共查询到20条相似文献,搜索用时 15 毫秒
1.
Autoregulation by tandem promoters of the Salmonella typhimurium LT2 metJ gene. 总被引:3,自引:15,他引:3 下载免费PDF全文
Regulation of the Salmonella typhimurium metJ gene was examined by measuring beta-galactosidase activity in Escherichia coli strains lysogenic for a phage carrying a metJ-lacZ gene fusion. The results indicated that the metJ gene is regulated by its own gene product and by methionine supplementation to the growth medium. This autoregulatory mechanism involved two tandem promoters, pJ1 and pJ2, separated by approximately 65 base pairs. Deletion analysis permitted the assessment of the activity of promoters pJ1 and pJ2 individually. Promoter Pj1 was negatively regulated by the metJ gene product and by methionine. Although Pj2 regulation remained unclear, evidence is presented which suggests that it is not negatively regulated like pJ1. 相似文献
2.
3.
The molecular basis for positive regulation of cys promoters in Salmonella typhimurium and Escherichia coli 总被引:8,自引:0,他引:8
Nicholas M. Kredich 《Molecular microbiology》1992,6(19):2747-2753
4.
Internal promoters of the his operon in Salmonella typhimurium. 总被引:10,自引:5,他引:5
5.
Metabolism of Pyrimidines and Pyrimidine Nucleosides by Salmonella typhimurium 总被引:35,自引:30,他引:5 下载免费PDF全文
Christoph F. Beck John L. Ingraham Jan Neuhard Elisabeth Thomassen 《Journal of bacteriology》1972,110(1):219-228
The pathways by which uracil, cytosine, uridine, cytidine, deoxyuridine, and deoxycytidine are metabolized by Salmonella typhimurium are established. The various 5-fluoropyrimidine analogues are shown to exert their toxic effects only after having been converted to the nucleotide level, and these conversions are shown to be catalyzed by the same enzymes which similarly convert the natural substrates. Methods for isolating mutant strains blocked in various steps of metabolism of pyrimidine bases and nucleosides are described. 相似文献
6.
Regulation by oxygen of the peptidase T (pepT) locus of Salmonella typhimurium was studied by measuring beta-galactosidase levels in strains containing a pepT::Mu d1(Apr lac) operon fusion. beta-Galactosidase was induced in anaerobic cultures and late-exponential and stationary-phase aerated cultures. Peptidase T activity also was induced under these growth conditions. pepT+ but not pepT strains will utilize as amino acid sources the tripeptides Leu-Leu-Leu and Leu-Gly-Gly only when grown anaerobically. Mutations at two loci, oxrA and oxrB (oxygen regulation) prevent induction of the pepT locus. The oxrA locus is homologous to the fnr locus of Escherichia coli. We have isolated 12 independent Mu d1 insertions (oxd::Mu d1, oxygen dependent) that show induction of beta-galactosidase in anaerobic cultures and stationary-phase aerated cultures. These insertions fall into nine classes based on map location. All of the oxd::Mu d1 insertions are regulated by oxrA and oxrB and therefore define a global regulon that responds to oxygen limitation. 相似文献
7.
Primer extension experiments showed that the argR gene, encoding the arginine repressor in Salmonella typhimurium, is transcribed from a single promoter that is negatively regulated by arginine. A repressor overproducing strain was constructed and the repressor was purified to homogeneity. Gel filtration, sedimentation and cross-linking studies established that the native repressor is a hexamer of identical 17,000 Mr subunits. Gel retardation experiments indicate that the apparent dissociation constant for repressor/carAB operator is 6 x 10(-12) M. These experiments showed that arginine is essential for binding of the repressor to the DNA and that pyrimidine nucleotides have no significant effect on this binding. These results indicate that the effect of pyrimidines on expression of the arginine sensitive "downstream" carAB promoter is not directly mediated by the arginine repressor. These experiments also suggest that a single hexamer binds to the carAB operator, which carries two previously defined "ARG box" sequences that characterize operators for arg genes. Gel retardation experiments with DNA fragments carrying the individual ARG boxes showed that both boxes are required for effective binding of the hexameric repressor to the operator, indicating that the ARG boxes comprise a single binding site for the repressor. Analysis of the potential secondary structure of the arginine repressor does not reveal any of the recognizable structural motifs common to a number of DNA-binding proteins. A combination of DNase I, premethylation interference, depurination and hydroxyl radical footprinting techniques were employed to characterize the interactions of the repressor with the carAB operator, with the results suggesting that the repressor predominantly interacts with A.T residues in this region. Comparative DNA sequence analysis of the known arginine operators of enteric bacteria further indicates that the specificity of interaction may be based more on the precise distance between two defined A.T-rich regions rather than on the specific nucleotide sequence. 相似文献
8.
Repression of Enzyme Synthesis of the Pyrimidine Pathway in Salmonella typhimurium 总被引:2,自引:9,他引:2 下载免费PDF全文
It has been reported by other workers that a uridine and probably also a cytidine nucleotide are required for maximal repression of aspartate transcarbamylase encoded by the gene pyrB in Salmonella typhimurium. We have identified the repressing metabolites for three more biosynthetic enzymes, namely, dihydroorotate dehydrogenase (encoded by pyrD), orotidine-5'-monophosphate pyrophosphorylase (encoded by pyrE), and orotidine-5'-monophosphate decarboxylase (encoded by pyrF), as well as examining the repression profiles of aspartate transcarbamylase in more detail. Using a specially constructed strain of S. typhimurium (JL1055) which lacks the enzymes for the interconversion of cytidine and uridine compounds, thus allowing the independent manipulation of endogenous cytidine and uridine nucleotides, we found that a cytidine compound is the primary effector of repression in all cases except for aspartate transcarbamylase where little repression is observed in excess cytidine. For aspartate transcarbamylase, we found that the primary repressing metabolite is a uridine compound. 相似文献
9.
10.
11.
12.
Pyrimidine Nucleotide Metabolism and Pathways of Thymidine Triphosphate Biosynthesis in Salmonella typhimurium 总被引:5,自引:17,他引:5
Jan Neuhard 《Journal of bacteriology》1968,96(5):1519-1527
The nucleoside triphosphate pools of two cytidine auxotrophic mutants of Salmonella typhimurium LT-2 were studied under different conditions of pyrimidine starvation. Both mutants, DP-45 and DP-55, are defective in cytidine deaminase and cytidine triphosphate (CTP) synthase. In addition, DP-55 has a requirement for uracil (uridine). Cytidine starvation of the mutants results in accumulation of high concentrations of uridine triphosphate (UTP) in the cells, while the pools of CTP and deoxy-CTP drop to undetectable levels within a few minutes. Addition of deoxycytidine to such cells does not restore the dCTP pool, indicating that S. typhimurium has no deoxycytidine kinase. From the kinetics of UTP accumulation during cytidine starvation, it is concluded that only cytidine nucleotides participate in the feedback regulation of de novo synthesis of UTP; both uridine and cytidine nucleotides participate in the regulation of UTP synthesis from exogenously supplied uracil or uridine. Uracil starvation of DP-55 in presence of cytidine results in extensive accumulation of CTP, suggesting that CTP does not regulate its own synthesis from exogenous cytidine. Analysis of the thymidine triphosphate (dTTP) pool of DP-55 labeled for several generations with (32)P-orthophosphate and (3)H-uracil in presence of (12)C-cytidine shows that only 20% of the dTTP pool is derived from uracil (via the methylation of deoxyuridine monophosphate); 80% is apparently synthesized from a cytidine nucleotide. 相似文献
13.
Lawhon SD Frye JG Suyemoto M Porwollik S McClelland M Altier C 《Molecular microbiology》2003,48(6):1633-1645
CsrA is a regulator of invasion genes in Salmonella enterica serovar Typhimurium. To investigate the wider role of CsrA in gene regulation, we compared the expression of Salmonella genes in a csrA mutant with those in the wild type using a DNA microarray. As expected, we found that expression of Salmonella pathogenicity island 1 (SPI-1) invasion genes was greatly reduced in the csrA mutant, as were genes outside the island that encode proteins translocated into eukaryotic cells by the SPI-1 type III secretion apparatus. The flagellar synthesis operons, flg and fli, were also poorly expressed, and the csrA mutant was aflagellate and non-motile. The genes of two metabolic pathways likely to be used by Salmonella in the intestinal milieu also showed reduced expression: the pdu operon for utilization of 1,2-propanediol and the eut operon for ethanolamine catabolism. Reduced expression of reporter fusions in these two operons confirmed the microarray data. Moreover, csrA was found to regulate co-ordinately the cob operon for synthesis of vitamin B12, required for the metabolism of either 1,2-propanediol or ethanolamine. Additionally, the csrA mutant poorly expressed the genes of the mal operon, required for transport and use of maltose and maltodextrins, and had reduced amounts of maltoporin, normally a dominant protein of the outer membrane. These results show that csrA controls a number of gene classes in addition to those required for invasion, some of them unique to Salmonella, and suggests a co-ordinated bacterial response to conditions that exist at the site of bacterial invasion, the intestinal tract of a host animal. 相似文献
14.
15.
16.
The regulation of phs [production of hydrogen sulphide (H2S)] in Salmonella typhimurium is complex. Previous studies have shown that expression is dependent upon the presence of reduced sulphur and anaerobiosis and is modulated by carbon source and growth stage. Transposon mutagenesis failed to find any potential trans-acting factors effective in the regulation of phs in relation to oxygen. Spontaneous mutants capable of expressing phs-lac aerobically were isolated and characterized. These mutations are closely linked to phs and affect not only oxygen regulation but also the requirement for cyclic AMP and reduced sulphur. Analysis of merodiploid strains indicates that these mutations cis-acting and that phs is not subject to autoregulation. 相似文献
17.
Isolation and Partial Characterization of Regulatory Mutants of the Pyrimidine Pathway in Salmonella typhimurium 总被引:8,自引:11,他引:8 下载免费PDF全文
Mutants of Salmonella typhimurium affected in the regulation of pyrimidine biosynthesis were isolated by two methods. The first involved screening for bacteria able to feed a pyrimidine-requiring indicator strain, and the second involved selection for bacteria simultaneously resistant to two pyrimidine analogues, 5-fluorouracil and 5-fluorouridine, in a S. typhimurium strain unable to degrade 5-fluorouridine. Among the mutants isolated by these methods are constitutive mutants, producing high levels of pyrimidine biosynthetic enzymes in the presence or absence of pyrimidines, and feedback modified mutants, in which aspartate transcarbamylase is partially desensitized to its inhibitor, cytidine triphosphate. No fully desensitized mutant has been found. The partially desensitized character cotransduces with the pyrB locus, that of aspartate transcarbamylase. The constitutive character has been determined in a few cases to be localized in the region of leu and pro on the Salmonella map. 相似文献
18.
C L Turnbough R J Neill R Landsberg B N Ames 《The Journal of biological chemistry》1979,254(12):5111-5119
19.
Tandem chromosomal duplications in Salmonella typhimurium: fusion of histidine genes to novel promoters. 总被引:22,自引:0,他引:22
Salmonella strains harboring tandem chromosomal duplications have been identified following selection for expression of a histidine biosynthetic gene whose promoter is deleted. In such strains, tandem duplications fuse the selected his gene to “foreign” regulatory elements, thereby allowing gene expression. Selection is made for hisD+ activity in deletion strain hisOG203. Among the revertants, strains harboring tandem chromosomal duplications have been identified by a number of their properties. (1) Their HisD+ phenotype is genetically unstable. (2) Such instability is dependent on recombination (recA) activity. (3) Genetic tests demonstrate that these strains are merodiploid for large regions (up to 25%) of the Salmonella genome. (4) Recipient strains that inherit the HisD+ phenotype of these duplication-carrying revertants also inherit the donor's merodiploid state. (5) In certain revertants the functional hisD+ gene and the sequence which promotes merodiploid transductant formation are linked to chromosomal markers located far from the normal his region.Previous reports have concluded that the instability of strains isolated by this selection is due to translocation of the hisD+ gene to an extrachromosomal element (the pi-histidine factor). We believe that in all strains we have tested (33 independent isolates) instability can better be accounted for as due to tandem duplication events which permit expression of hisD. At least two mechanisms are responsible for duplication formation. One mechanism is dependent on recombination function and generates identical revertants having a duplication of 16% of the chromosome. A second mechanism operates independently of recombination activity; individual duplications produced by this process have variable endpoints. 相似文献
20.
Evidence for regulation of gluconeogenesis by the fructose phosphotransferase system in Salmonella typhimurium. 总被引:11,自引:9,他引:2 下载免费PDF全文
A genetic locus designated fruR, previously mapped to min 3 on the Salmonella typhimurium chromosome, gave rise to constitutive expression of the fructose (fru) regulon and pleiotropically prevented growth on all Krebs cycle intermediates. Regulatory effects of fruR were independent of cyclic AMP and its receptor protein and did not prevent uptake of Krebs cycle intermediates. Instead, the phosphotransferase system appeared to regulate gluconeogenesis by controlling the activities of phosphoenolpyruvate carboxykinase and phosphoenolpyruvate synthase. 相似文献