首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycosyl composition and linkage analysis of cell wall polysaccharides were examined in apical root zones excised from water-stressed and unstressed wheat seedlings (Triticum durum Desf.) cv. Capeiti ("drought-tolerant") and cv. Creso ("drought sensitive"). Wall polysaccharides were sequentially solubilized to obtain three fractions: CDTA+Na(2)CO(3) extract, KOH extract and the insoluble residue (alpha-cellulose). A comparison between the two genotypes showed only small variations in the percentages of matrix polysaccharides (CDTA+Na(2)CO(3) plus KOH extract) and of the insoluble residues (alpha-cellulose) in water-stressed and unstressed conditions. Xylosyl, glucosyl and arabinosyl residues represented more than 90mol% of the matrix polysaccharides. The linkage analysis of matrix polysaccharides showed high levels of xyloglucans (23-39mol%), and arabinoxylans (38-48mol%) and a low amount of pectins and (1-->3), (1-->4)-beta-d-glucans. The high level of xyloglucans was supported by the release of the diagnostic disaccharide isoprimeverose after Driselase digestion of KOH-extracted polysaccharides. In the "drought-tolerant" cv. Capeiti the mol% of side chains of rhamnogalacturonan I and II significantly increased in response to water stress, whereas in cv. Creso, this increase did not occur. The results support a role of the pectic side chains during water stress response in a drought-tolerant wheat cultivar.  相似文献   

2.
Cell walls of suspension-cultured cells of Rosa glauca were fractionated by two different extraction procedures. The first involved a stepwise fractionation scheme based on alkaline extraction. The second took advantage of the powerful cellulose solvent system N-methylmorpholine N-oxide/dimethyl sulfoxide which is capable of solubilizing whole cell walls. From the analytical composition of each solubilized fraction and of the corresponding residues, the fate of each type of cell wall polysaccharide constituent was followed at each step of the extraction scheme and the mode of action of the extractant was interpreted. Although the two fractionation procedures were very different, they yielded very similar cellulosic complex residues and extracts, thus delimiting two blocks of polysaccharides in the cell wall. The cellulose residues still comprised uronic acid-containing polysaccharides and hemicelluloses in association with cellulose. Graded acid hydrolysis provided evidence for the central role of a homogalacturonan core interconnecting xyloglucans and arabinogalactans. A tentative model showing the possible interaction existing between the constituent polysaccharides still associated to cellulose after alkaline extraction is presented. Hydrogen bonding between xyloglucan and cellulose is confirmed, and glycosidic linkages between xyloglucans and pectic polymers are suggested.  相似文献   

3.
A tandem repeat of the family VI cellulose binding domain (CBD) from Clostridium stercorarium xylanase (XylA) was fused at the carboxyl-terminus of Bacillus halodurans xylanase (XylA). B. halodurans XylA is an enzyme which is active in the alkaline region of pH and lacks a CBD. The constructed chimera was expressed in Escherichia coli, purified to homogeneity, and then subjected to detailed characterization. The chimeric enzyme displayed pH activity and stability profiles similar to those of the parental enzyme. The optimal temperature of the chimera was observed at 60 °C and the enzyme was stable up to 50 °C. Binding studies with insoluble polysaccharides indicated that the chimera had acquired an increased affinity for oat spelt xylan and acid-swollen cellulose. The bound chimeric enzyme was desorbed from insoluble substrates with sugars and soluble polysaccharides, indicating that the CBDs also possess an affinity for soluble sugars. Overall, the chimera displayed a higher level of hydrolytic activity toward insoluble oat spelt xylan than its parental enzyme and a similar level of activity toward soluble xylan.  相似文献   

4.
Pectic polysaccharides were extracted from sugar beet pulp to yield fractions representing homogalacturonans, rhamnogalacturonans, arabinans and relatively small amounts of glucomannans and xyloglucans. The homogalacturonans had an apparent molecular weight of 21 kDa and contained relatively high amounts of methyl esters and relatively low amounts of acetyl groups as compared with the ramified 'hairy' regions. Three populations which originated from the ramified 'hairy' regions of pectin were distinguished. Two of these were rhamnogalacturonans with high apparent molecular weights of 1300 and 120 kDa, respectively. These populations had a high Ara and ferulic acid content. Despite the high neutral sugar content, these rhamnogalacturonans strongly bound to a DEAE column. The third population which originated from the ramified 'hairy' regions was a neutral population, which did not interact with the DEAE column and had a low apparent molecular weight and a high Ara and ferulic acid content. The arabinan side-chains of the rhamnogalacturonans were heavily branched in all populations. Enzymatic degradation of the xyloglucans showed similarities with apple xyloglucans with respect to the substitution with Fuc and Gal.  相似文献   

5.
Cell wall storage polysaccharides from Brazilian legume seeds of Dimorphandra mollis, Schizolobium parahybum (galactomannans), Copaifera langsdorffii, Hymenaea courbaril (xyloglucans) and the galactan from cotyledons of the Mediterranean species Lupinus angustifolius were extracted and their apparent molecular masses were determined by high-performance size exclusion chromatography analysis. They were, to a large degree, polydisperse, showing molecular masses that varied from 100 000 to 2 000 000. Polyethylene glycol (PEG, 1500, 4000, 6000 and 8000), sodium citrate and dextran (73 000, 60 000–90 000, 505 000 and 2 000 000) were used for investigating phase formation with the seed polysaccharides. Galactomannans and xyloglucans demonstrated phase formation with sodium citrate concentrations lower than 30%, as well as dextrans and polyethylene glycol, and formed gels in the presence of high concentrations of sodium citrate (above 30%). Galactan did not promote phase formation with any of the reagents used. On the basis of the results obtained, the possibility of using legume seed polysaccharides for the partitioning and purification of polysaccharide enzymes in aqueous two-phase systems is suggested.  相似文献   

6.
The C-terminal family 9 carbohydrate-binding module of xylanase 10A from Thermotoga maritima (CBM9-2) binds to amorphous cellulose, crystalline cellulose, and the insoluble fraction of oat spelt xylan. The association constants (K(a)) for adsorption to insoluble polysaccharides are 1 x 10(5) to 3 x 10(5) M(-1). Of the soluble polysaccharides tested, CBM9-2 binds to barley beta-glucan, xyloglucan, and xylan. CBM9-2 binds specifically to the reducing ends of cellulose and soluble polysaccharides, a property that is currently unique to this CBM. CBM9-2 also binds glucose, xylose, galactose, arabinose, cellooligosaccharides, xylooligosaccharides, maltose, and lactose, with affinities ranging from 10(3) M(-1) for monosaccharides to 10(6) M(-1) for disaccharides and oligosaccharides. Cellooligosaccharides longer than two glucose units do not bind with improved affinity, indicating that cellobiose is sufficient to occupy the entire binding site. In general, the binding reaction is dominated by favorable changes in enthalpy, which are partially compensated by unfavorable entropy changes.  相似文献   

7.
Molecular interactions between wall polysaccharides, which include cellulose and a range of noncellulosic polysaccharides such as xyloglucans and (1,3;1,4)-beta-D-glucans, are fundamental to cell wall properties. These interactions have been assumed to be noncovalent in nature in most cases. Here we show that a highly purified barley xyloglucan xyloglucosyl transferase HvXET5 (EC 2.4.1.207), a member of the GH16 group of glycoside hydrolases, catalyzes the in vitro formation of covalent linkages between xyloglucans and cellulosic substrates and between xyloglucans and (1,3;1,4)-beta-D-glucans. The rate of covalent bond formation catalyzed by HvXET5 with hydroxyethylcellulose (HEC) is comparable with that on tamarind xyloglucan, whereas that with (1,3; 1,4)-beta-D-glucan is significant but slower. Matrix-assisted laser desorption ionization time-of-flight mass spectrometric analyses showed that oligosaccharides released from the fluorescent HEC:xyloglucan conjugate by a specific (1,4)-beta-D-glucan endohydrolase consisted of xyloglucan substrate with one, two, or three glucosyl residues attached. Ancillary peaks contained hydroxyethyl substituents (m/z 45) and confirmed that the parent material consisted of HEC covalently linked with xyloglucan. Similarly, partial hydrolysis of the (1,3;1,4)-beta-D-glucan:xyloglucan conjugate by a specific (1,3;1,4)-beta-D-glucan endohydrolase revealed the presence of a series of fluorescent oligosaccharides that consisted of the fluorescent xyloglucan acceptor substrate linked covalently with 2-6 glucosyl residues. These findings raise the possibility that xyloglucan endo-transglucosylases could link different polysaccharides in vivo and hence influence cell wall strength, flexibility, and porosity.  相似文献   

8.
The Clostridium stercorarium xylanase Xyn10B is a modular enzyme comprising two thermostabilizing domains, a family 10 catalytic domain of glycosyl hydrolases, a family 9 carbohydrate-binding module (CBM), and two S-layer homologous (SLH) domains [Biosci. Biotechnol. Biochem., 63, 1596-1604 (1999)]. To investigate the role of this CBM, we constructed two derivatives of Xyn10B and compared their hydrolytic activity toward xylan and some preparations of plant cell walls; Xyn10BdeltaCBM consists of a catalytic domain only, and Xyn10B-CBM comprises a catalytic domain and a CBM. Xyn10B-CBM bound to various insoluble polysaccharides including Avicel, acid-swollen cellulose, ball-milled chitin, Sephadex G-25, and amylose-resin. A cellulose binding assay in the presence of soluble saccharides suggested that the CBM of Xyn10B had an affinity for even monosaccharides such as glucose, galactose, xylose, mannose and ribose. Removal of the CBM from the enzyme negated its cellulose- and xylan-binding abilities and severely reduced its enzyme activity toward insoluble xylan and plant cell walls but not soluble xylan. These findings clearly indicated that the CBM of Xyn10B is important in the hydrolysis of insoluble xylan. This is the first report of a family 9 CBM with an affinity for insoluble xylan in addition to crystalline cellulose and the ability to increase hydrolytic activity toward insoluble xylan.  相似文献   

9.
Glycoside hydrolases often contain multiple copies of noncatalytic carbohydrate binding modules (CBMs) from the same or different families. Currently, the functional importance of this complex molecular architecture is unclear. To investigate the role of multiple CBMs in plant cell wall hydrolases, we have determined the polysaccharide binding properties of wild type and various derivatives of Cellulomonas fimi xylanase 11A (Cf Xyn11A). This protein, which binds to both cellulose and xylan, contains two family 2b CBMs that exhibit 70% sequence identity, one internal (CBM2b-1), which has previously been shown to bind specifically to xylan and the other at the C-terminus (CBM2b-2). Biochemical characterization of CBM2b-2 showed that the module bound to insoluble and soluble oat spelt xylan and xylohexaose with K(a) values of 5.6 x 10(4), 1.2 x 10(4), and 4.8 x 10(3) M(-1), respectively, but exhibited extremely weak affinity for cellohexaose (<10(2) M(-1)), and its interaction with insoluble cellulose was too weak to quantify. The CBM did not interact with soluble forms of other plant cell wall polysaccharides. The three-dimensional structure of CBM2b-2 was determined by NMR spectroscopy. The module has a twisted "beta-sandwich" architecture, and the two surface exposed tryptophans, Trp 570 and Trp 602, which are in a perpendicular orientation with each other, were shown to be essential for ligand binding. In addition, changing Arg 573 to glycine altered the polysaccharide binding specificity of the module from xylan to cellulose. These data demonstrate that the biochemical properties and tertiary structure of CBM2b-2 and CBM2b-1 are extremely similar. When CBM2b-1 and CBM2b-2 were incorporated into a single polypeptide chain, either in the full-length enzyme or an artificial construct comprising both CBM2bs covalently joined via a flexible linker, there was an approximate 18-20-fold increase in the affinity of the protein for soluble and insoluble xylan, as compared to the individual modules, and a measurable interaction with insoluble acid-swollen cellulose, although the K(a) (approximately 6.0 x 10(4) M(-1)) was still much lower than for insoluble xylan (K(a) = approximately 1.0 x 10(6) M(-1)). These data demonstrate that the two family 2b CBMs of Cf Xyn11A act in synergy to bind acid swollen cellulose and xylan. We propose that the increased affinity of glycoside hydrolases for polysaccharides, through the synergistic interactions of CBMs, provides an explanation for the duplication of CBMs from the same family in some prokaryotic cellulases and xylanases.  相似文献   

10.
Experiments carried out to study changes induced by hard-to-cook (HTC) phenomenon in the non-starch polysaccharides of beans stored at 30 °C and 75% RH for 8 months showed that the development of HTC did not affect the amounts of soluble and insoluble fibre in cooked seeds but changed their carbohydrates physical properties. Aged beans non-starch polysaccharides presented lower water-solubility and underwent lower degradation of galacturonans and arabinose-rich polysaccharides when submitted to cooking. The decrease in non-starch polysaccharides water-solubility produced a shift in the polymers fractionation profile which resulted in an increase of weak and middle-alkali soluble polymers bulk as well as in their arabinose and uronic acid contents. Uronic acid contents were higher in polymers released by 1 M NaOH and in the cellulose-rich residues while the arabinose contents were higher in the mild-alkali soluble polymers of aged seeds. Methylation analysis showed no evident alterations in the xyloglucans and arabinans branching degree with beans ageing. However, both, the molecular mass of water-soluble pectins and CDTA-soluble pectins, increased. Even though changes in the non-starch polysaccharide solubility were not related to the decrease in the arabinan and xyloglucan degree of branching they may be related to the formation of new chemical interactions other than hydrogen bond. There was a correlation between acidic and neutral polysaccharides insolubilisation in beans ageing and probably in beans hardening. After processing, aged seeds present higher amounts of insoluble fibre when compared to normal beans.  相似文献   

11.
Two endoglucanases of Trichoderma viride, endoI and endoIV, were assayed for their activity toward alkali-extracted apple xyloglucans. EndoIV was shown to have a 60-fold higher activity toward xyloglucan than endoI, whereas carboxymethyl cellulose and crystalline cellulose were better substrates for the latter. The enzymic degradation of cellulose embedded in the complex cell-wall matrix of apple fruit tissue has been studied using cellobiohydrolase (CBH) and these two different endoglucanases. A high-performance liquid chromatographic method (Aminex HPX-22H) was used to monitor the release of cellobiose and oligomeric xyloglucan fragments. Synergistic action between CBH and endoglucanases on cell-wall-embedded cellulose was, with respect to their optimal ratio, slightly different from that reported for crystalline cellulose. The combination of endoIV and CBH solubilized twice as much cellobiose compared to a combination of endoI and CBH. Apparently, the concomitant removal of the xyloglucan coating from cellulose microfibrils by endoIV is essential for an efficient degradation of cellulose in a complex matrix. Cellulose degradation slightly enhanced the solubilization of xyloglucans. These results indicate optimal degradation of cell-wall-embedded cellulose by a three-enzyme system consisting of an endoglucanase with high affinity toward cellulose (endoI), a xyloglucanase (endoIV), and CBH.  相似文献   

12.
The cell walls of styles of Nicotiana alata Link et Otto (ornamental tobacco; Solanaceae) were analysed chemically and examined histochemically. Cell-wall preparations were obtained from whole styles and from isolated transmitting-tissue cells. The style epidermal cells were shown histochemically to have thick, lignified secondary walls. These walls probably constituted a large proportion of the cell-wall preparation from whole styles as analysis of whole-style walls indicated that the major polysaccharides were xylans and cellulose, which are typical of lignified secondary walls of Magnoliopsida (dicotyledons). Lignification of the style epidermal walls was also demonstrated histochemically in 10 other species (5 genera including Nicotiana) of the sub-family Cestroideae of the Solanaceae, but not in 15 species (9 genera) of the sub-family Solanoideae of the Solanaceae, nor in 3 other species of dicotyledons and 2 species of Liliopsida (monocotyledons). Analysis of the cell-wall preparation from isolated transmitting-tissue cells of N. alata indicated that these contained cellulose, xyloglucans, and pectic polysaccharides, which is typical of primary cell walls of dicotyledons. However, the analysis indicated that the walls also contained an unusually high proportion of Type II arabinogalactans. Staining of the transmitting-tissue cell-wall preparation with β-glucosyl Yariv reagent, a histochemical reagent specific for arabinogalactan proteins, confirmed their presence, which may be related to the role of these cells in secreting the stylar extracellular matrix.  相似文献   

13.
The involvement of anti-gravitational polysaccharides in gravity resistance, one of two major gravity responses in plants, was discussed. In dicotyledons, xyloglucans are the only cell wall polysaccharides, whose level, molecular size, and metabolic turnover were modified under both hypergravity and microgravity conditions, suggesting that xyloglucans act as anti-gravitational polysaccharides. In monocotyledonous Poaceae, (1-->3),(1-->4)-beta glucans, instead of xyloglucans, were shown to play a role as anti-gravitational polysaccharides. These polysaccharides are also involved in plant responses to other environmental factors, such as light and temperature, and to some phytohormones, such as auxin and ethylene. Thus, the type of anti-gravitational polysaccharides is different between dicotyledons and Poaceae, but such polysaccharides are universally involved in plant responses to environmental and hormonal signals. In gravity resistance, the gravity signal may be received by the plasma membrane mechanoreceptors, transformed and transduced within each cell, and then may modify the processes of synthesis and secretion of the anti-gravitational polysaccharides and the cell wall enzymes responsible for their degradation, as well as the apoplastic pH, leading to the cell wall reinforcement. A series of events inducing gravity resistance are quite independent of those leading to gravitropism.  相似文献   

14.
Rapid effects of indole-3-acetic acid (IAA) on the mechanical properties of cell wall, and sugar compositions, intrinsic viscosity and molecular weight distribution of cell wall polysaccharides were investigated with excised epicotyl segments of Vigna angularis Ohwi et Ohashi cv. Takara.
  • 1 IAA caused cell wall loosening as studied by stress-relaxation analysis within 15 min after the IAA application.
  • 2 IAA stimulated the decrease in the content of arabinose and galactose in the hemicellulose 1 h after its application. The amounts of other component sugars in the cell wall polysaccharides remained constant during the IAA-induced segment growth.
  • 3 The intrinsic viscocity of the pectin increased as early as 30 min after the IAA application. This effect was not prevented when elongation growth of the segment was osmotically suppressed by 0.15 M mannitol.
  • 4 Gel permeation chromatography of the pectin on a Sepharose 4 B column demonstrated that IAA caused increase in the mass-average molecular weight of the pectin. Analysis of the sugar compositions of the pectin eluted from the Sepharose 4 B column indicated that IAA increased the molecular weight of the polysaccharides composed of uronic acid, galactose, rhamnose and arabinose. This effect became apparent within 30 min after the IAA application. Furthermore, IAA increased the molecular weight of the pectin when elongation growth of the epicotyl segments was osmotically suppressed by 0.15 M mannitol.
  • 5 Hemicellulose of the cell wall chromatographed on a Sepharose CL-4 B column. Analysis of the neutral sugar compositions and the iodine staining property (specific for xyloglucans) of the polysaccharide solution eluted from the column indicated that the hemicellulose consisted of xyloglucans, arabinogalactans and polysaccharides composed of xylose and/or mannose. IAA caused a decrease in the arabinogalactan content and depolymerization of xyloglucans. These IAA effects became apparent within 30 min after the IAA application. These changes occurred even when elongation growth of the epicotyl segments was osmotically suppressed by 0.15 M mannitol.
Polymerization of the pectin, degradation of arabinogalactans and depolymerization of xyloglucans appear to be involved in the mechanism by which IAA induces cell wall loosening and therefore extension growth of cells.  相似文献   

15.
Cell walls were prepared from apple parenchyma by a phenol:buffer procedure. Polyphenols were extracted from freeze-dried apple parenchyma by methanol and water:acetone, and purified by preparative HPLC. Interactions were quantified by bringing into contact suspended cell walls and polyphenol solutions. Hydroxycinnamic acids and (-)-epicatechin did not bind to cell walls. Binding of procyanidins was fast and reached up to 0.6 g per g cell walls. The amounts of procyanidins bound increased with the initial concentration and with DPn. Procyanidins could be partially desorbed by buffer, more being desorbed in the presence of dissolved cell wall polysaccharides. They were totally desorbed using 8 M urea or acetone:water. Higher polymers were bound selectively from procyanidin mixtures, and very high average DPn were obtained in extensively washed complexes. Binding of procyanidins inhibited enzymic degradation of the cell walls.  相似文献   

16.
Portions of stems from the base of asparagus spears (Asparagus officinalis L. cv. Connovor Collossus) were dissected to give the following tissues: (1) pith, which was free of vascular bundles, (2) two surrounding layers, parenchyma and fibre I and II (PFI and PFII), containing parenchyma and vascular bundles, (3) sclerenchyma sheath, (4) epidermis and sub-epidermal layers and (5) asparagus vascular fibre (AVF). The alcohol-insoluble residues (AIRs) from these tissues were shown to be free of starch. They were analysed for moisture and protein, and the component sugars were released by two hydrolytic procedures, which helped to distinguish the sugars from non-cellulosic polysaccharides and cellulose. The AIRs from pith and epidermal tissues were relatively low in xylose, but were rich in cellulosic glucose, and sugars associated with pectic polysaccharides such as galacturonic acid, galactose and arabinose. Their major component polysaccharides (in decreasing amounts) were inferred to be pectic polysaccharides, cellulose, and hemicelluloses. AIR from sclerenchyma was rich in glucose and xylose, suggesting the presence of much cellulose and (acidic) xylans. The AIRs of PFI, PFII and AVF contained significant amounts of xylose in addition tn other sugars, and the major polysaccharides inferred to be present were pectic polysaccharides, cellulose and hemicelluloses, a significant proportion of which may be acidic xylans. Methylation analysis of the AIRs confirmed the above inferences. The bulk of the glucosyl residues were (1–4)-linked, and there were small but significant amounts of (1–4, 6)-linked glucosyl residues (the linkage characteristic of xyloglucans) in all the preparations. The presence of (1–4)-linked galactosyl, (1–5)-linked arabinosyl, terminal galactosyl, terminal arabinosyl, (1–2)- and (1–2, 4)-linked rhamnosyl residues in all the AIRs except that from sclerenchyma, confirmed the presence of significant levels of pectic polysaccharides in all the parenchyma tissues. All the preparations containing vascular tissues contained significant amounts of (1–4)-linked xylosyl residues, probably derived from acidic xylans. Even in the AIR of pith, a significant amount of (1–4)-linked xylosyl residues were detected. This may be due to the ability of these cells and the parenchyma cells associated with the vascular bundles, to undergo lignification in mature asparagus plants.  相似文献   

17.
The effects of auxin and gibberellic acid on cell wall composition in various regions of epicotyls of azuki bean ( Vigna angularis Ohwi and Ohashi cv. Takara) were investigated with the following results. (1) Young segments excised from apical regions of the epicotyl elongated in response to added 10−4 M indole-3-acetic acid (IAA). When the segments were supplied with 50 m M sucrose, the IAA-induced segment growth was accompanied by enhanced overall synthesis of cell wall polysaccharides, such as xyloglucans, polyuronides and cellulose. This IAA effect on the cell wall synthesis is a consequence of extension growth induced by IAA. Gibberellic acid (GA) at 10−4 M synergistically enhanced the IAA-induced cell wall synthesis as well as IAA-induced extension growth, although GA by itself neither stimulated the cell wall synthesis nor extension growth. In the absence of sucrose, cell wall synthesis was not induced by IAA or GA. (2) In mature segments excised from basal regions of the epicotyl, no extension growth was induced by IAA or GA. GA enhanced the synthesis of xylans and cellulose when the segments were supplied with 50 m M sucrose. IAA had no effect on the cell wall synthesis. These findings indicate that synthesis of polyuronides, xyloglucans and cellulose, which occurs during extension growth of the apical region of the epicotyl, is regulated chiefly by auxin whereas synthesis of xylans and cellulose during cell maturation in the basal region of the epicotyl is regulated by GA.  相似文献   

18.
The molecular mobility of the non‐cellulosic polysaccharides in hydrated primary cell walls of three monocotyledons (Italian ryegrass, pineapple and onion) and one dicotyledon (cabbage) was studied using solid‐state 13C NMR spectroscopy. These cell walls were chosen as they have different non‐cellulosic polysaccharide compositions. By exploiting proton rotating‐frame and spin‐spin relaxation time constants three different cell wall domains which responded to cross‐polarization experiments were identified. Most of the non‐cellulosic polysaccharides occupied a mobile domain (C), but some occupied a partly rigid domain (B). Crystalline cellulose occupied a highly rigid domain (A). In the cell walls of Italian ryegrass and pineapple, domain C contained mainly glucuronoarabinoxylans and small amounts of rhamnogalacturonans; domain B contained small amounts of xyloglucans and galacturonans. However, in the cell walls of onion and cabbage, domain C contained mainly rhamnogalacturonans with galactans (in onion) or arabinans (in cabbage) as side chains; domain B contained galacturonans and xyloglucans. Single‐pulse excitation was used on Italian ryegrass and cabbage cell walls to reveal signals from a highly mobile fourth domain (D). In Italian ryegrass cell walls domain D contained glucuronoarabinoxylans and small amounts of rhamnogalacturonan, whereas in cabbage cell walls it contained arabinan side chains of rhamnogalacturonans. A novel feature of the research was the use of solid‐state 13C NMR spectroscopy to examine the molecular mobilities of the polysaccharides in monocotyledon cell walls that contain glucuronoarabinoxylans.  相似文献   

19.
Solid-state CP/MAS 13C NMR spectroscopy was used to determine the effects of three different sequential extraction procedures, used to remove non-cellulosic polysaccharides, on the molecular ordering of cellulose in a cell-wall preparation containing mostly primary cell walls obtained from the leaves of the model dicotyledon, Arabidopsis thaliana. The extractions were 50 mM trans-1,2-diaminocyclohexane N,N,N',N'-tetraacetic acid (CDTA) and 50 mM sodium carbonate (giving Residue 1); 50 mM CDTA, 50 mM sodium carbonate and 1 M KOH (giving Residue 2); and 50 mM CDTA, 50 mM sodium carbonate and 4 M KOH (giving Residue 3). The molecular ordering of cellulose in Residue 1 was similar to that in unextracted walls: the cellulose was almost all crystalline, with 43% of molecules contained in crystallite interiors and similar proportions of the triclinic (I(alpha)) and monoclinic (I(beta)) crystal forms. Residue 2 was partly decrystallized and the remaining crystallites were mostly in the I(beta) form. Residue 3 was a mixture of cellulose II, cellulose I and amorphous cellulose. The presence of signals at 100.0 and 102.3 ppm in the spectra of Residues 1 and 2, but not of unextracted cell walls, suggested that the extractions giving these residues caused some of the non-cellulosic polysaccharides, possibly xyloglucans and galactoglucomannans, to become relatively well ordered, for example through interactions with cellulose crystallite surfaces.  相似文献   

20.
The endoglucanase activity of cells and extracellular culture fluid of Fibrobacter succinogenes S85 grown on glucose, cellobiose, soluble polysaccharides (beta-glucan, lichenan) and intact plant polysaccharides, was compared. The specific activity of cells grown on cellulose or forages was 6- to 20-fold higher than that of cells grown on soluble substrates, suggesting an induction of endoglucanases by the insoluble substrates. The ratios of cells to extracellular culture fluid endoglucanase activities measured in cultures grown on sugars or insoluble polysaccharides suggested that the endoglucanases induced by the insoluble polysaccharides remained attached to the cells. The mRNA of all the F. succinogenes glycoside hydrolase genes sequenced so far were then quantified in cells grown on glucose, cellobiose or cellulose. The results show that all these genes were transcribed in growing cells, and that they are all overexpressed in cultures grown on cellulose. Endoglucanase-encoding endB and endA(FS) genes, and xylanase-encoding xynC gene appeared the most expressed genes in growing cells. EGB and ENDA are thus likely to play a major role in cellulose degradation in F. succinogenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号