microM and Vmax 22.6 +/- 6.8 pmol/7s/mg protein) and alkaline (Km 46 +/- 5 microM and Vmax 15.5 +/- 2.5 pmol/7s/mg protein) pH values. At alkaline pH, external sodium increased the affinity for leucine (Km 17 +/- 1 microM) and the maximal uptake rate (Vmax 74.0 +/- 12.5 pmol/7s/mg protein). Stimulation of leucine uptake by external alkaline pH agreed with lumen pH measurements in vivo. Competition experiments indicated that at alkaline pH, the transport system readily accepts most L-amino acids, including branched, unbranched, and alpha-methylated amino acids, histidine and lysine, but has a low affinity for phenylalanine, beta-amino acids, and N-methylated amino acids. At neutral pH, the transport has a decreased affinity for lysine, glycine, and alpha-methylleucine. Taken together, these data are consistent with the presence in midges of two distinct leucine transport systems, which combine characters of the lepidopteran amino acid transport system and of the sodium-dependent system from lower neopterans.  相似文献   

6.
Inorganic phosphate, amino acids and sugars are of obvious importance in lung metabolism. We investigated sodium-coupled transports with these organic and inorganic substrates in type II alveolar epithelial cells from adult rat after one day in culture. Alveolar type II cells actively transported inorganic phosphate and alanine, a neutral amino acid, by sodium-dependent processes. Cellular uptakes of phosphate and alanine were decreased by about 80% by external sodium substitution, inhibited by ouabain (30 and 41%, respectively) and displayed saturable kinetics. Two sodium-phosphate cotransport systems were characterized: a high-affinity one (apparent Km = 18 microM) with a Vmax of 13.5 nmol/mg protein per 10 min and a low-affinity one (apparent Km = 126 microM) with a Vmax of 22.5 nmol/mg protein per 10 min. Alanine transport had an apparent Km of 87.9 microM and a Vmax of 43.5 nmol/mg protein per 10 min. By contrast, cultured alveolar type II cells did not express sodium-dependent hexose transport. Increasing time in culture decreased Vmax values of the two phosphate transport systems on day 4 while sodium-dependent alanine uptake was unchanged. This study demonstrated the existence of sodium-dependent phosphate and amino acid transports in alveolar type II cells similar to those documented in other epithelial cell types. These sodium-coupled transports provide a potent mechanism for phosphate and amino acid absorption and are likely to play a role in substrate availability for cellular metabolism and in regulating the composition of the alveolar subphase. The decrease in phosphate uptake with time in culture is parallel to decrease in surfactant synthesis reported in cultured alveolar type II cells, suggesting that phosphate availability for surfactant synthesis may be accomplished by a sodium-dependent phosphate uptake.  相似文献   

7.
Affinity constant (Km) of D-glucose, L-alanine, L-aspartate, L-lysine, L-proline and nutrients coupled Na+ were determined in renal brush border membrane vesicles prepared from control and pyelonephritic rats. The Km of D-glucose, amino acids and nutrients coupled Na+ was noted to be significantly increased (p less than 0.001) in experimental animals. The Vmax of D-glucose and amino acids was determined at different concentrations of nutrients keeping extravesicular Na+ constant or at different concentrations of extravesicular Na+ keeping nutrient concentration constant. In the experimental rats the Vmax decreased significantly (p less than 0.01) when compared to control. The increased Km and decreased Vmax may be one of the underlying mechanism leading to decrease in the uptake of D-glucose and amino acids.  相似文献   

8.
Modulation of gamma-glutamyl transpeptidase activity by bile acids   总被引:1,自引:0,他引:1  
The free bile acids (cholate, chenodeoxycholate, and deoxycholate) stimulate the hydrolysis and transpeptidation reactions catalyzed by gamma-glutamyl transpeptidase, while their glycine and taurine conjugates inhibit both reactions. Kinetic studies using D-gamma-glutamyl-p-nitroanilide as gamma-glutamyl donor indicate that the free bile acids decrease the Km for hydrolysis and increase the Vmax; transpeptidation is similarly activated. The conjugated bile acids increase the Km and Vmax of hydrolysis and decrease both of these for transpeptidation. This mixed type of modulation has also been shown to occur with hippurate and maleate (Thompson, G.A., and Meister, A. (1980) J. Biol. Chem. 255, 2109-2113). Glycine conjugates are substantially stronger inhibitors than the taurine conjugates. The results with free cholate indicate the presence of an activator binding domain on the enzyme with minimal overlap on the substrate binding sites. In contrast, the conjugated bile acids, like maleate and hippurate, may overlap on the substrate binding sites. The results suggest a potential feedback role for bile ductule gamma-glutamyl transpeptidase, in which free bile acids activate the enzyme to catabolize biliary glutathione and thus increase the pool of amino acid precursors required for conjugation (glycine directly and taurine through cysteine oxidation). Conjugated bile acids would have the reverse effect by inhibiting ductule gamma-glutamyl transpeptidase.  相似文献   

9.
The detailed pH and temperature kinetics of human term placenta cysteinyl-tRNA synthetase (EC 6.1.1.16) were studied. The ATP-PPi exchange reaction catalyzed by the cysteinyl-tRNA synthetase was highly dependent on temperature, pH, and ionic strength. The Arrhenius plot at temperatures between 5 degrees and 40 degrees was linear, giving an activation energy of 19 +/- 2.5 Kcal/mol. The pH dependence of the kinetic parameters Km and Vmax was investigated. Apparent pKa value of 6.4 was observed in the pH-dependence of Vmax/Km plot. The pH versus Vmax plot showed two apparent pKa values of about 5.8 and 7.8. Van't Hoff's enthalpies were used to differentiate the nature of the possible groups responsible for the ionization. These results are valuable for the selection of chemical modifying reagents in characterizing the amino acid residues involved in substrate (nucleotide) binding or catalysis.  相似文献   

10.
Characterization of three aminopeptidases purified from maternal serum   总被引:3,自引:0,他引:3  
The biochemical characteristics of aminopeptidase A (EC 3.4.11.7), oxytocinase (EC 3.4.11.3) and alanyl aminopeptidase (EC 3.4.11.2) purified from serum of pregnant women were compared. Aminopeptidase A hydrolysed only acidic amino acid derivatives, whereas oxytocinase and alanyl aminopeptidase had partially overlapping broad substrate specificities. Oxytocinase showed the highest Vmax value with LeuNA but the lowest Km value with ArgNA (Km 0.059 +/- 0.08 mmol/l). Alanyl aminopeptidase hydrolysed AlaNA most rapidly, but showed the highest affinity for LysNA (Km 0.054 +/- 0.006 mmol/l). The enzymes were sensitive to EDTA. Co2+, Ni2+ and Zn2+ were able to reactivate all suppressed enzymes, but Mn2+ reactivated only aminopeptidase A after EDTA inhibition. The alkaline earth metals were activators of aminopeptidase A, while Co2+ activated only alanyl aminopeptidase. This enzyme was the most sensitive to L-amino acids. Acidic amino acids inhibited aminopeptidase A but had no effect on the two other enzymes. Oxytocinase was most sensitive to thermal treatment. Amastatin did not inhibit oxytocinase, whereas aminopeptidase A was more resistant than alanyl aminopeptidase to this effector.  相似文献   

11.
Residue-209 plays a critical role in determining the substrate and product specificity of cytochrome P450coh. In order to investigate further the structural function of residue-209 in coumarin 7-hydroxylase reaction, we measured the enzyme-kinetic properties of wild-type P450coh and its mutants in which residue-209 was substituted with various amino acids. In general, the Km and Vmax values for coumarin increased as the size of residue-209 became smaller and Vmax values decreased. The size of residue-209, therefore, was a principle factor determining Km, Kd, and Vmax values of P450coh. Although the polarity and charge also increased the Km value consistently, they altered Vmax and Kd values in an irregular manner. The substitution of serine for residue-209 increased the Vmax, while the substitution of lysine decreased it. Coumarin 7-hydroxylase activity was inhibited weakly by indan, but competitively and strongly by 2-coumaranone. Moreover, Ki values for the inhibitor were similar to Km values of the corresponding, mutated P450s. The results indicate, therefore, that residue-209 is localized in a proposed substrate-binding sequence 1 which binds to the 2-keto group of coumarin and directs its 7-position toward the sixth ligand of heme. Consequently, the identity of residue-209 determines not only the binding of coumarin in P450coh, but also the other reaction step(s) of coumarin 7-hydroxylation.  相似文献   

12.
Unidirectional L-phenylalanine transport into six brain regions of pentobarbital-anesthetized rats was studied using the in situ brain perfusion technique. This technique allows both accurate measurements of cerebrovascular amino acid transport and complete control of perfusate amino acid composition. L-Phenylalanine influx into the brain was sodium independent and could be described by a model with a saturable and a nonsaturable component. Best-fit values for the kinetic constants in the parietal cortex equaled 6.9 X 10(-4) mumol/s/g for Vmax, 0.011 mumol/ml for Km, and 1.8 X 10(-4) ml/s/g for KD during perfusion with fluid that did not contain competing amino acids. D-Phenylalanine competitively inhibited L-phenylalanine transport with a Ki approximately 10-fold greater than the Km for L-phenylalanine. There were no significant regional differences in Km, KD, or Ki, whereas Vmax was significantly greater in the cortical lobes than in the other brain regions. L-Phenylalanine influx during plasma perfusion was only 30% of that predicted in the absence of competing amino acids. Competitive inhibition increased the apparent Km during plasma perfusion by approximately 20-fold, to 0.21 mumol/ml. These data provide accurate new estimates of the kinetic constants that describe L-phenylalanine transport across the blood-brain barrier. In addition, they indicate that the cerebrovascular transfer site affinity (1/Km) for L-phenylalanine is three- to 12-fold greater than previously estimated in either awake or anesthetized animals.  相似文献   

13.
The kinetic constants were examined for the cleavage of several types of procollagen by type I/II procollagen N-proteinase. The Km values were essentially the same (0.2 microM) for chick type I procollagen, human type I procollagen, and chick type II procollagen. However, the Vmax values differed over a 14-fold range. As reported previously, the enzyme did not cleave denatured type I or II procollagen. Also, it did not cleave human type III procollagen which contains the same scissle -Pro-Gln- bond as the pro-alpha 1(I) chain of type I procollagen. To explain the observations, Chou-Fasman rules were used to compare the secondary structures of the cleavage sites in the procollagens. The results supported a previous suggestion (Helseth, D. L., Jr., Lechner, J. L., and Veis, A. (1979) Biopolymers 18, 3005-3014) that the region carboxyl-terminal to cleavage site in the pro-alpha 1(I) chain of type I procollagen was in a hairpin conformation consisting of a beta-sheet, beta-turn, and beta-sheet. In both chick and human type I procollagen, the hairpin loop in the pro-alpha 1(I) chain consisted of about 18 amino acids. The cleavage site itself was in a short alpha-helical structure of four or five amino acids. The pro-alpha 2(I) chains had a similar hairpin loop of about 14 amino acids and alpha-helix of four or five amino acids containing the cleavage site. Chick type II procollagen, which had the highest Vmax value, had a longer hairpin structure of 22 amino acids, and the cleavage site was in a longer alpha-helical domain of 10 amino acids. In contrast, type III procollagen had a random-coil conformation in the same region. The results help to explain the unusual substrate requirements of type I/II N-proteinase. They also help explain why mutations that produce in-frame deletions of amino acids 84 or more residues carboxyl-terminal to the cleavage site make the protein resistant to the enzyme.  相似文献   

14.
An aryl aldehyde oxidoreductase from Nocardia sp. strain NRRL 5646 was purified 196-fold by a combination of Mono-Q, Reactive Green 19 agarose affinity, and hydroxyapatite chromatographies. The purified enzyme runs as a single band of 140 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular mass was estimated to be 163 +/- 3.8 kDa by gel filtration, indicating that this enzyme is a monomeric protein. The binding of the enzyme to Reactive Green 19 agarose was Mg2+ dependent. The binding capacity was estimated to be about 0.2 mg of Reactive Green agarose per ml in the presence of 10 mM MgCl2. This enzyme can catalyze the reduction of a wide range of aryl carboxylic acids, including substituted benzoic acids, phenyl-substituted aliphatic acids, heterocyclic carboxylic acids, and polyaromatic ring carboxylic acids, to produce the corresponding aldehydes. The Km values for benzoate, ATP, and NADPH were determined to be 645 +/- 75, 29.3 +/- 3.1, and 57.3 +/- 12.5 microM, respectively. The Vmax was determined to be 0.902 +/- 0.04 micromol/min/mg of protein. Km values for (S)-(+)-alpha-methyl-4-(2-methylpropyl)-benzeneacetic acid (ibuprofen) and its (R)-(-) isomer were determined to be 155 +/- 18 and 34.5 +/- 2.5 microM, respectively. The Vmax for the (S)-(+) and (R)-(-) isomers were 1.33 and 0.15 micromol/min/mg of protein, respectively. Anthranilic acid is a competitive inhibitor with benzoic acid as a substrate, with a Ki of 261 +/- 30 microM. The N-terminal and internal amino acid sequences of a 76-kDa peptide from limited alpha-chymotrypsin digestion were determined.  相似文献   

15.
Arginine-vasopressin (AVP), injected into the carotid artery in physiological concentration together with L-leucine, changed kinetic constants of the blood-brain barrier (BBB) transport of this neutral amino acid without changing the cerebral blood flow (CBF). The maximum velocity of transport (Vmax), the half-saturation constant (Km), the nonsaturable transport constant (KD), and CBF were estimated in nine brain regions of male Wistar rats anesthetized with ether. In cerebral hemisphere, Vmax decreased from 21 nmol . min-1 . g-1 (control) to 7.6 nmol . min-1 . g-1 (AVP). Km decreased from 0.11 to 0.029 mM. Regional differences of the kinetic constants were found in controls as well as in AVP-treated animals. In all regions, the calculated constants Vmax and Km of animals coinjected with AVP were significantly decreased when compared to controls. A direct or indirect interaction of AVP with the transport system of large neutral amino acids is suggested.  相似文献   

16.
An enzyme catalyzing hydrolysis of beta-1,4 bonds in cellulose acetate was purified 18.3-fold to electrophoretic homogeneity from a culture supernatant of Neisseria sicca SB, which can assimilate cellulose acetate as the sole carbon and energy source. The molecular mass of the enzyme was 41 kDa and the isoelectric point was 4.8. The pH and temperature optima of the enzyme were 6.0-7.0 and 60 degrees C. The enzyme catalyzed hydrolysis of water-soluble cellulose acetate (degree of substitution, 0.88) and carboxymethyl cellulose. The Km and Vmax for water-soluble cellulose acetate and carboxymethyl cellulose were 0.242% and 2.24 micromol/min/mg, and 2.28% and 12.8 micromol/min/mg, respectively. It is estimated that the enzyme is a kind of endo-1,4-beta-glucanase (EC 3.2.1.4) from the substrate specificity and hydrolysis products of cellooligosaccharides. The enzyme and cellulose acetate esterase from Neisseria sicca SB degraded water-insoluble cellulose acetate by synergistic action.  相似文献   

17.
In human placenta, 3 beta-hydroxy-5-ene-steroid dehydrogenase and steroid 5----4-ene-isomerase, an enzyme complex found in microsomes and mitochondria, synthesizes progesterone from pregnenolone and androstenedione from fetal dehydroepiandrosterone sulfate. The dehydrogenase and isomerase activities of the mitochondrial enzyme were copurified (733-fold) using sequential cholate solubilization, ion exchange chromatography (DEAE-Toyopearl 650S), and hydroxylapatite chromatography (Bio-Gel HT). Enzyme homogeneity was demonstrated by a single protein band in SDS-polyacrylamide gel electrophoresis (monomeric Mr = 41,000), gel filtration at constant specific enzyme activity (Mr = 77,000), and a single NH2-terminal sequence. Kinetic constants were determined for the oxidation of pregnenolone (Km = 1.6 microM, Vmax = 48.6 nmol/min/mg) and dehydroepiandrosterone (Km = 2.4 microM, Vmax = 48.5 nmol/min/mg) and for the isomerization of 5-pregnene-3,20-dione (Km = 9.3 microM, Vmax = 914.2 nmol/min/mg) and 5-androstene-3,17-dione (Km = 27.6 microM, Vmax = 888.4 nmol/min/mg. Mixed substrate studies showed that the dehydrogenase and isomerase activities utilize their respective pregnene and androstene substrates competitively. Dixon analysis demonstrated that the product steroids, progesterone and androstenedione, are competitive inhibitors of the C-21 and C-19 dehydrogenase activities. Enzyme purified from mitochondria and microsomes had similar kinetic profiles with respect to substrate utilization, product inhibition, and cofactor (NAD+) reduction (mean Km +/- SD using C-19 and C-21 dehydrogenase substrates = 26.4 +/- 0.8 microM, mean Vmax = 73.2 +/- 1.3 nmol/min/mg). Pure enzyme from both organelles exhibited identical biophysical properties in terms of molecular weight and subunit composition, pH optima (pH 9.8, dehydrogenase; pH 7.5, isomerase), temperature optimum (37 degrees C), stability in storage and solution, effects of divalent cations, and the single NH2-terminal sequence of 27 amino acids. These results suggest that the mitochondrial and microsomal enzymes are the same protein localized in different organelles.  相似文献   

18.
The specificities of cAMP-dependent and cGMP-dependent protein kinases were studied using synthetic peptides corresponding to the phosphorylation site in 6-phosphofructo-2-kinase/Fru-2,6-P2ase (Murray, K.J., El-Maghrabi, M.R., Kountz, P.D., Lukas, T.J., Soderling, T.R., and Pilkis, S.J. (1984) J. Biol. Chem. 259, 7673-7681) as substrates. The peptide Val-Leu-Gln-Arg-Arg-Arg-Gly-Ser-Ser-Ile-Pro-Gln was phosphorylated by the catalytic subunit of cAMP-dependent protein kinase on predominantly the first of its 2 seryl residues. The Km (4 microM) and Vmax (14 mumol/min/mg) values were comparable to those for the phosphorylation of this site within native 6-phosphofructo-2-kinase/Fru-2,6-P2ase. An analog peptide containing only two arginines was phosphorylated with poorer kinetic constants than was the parent peptide. These results suggest that the amino acid sequence at its site of phosphorylation is a major determinant that makes 6-phosphofructo-2-kinase/Fru-2,6-P2ase an excellent substrate for cAMP-dependent protein kinase. Although 6-phosphofructo-2-kinase/Fru-2,6-P2ase was not phosphorylated by cGMP-dependent protein kinase, the synthetic peptide corresponding to the cAMP-dependent phosphorylation site was a relatively good substrate (Km = 33 microM, Vmax = 1 mumol/min/mg). Thus, structures other than the primary sequence at the phosphorylation site must be responsible for the inability of cGMP-dependent protein kinase to phosphorylate native 6-phosphofructo-2-kinase/Fru-2,6-P2ase. Peptides containing either a -Ser-Ser- or -Thr-Ser- moiety were all phosphorylated by cGMP-dependent kinase to 1.0 mol of phosphate/mol of peptide, but the phosphate was distributed between the two hydroxyamino acids. Substitution of a proline in place of the glycine between the three arginines and these phosphorylatable amino acids caused the protein kinase selectively to phosphorylate the threonyl or first seryl residue and also enhanced the Vmax values by 4-6-fold. These results are consistent with a role for proline in allowing an adjacent threonyl residue to be readily phosphorylated by cGMP-dependent protein kinase.  相似文献   

19.
Amino acid transport in horse erythrocytes is regulated by three co-dominant allelomorphic genes coding for high-affinity transport activity (system asc1), low-affinity transport activity (system asc2) and transport-deficiency, respectively. The asc systems are selective for neutral amino acids of intermediate size, but unlike conventional system ASC, do not require Na+ for activity. In the present series of experiments we have used a combined kinetic and genetic approach to establish that dibasic amino acids are also asc substrates, systems asc1 and asc2 representing the only mediated routes of cationic amino acid transport in horse erythrocytes. Both transporters were found to exhibit a strong preference for dibasic amino acids compared with neutral amino acids of similar size. Apparent Km values (mM) for influx via system asc1 were L-lysine (9), L-ornithine (27), L-arginine (27), L-alanine (0.35). Corresponding Vmax estimates (mmol/l cells per h, 37 degrees C) were L-lysine (1.65), L-ornithine (2.15), L-arginine (0.54), L-alanine (1.69). Apparent Km values for L-lysine and L-ornithine influx via system asc2 were approximately 90 and greater than 100 mM, respectively, with Vmax values greater than 2 and greater than 1 mmol/l cells per h, respectively. Apparent Km and Vmax values for L-alanine uptake by system asc2 were 14 mM and 6.90 mmol/l cells per h. In contrast, L-arginine was transported by system asc2 with the same apparent Km as L-alanine (14 mM), but with a 77-fold lower Vmax. This dibasic amino acid was shown to cause cis- and trans-inhibition of system asc2 in a manner analogous to its interaction with system ASC, where the side-chain guanidinium group is considered to occupy the Na+-binding site on the transporter. Concentrations of extracellular L-arginine causing 50% inhibition of zero-trans L-alanine influx and half-maximum inhibition of L-alanine zero-trans efflux were 14 mM (extracellular L-alanine concentration 15 mM) and 3 mM (intracellular L-alanine concentration 15.5 mM), respectively. We interpret these observations as evidence of structural homology between the horse erythrocyte asc transporters and system ASC. Physiologically, intracellular L-arginine may function as an endogenous inhibitor of system asc2 activity.  相似文献   

20.
Uptake of methylamine and methanol by Pseudomonas sp. strain AM1.   总被引:2,自引:0,他引:2       下载免费PDF全文
The uptake of methylamine and of methanol by the facultative methylotroph Pseudomonas sp. strain AM1 was investigated. It was found that this organism possesses two uptake systems for methylamine. One of these operates when methylamine is the sole source of carbon, nitrogen, and energy. It has a Km of 1.33 X 10(-4) M and a Vmax of 67 nmol/min per mg of cells (dry weight). The other system, found when methylamine is the sole nitrogen source only, has a Km of 1.2 X 10(-5) M and a Vmax of 8.9 nmol/min per mg of cells (dry weight). Both uptake systems were severely inhibited by azide, cyanide, carbonyl cyanide-m-chlorophenyl hydrazone, and N-ethylmaleimide, but only the high-affinity system was inhibited by ammonium ions with a Ki of 7.7 mM. Both systems were susceptible to osmotic shock treatment, competitively inhibited by ethylamine, and unaffected by most amino acids. Methanol uptake showed a Km of 4.8 microM and a Vmax of 60.6 nmol/min per mg of cells (dry weight) and was not inhibited by osmotic shock treatment. Azide, cyanide, and N-ethylmaleimide curtailed uptake, but carbonyl cyanide-m-chlorophenyl hydrazone merely reduced the rate of uptake. A methanol dehydrogenase mutant, M15A, was unable to take up methanol. It is proposed that methanol diffuses into the cell where it is rapidly oxidized by methanol dehydrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号