首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To date several studies have been carried out which indicate that DNA of crustacean sperm is neither bound nor organized by basic proteins and, contrary to the rest of spermatozoa, do not contain highly packaged chromatin. Since this is the only known case of this type among metazoan cells, we have re-examined the composition, and partially the structure, of the mature sperm chromatin of Cancer pagurus, which has previously been described as lacking basic DNA-associated proteins. The results we present here show that: (a) sperm DNA of C. pagurus is bound by histones forming nucleosomes of 170 base pairs, (b) the ratio [histones/DNA] in sperm of two Cancer species is 0.5 and 0.6 (w/w). This ratio is quite lower than the proportion [proteins/DNA] that we found in other sperm nuclei with histones or protamines, whose value is from 1.0 to 1.2 (w/w), (c) histone H4 is highly acetylated in mature sperm chromatin of C. pagurus. Other histones (H3 and H2B) are also acetylated, though the level is much lower than that of histone H4. The low ratio of histones to DNA, along with the high level of acetylation of these proteins, explains the non-compact, decondensed state of the peculiar chromatin in the sperm studied here. In the final section we offer an explanation for the necessity of such decondensed chromatin during gamete fertilization of this species.  相似文献   

2.
Hyperacetylated histones facilitate chromatin assembly in vitro.   总被引:6,自引:2,他引:4       下载免费PDF全文
We have examined the effect of histone acetylation on the in vitro assembly of nucleosomes with DNA and purified histones at physiological ionic strength in the presence of polyglutamic acid. We have found that hyperacetylated histones assemble nucleosomes with greater efficiency, and to a greater extent, than either control or hypoacetylated histones. Assembly reactions were performed over a range of histone to DNA ratios (0.25 to 3.0, w/w) and polyglutamic acid to histone ratios (0 to 1.6, w/w). Although polyglutamic acid may act as a sink to prevent nonspecific histone-DNA interactions, our data suggest that the polyanion primarily facilitates the assembly of nucleosomes by organizing histones into a form that is amenable to deposition.  相似文献   

3.
The influence of nucleosomes on the activity of two chromatin-associated apurinic/apyrimidinic (AP) DNA endonuclease activities, pIs 9.2 and 9.8, from normal and xeroderma pigmentosum, complementation group A (XPA), lymphoblastoid cells was examined. These AP endonuclease activities were studied on non-nucleosomal and nucleosomal plasmid pWT830/pBR322 DNA which had been reconstituted with core (H2A, H2B, H3, H4) or total (core plus H1) histones from normal or XPA cells. Both nucleosomal and non-nucleosomal DNA was rendered partially AP by alkylation with 12.5 mM methyl methanesulfonate, followed by heating it at 70 degrees C, to produce approximately three AP sites per DNA molecule. The activities of both normal lymphoblastoid AP endonuclease activities on nucleosomal AP DNA, reconstituted with core histones, was approximately 2.5 times greater than that on non-nucleosomal AP DNA. When histone H1 was added to the system, this increase was reduced. XPA AP endonuclease activities, on the other hand, did not show any increase in activity on nucleosomal AP DNA reconstituted with core histones. These differences between normal and XPA endonuclease activities on AP nucleosomal DNA were the same regardless of whether histones from normal or XPA cells were used in the reconstituted system.  相似文献   

4.
The sequential arrangement of histones along DNA in nucleosomes containing all five histones and DNA about 165 and 175 base-pairs in length has been determined. The data provide evidence that core histones (H2A, H2B, H3 and H4) are arranged in nucleosomes and nucleosome core particles in a largely similar way with the following differences. (1) On nucleosomal DNA about 175 basepairs long core histones are probably shifted by 20 nucleotides on one DNA strand and by 10 nucleotides on the complementary DNA strand from the 5′ end. On nucleosomal DNA 165 base-pairs long, histones appear to be shifted by 10 nucleotides from the 5′ end of DNA on both the DNA strands. (2) Histone H3 is extended beyond core DNA and is bound to the 3′ end of DNA about 175 nucleotides long. Thus, core histones span the whole length of nucleosomal DNA. (3) Histone H2A seems to be absent from the central region of nucleosomal DNA. These results indicate that during the preparation of core particles, some rearrangement of histones or some of their regions occurs.Histone H1 has been shown to be bound mainly to the ends of nucleosomal DNA and, along the whole DNA length, to the gap regions that are free of core histones.  相似文献   

5.
The composition of nucleosomes at an intermediate stage of male pronucleus formation was determined in sea urchins. Nucleosomes were isolated from zygotes harvested 10 min post-insemination, whole nucleoprotein particles were obtained from nucleus by nuclease digestion, and nucleosomes were subsequently purified by a sucrose gradient fractionation. The nucleosomes derived from male pronucleus were separated from those derived from female pronucleus by immunoadsorption to antibodies against sperm specific histones (anti-SpH) covalently bound to Sepharose 4B (anti-SpH-Sepharose). The immunoadsorbed nucleosomes were eluted, and the histones were analyzed by Western blots. Sperm histones (SpH) or alternatively, the histones from unfertilized eggs (CS histone variants), were identified with antibodies directed against each set of histones. It was found that these nucleosomes are organized by a core formed by sperm histones H2A and H2B combined with two major CS histone variants. Such a hybrid histone core interacts with DNA fragments of approximately 100 bp. It was also found that these atypical nucleosome cores are subsequently organized in a chromatin fiber that exhibits periodic nuclease hypersensitive sites determined by DNA fragments of 500 bp of DNA. It was found that these nucleoprotein particles were organized primarily by the hybrid nucleosomes described above. We postulate that this unique chromatin organization defines an intermediate stage of male chromatin remodeling after fertilization.  相似文献   

6.
7.
The interaction of different histone oligomers with nucleosomes has been investigated by using nondenaturing gel electrophoresis. In the presence of 0.2 M NaCl, the addition of the pairs H2A,H2B or H3,H4 or the four core histones to nucleosome core particles produces a decrease in the intensity of the core particle band and the appearance of aggregated material at the top of the gel, indicating that all these histone oligomers are able to associate with nucleosomes. Equivalent results were obtained by using oligonucleosome core particles. Additional electrophoretic results, together with second-dimension analysis of histone composition and fluorescence and solubility studies, indicate that H2A,H2B, H3,H4, and the four core histones can migrate spontaneously from the aggregated nucleosomes containing excess histones to free core DNA. In all cases the estimated yield of histone transfer is very high. Furthermore, the results obtained from electron microscopy, solubility, and supercoiling assays demonstrate the transfer of excess histones from oligonucleosomes to free circular DNA. However, the extent of solubilization obtained in this case is lower than that observed with core DNA as histone acceptor. Our results demonstrate that nucleosome core particles can be formed in 0.2 M NaCl by the following mechanisms: (1) transfer of excess core histones from oligonucleosomes of free DNA, (2) transfer to excess H2A,H2B and H3,H4 associated separately with oligonucleosomes to free DNA, (3) transfer to excess H2A,H2B initially associated with oligonucleosomes to DNA, followed by the reaction of the resulting DNA-(H2A,H2B) complex with oligonucleosomes containing excess H3,H4, and (4) a two-step transfer reaction similar to that indicated in (3), in which excess histones H3,H4 are transferred to DNA before the reaction with oligonucleosomes containing excess H2A,H2B. The possible biological implications of these spontaneous reactions are discussed in the context of the present knowledge of the nucleosome function.  相似文献   

8.
We describe a method of isolating a homogeneous population of "trimmed" monomeric nucleosomes from Hela cells. These nucleoprotein particles contain a 140 +/- 5 base pair length of DNA and have a histone/DNA ratio of 1.2. They lack H1 and contain equal amounts of the four smaller histones. The DNA contains no single strand nicks. The particles sediment with an S20,w of 11S in D2O density gradients. After formaldehyde fixation, they band at a density of 1.4370 in neutral CsCl. Digestion of nucleosomes with either micrococcal nuclease or DNase I generates the same pattern of DNA fragments observed when intact nuclei are digested. Circular dichroism spectra indicate that the 280 nm positive ellipticity maximum of nucleosomes is about one-half that of chromatin. In the presence of 6 M urea, nucleosomes sediment with an S20,w of 6S, have a multiphasic thermal denaturation profile, and exhibit a circular dichroic spectrum nearly identical to that of B-form DNA. Our yield of purified nucleosomes (10-15% of the input DNA) is similar to the yields of other methods; our nucleosome population is substantially more homogeneous than those previously reported.  相似文献   

9.
10.
Positioning of nucleosomes was examined in a reconstituted system using a plasmid DNA and histones from normal human and xeroderma pigmentosum, complementation group A (XPA), lymphoblastoid cells. The present studies indicate that the arrangement of nucleosomes, composed of normal human histones, in a region near the SV40 origin of replication on the plasmid DNA, is nonrandom. The alignment of nucleosomes in this region was not affected by the presence of histone H1. No difference in nucleosome positioning was observed when the nucleosomes were composed of histones from XPA cells.  相似文献   

11.
When chromosomal proteins in chromatin or in mononucleosomes were extensively cross-linked with an imido ester, the H1-containing nonameric histone complex was revealed. In this complex, histone H1 is connected with the octamer of core histones. The cross-linking of H1 to the octamer is realized preferentially through H2a and H3 histones. Some HMG (high mobility group) proteins located presumably in the linker regions of a nucleosome fiber also take part in the formation of dimers, possibly with the histones of a nucleosomal core. The results suggest mutual interactions between some linker-associated proteins and intranucleosomal histones. Experiments involving extensive cross-linking of proteins in the purified mononucleosome subfractions demonstrated differences in the organization of core histones between complete nucleosomes and nucleosomes lacking H1.Abbreviations HMG proteins high mobility group proteins - DMA dimethyladipimidate dihydrochloride - DMP dimethyl-3,3-dithio-bis-propionimidate dihydrochloride  相似文献   

12.
Formation of hybrid nucleosomes cantaining new and old histones.   总被引:3,自引:2,他引:1       下载免费PDF全文
5 mM hydroxyurea (HU) inhibits DNA synthesis in mouse P815 cells by 94-97% in less than 1 hr. Nevertheless, histone synthesis continues and newly-synthesised histones are incorporated into non-replicating chromatin at a rate of about 20% of that in control exponentially-growing cells. To study the organization of these histones in chromatin P815 cells were treated with 5 mM HU in medium containing dense (15N, 13C, 2H) - substituted amino acids. After inhibition of DNA synthesis, newly-synthesised histones were labelled with (3H)-arginine. The cells were harvested 90 min later, and mono- and oligonucleosomes were prepared and analysed on metrizamide-triethanolamine (MA-TEA density gradients. Analysis of the distribution of 3H-labelled histones in these gradients shows that they are incorporated into hybrid mononucleosomes containing both new and old histones. It is also shown that these hybrid nucleosomes are not randomly distributed, but show a certain tendency to be clustered in certain chromatin regions.  相似文献   

13.
Regulation of gene expression requires dynamic changes in chromatin, but the nature of these changes is not well understood. Here, we show that progesterone treatment of cultured cells leads to recruitment of progesterone receptor (PR) and SWI/SNF-related complexes to Mouse Mammary Tumor Virus (MMTV) promoter, accompanied by displacement of histones H2A and H2B from the nucleosome containing the receptor binding sites, but not from adjacent nucleosomes. PR recruits SWI/SNF to MMTV nucleosomes in vitro and facilitates synergistic binding of receptors and nuclear factor 1 to the promoter. In nucleosomes assembled on MMTV or mouse rDNA promoter sequences, SWI/SNF catalyzes ATP-dependent sliding of the histone octamer followed only on the MMTV promoter by displacement of histones H2A and H2B. In MMTV nucleosome arrays, SWI/SNF displaces H2A and H2B from nucleosome B and not from the adjacent nucleosome. Thus, the outcome of nucleosome remodeling by SWI/SNF depends on DNA sequence.  相似文献   

14.
We examine in vitro nucleosome assembly by nucleosome assembly protein-1 (NAP-1) and ATP-utilizing chromatin assembly and remodeling factor (ACF). In contrast to previous studies that used relaxed, circular plasmids as templates, we have found that negatively supercoiled templates reveal the distinct roles of NAP-1 and ACF in histone deposition and the formation of an ordered nucleosomal array. NAP-1 can efficiently deposit histones onto supercoiled plasmids. Furthermore, NAP-1 exhibits a greater affinity for histones H2A-H2B than does naked DNA, but in the presence of H3-H4, H2A-H2B are transferred from NAP-1 to the plasmid templates. These observations underscore the importance of a high affinity between H2A-H2B and NAP-1 for ordered transfer of core histones onto DNA. In addition, recombinant ACF composed of imitation switch and Acf1 can extend closely packed nucleosomes, which suggests that recombinant ACF can mobilize nucleosomes. In the assembly reaction with a supercoiled template, ACF need not be added simultaneously with NAP-1. Regularly spaced nucleosomes are generated even when recombinant ACF is added after core histones are transferred completely onto the DNA. Atomic force microscopy, however, suggests that NAP-1 alone fails to accomplish the formation of fine nucleosomal core particles, which are only formed in the presence of ACF. These results suggest a model for the ordered deposition of histones and the arrangement of nucleosomes during chromatin assembly in vivo.  相似文献   

15.
Histone H2A ubiquitination is a bulky posttranslational modification that occurs at the vicinity of the binding site for linker histones in the nucleosome. Therefore, we took several experimental approaches to investigate the role of ubiquitinated H2A (uH2A) in the binding of linker histones. Our results showed that uH2A was present in situ in histone H1-containing nucleosomes. Notably in vitro experiments using nucleosomes reconstituted onto 167-bp random sequence and 208-bp (5 S rRNA gene) DNA fragments showed that ubiquitination of H2A did not prevent binding of histone H1 but it rather enhanced the binding of this histone to the nucleosome. We also showed that ubiquitination of H2A did not affect the positioning of the histone octamer in the nucleosome in either the absence or the presence of linker histones.  相似文献   

16.
Assembly of nucleosomes on relaxed, covalently closed DNA has been studied in a nuclear extract of Xenopus laevis oocytes. Nucleosomes containing the four histones H3, H4, H2A and H2B but lacking histone H1 are readily assembled on the DNA. The pattern of micrococcal nuclease digestion shows that the nucleosomes assembled in the absence of ATP and Mg (II) are closely packed, with a periodicity of 150 base pairs (bp). In contrast, in the presence of ATP and Mg (II) the spacing of the nucleosomes is 180 bp, similar to that observed for nucleosomes assembled on DNA microinjected into oocyte nuclei. The ATP and Mg (II) requirements for the assembly of correctly spaced nucleosomes are unrelated to the activity of the ATP and Mg (II) dependent DNA topoisomerase II in the extract; addition of specific inhibitors of eukaryotic DNA topoisomerase II has no effect on the spacing of the reconstituted nucleosomes. The ATP requirement in the assembly of correctly spaced nucleosomes can be substituted by adenosine 5'-O-3'-thiotriphosphate (gamma-S-ATP) but not by adenyl-5'-yl imidodiphosphate (AMP-P-(NH)-P).  相似文献   

17.
Modifications on histones or on DNA recruit proteins that regulate chromatin function. Here, we use nucleosomes methylated on DNA and on histone H3 in an affinity assay, in conjunction with a SILAC-based proteomic analysis, to identify "crosstalk" between these two distinct classes of modification. Our analysis reveals proteins whose binding to nucleosomes is regulated by methylation of CpGs, H3K4, H3K9, and H3K27 or a combination thereof. We identify the origin recognition complex (ORC), including LRWD1 as a subunit, to be a methylation-sensitive nucleosome interactor that is recruited cooperatively by DNA and histone methylation. Other interactors, such as the lysine demethylase Fbxl11/KDM2A, recognize nucleosomes methylated on histones, but their recruitment is disrupted by DNA methylation. These data establish SILAC nucleosome affinity purifications (SNAP) as a tool for studying the dynamics between different chromatin modifications and provide a modification binding "profile" for proteins regulated by DNA and histone methylation.  相似文献   

18.
19.
The binding sites for histones and high mobility group proteins (HMG) 14 and 17 have been located on DNA in the nucleosomal cores and H1/H5-containing nucleosomes. The nucleosomes were specifically associated with two molecules of the non-histone proteins HMG 14 and/or HMG 17 when followed by DNA-protein crosslinking and immunoaffinity isolation of the crosslinked HMG-DNA complexes. HMGs 14 and 17 were shown to be crosslinked in a similar manner to each core DNA strand at four sites: to both 3' and 5' DNA ends and also at distances of about 25 and 125 nucleotides from the 5' termini of the DNA. These sites are designated as HMG(143), (0), (25) and (125). The site HMG(125) is located at the place where no significant histone-DNA crosslinking was observed. The HMG(125) and HMG(25) sites lie opposite one another on the complementary DNA strands across the minor DNA groove and are placed, similarly to histones, on the inner side of the DNA superhelix in the nucleosome. The crosslinking of HMG 17 to the 3' ends of the DNA is much weaker than that of HMG 14. These data indicate that each of two molecules of HMG 14 and/or HMG 17 is bound to the double-stranded core DNA at two discrete sites: to the 3' and 5' ends of the DNA and at a distance of 20 to 25 base-pairs from each DNA terminus inside the nucleosome on a histone-free DNA region. Binding of HMG 14 or 17 does not induce any detectable rearrangement of histones on DNA and both HMGs seem to choose the same sites for attachment in nucleosomal cores and H1/H5-containing nucleosomes.  相似文献   

20.
Linker histones play essential roles in the chromatin structure of higher eukaryotes. While binding to the surface of nucleosomes is directed by an ~ 80-amino-acid-residue globular domain, the structure and interactions of the lysine-rich ~ 100-residue C-terminal domain (CTD), primarily responsible for the chromatin-condensing functions of linker histones, are poorly understood. By quantitatively analyzing binding of a set of H1 CTD deletion mutants to nucleosomes containing various lengths of linker DNA, we have identified interactions between distinct regions of the CTD and nucleosome linker DNA at least 21 bp from the edge of the nucleosome core. Importantly, partial CTD truncations caused increases in H1 binding affinity, suggesting that significant entropic costs are incurred upon binding due to CTD folding. van't Hoff entropy/enthalpy analysis and intramolecular fluorescent resonance energy transfer (FRET) studies indicate that the CTD undergoes substantial nucleosome-directed folding, in a manner that is distinct from that which occurs upon H1 binding to naked DNA. In addition to defining critical interactions between the H1 CTD and linker DNA, our data indicate that the H1 CTD is an intrinsically disordered domain and provide important insights into the biological function of this protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号