首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cdk9/Cyclin T1 complex is very important in controlling specific differentiative pathways of several cell types. Limited data are available regarding the expression of Cdk9/Cyclin T1 in hematopoietic and lymphoid tissues. Cdk9/Cyclin T1 expression seems to be related to particular stages of lymphoid differentiation/activation. In this study, we observed that the expression level of Cdk9/Cyclin T1 in vivo increases in memory B cells compared to naïve B cells, and in activated B cells, compared to non‐activated ones. The expression level of the Cdk9/Cyclin T1 complex does not increase in cells induced to differentiate in vitro. In addition, we showed that Cdk9 interacts with E12 and E47, specifically activated during Germinal Center (GC) reaction. Taken together this data suggests an active role for the Cdk9/Cyclin T1 complex during lymphoid differentiation through germinal center reaction. J. Cell. Physiol. 215: 276–282, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

2.
3.
4.
5.
6.
Reversible phosphorylation of nuclear proteins is required for both DNA replication and entry into mitosis. Consequently, most cyclin-dependent kinase (Cdk)/cyclin complexes are localized to the nucleus when active. Although our understanding of nuclear transport processes has been greatly enhanced by the recent identification of nuclear targeting sequences and soluble nuclear import factors with which they interact, the mechanisms used to target Cdk/cyclin complexes to the nucleus remain obscure; this is in part because these proteins lack obvious nuclear localization sequences. To elucidate the molecular mechanisms responsible for Cdk/cyclin transport, we examined nuclear import of fluorescent Cdk2/cyclin E and Cdc2/cyclin B1 complexes in digitonin-permeabilized mammalian cells and also examined potential physical interactions between these Cdks, cyclins, and soluble import factors. We found that the nuclear import machinery recognizes these Cdk/cyclin complexes through direct interactions with the cyclin component. Surprisingly, cyclins E and B1 are imported into nuclei via distinct mechanisms. Cyclin E behaves like a classical basic nuclear localization sequence–containing protein, binding to the α adaptor subunit of the importin-α/β heterodimer. In contrast, cyclin B1 is imported via a direct interaction with a site in the NH2 terminus of importin-β that is distinct from that used to bind importin-α.  相似文献   

7.
8.
9.
During Drosophila eye development, cell proliferation is coordinated with differentiation. Immediately posterior to the morphogenetic furrow, cells enter a synchronous round of S phase called second mitotic wave. We have examined the role of RBF, the Drosophila RB family homolog, in cell cycle progression in the second mitotic wave. RBF-280, a mutant form of RBF that has four putative cdk phosphorylation sites mutated, can no longer be regulated by Cyclin D or Cyclin E. Expression of RBF-280 in the developing eye revealed that RBF-280 does not inhibit G1/S transition in the second mitotic wave, rather it delays the completion of S phase and leads to abnormal eye development. These observations suggest that RB/E2F control the rate of S-phase progression instead of G1/S transition in the second mitotic wave. Characterization of the role of RBF in Cyclin D/Cdk4-mediated cellular growth showed that RBF-280 blocks Cyclin D/Cdk4 induced cellular growth in the proliferating wing disc cells but not in the non-dividing eye disc cells. By contrast, RBF-280 does not block activated Ras-induced cellular growth. These results suggest that the ability of Cyclin D/Cdk4 to drive growth in the proliferating wing cells is distinct from that in the none-dividing eye cells or the ability of activated Ras to induce growth, and that RBF may have a role in regulating growth in the proliferating wing discs.  相似文献   

10.
The retinoblastoma protein (pRb) inhibits progression through the cell cycle. Although pRb is phosphorylated when G1 cyclin-dependent kinases (Cdks) are active, the mechanisms underlying pRb regulation are unknown. In vitro phosphorylation by cyclin D1/Cdk4 leads to inactivation of pRb in a microinjection-based in vivo cell cycle assay. In contrast, phosphorylation of pRb by Cdk2 or Cdk3 in complexes with A- or E-type cyclins is not sufficient to inactivate pRb function in this assay, despite extensive phosphorylation and conversion to a slowly migrating "hyperphosphorylated form." The differential effects of phosphorylation on pRb function coincide with modification of distinct sets of sites. Serine 795 is phosphorylated efficiently by Cdk4, even in the absence of an intact LXCXE motif in cyclin D, but not by Cdk2 or Cdk3. Mutation of serine 795 to alanine prevents pRb inactivation by Cdk4 phosphorylation in the microinjection assay. This study identifies a residue whose phosphorylation is critical for inactivation of pRb-mediated growth suppression, and it indicates that hyperphosphorylation and inactivation of pRb are not necessarily synonymous.  相似文献   

11.
Over 10 years ago, cdk6 was identified as a new member in a family of vertebrate cdc-2 related kinases. This novel kinase was found to partner with the D-type cyclins and to possess pRb kinase activity in vitro and has since been understood to function solely as a pRb kinase in the regulation of the G(1) phase of the cell cycle. In the past 2 years, several independent studies in multiple cell types have indicated a novel role for cdk6 in differentiation. For example, cdk6 expression must be reduced to allow proper osteoblast and osteoclast differentiation, forced cdk6 expression blocked differentiation of mouse erythroid leukemia cells and cdk6 expression in primary astrocytes favors the expression of progenitor cell markers. Since exit from the cell cycle is a necessary step in terminal differentiation, down-regulation of a mitogenic factor may be expected in this process, however it is surprising that this association has not been previously uncovered and that it is apparently not shared with cdk4, long understood to be a functional homolog of cdk6. The mechanism of cdk6 function in differentiation is not understood, but it may extend beyond the established role of cdk6 as a pRb kinase. As this story unfolds it will be important to discover if the function of cdk6 in differentiation is pRb-dependent or pRb-independent, since pRb has long been established as a key factor in initiating and maintaining cell cycle exit during differentiation.  相似文献   

12.
The pro-apoptotic function of p53 has been well defined in preventing genomic instability and cell transformation. However, the intriguing fact that p53 contributes to a pro-survival advantage of tumor cells under DNA damage conditions raises a critical question in radiation therapy for the 50% human cancers with intact p53 function. Herein, we reveal an anti-apoptotic role of mitochondrial p53 regulated by the cell cycle complex cyclin B1/Cdk1 in irradiated human colon cancer HCT116 cells with p53+/+ status. Steady-state levels of p53 and cyclin B1/Cdk1 were identified in the mitochondria of many human and mouse cells, and their mitochondrial influx was significantly enhanced by radiation. The mitochondrial kinase activity of cyclin B1/Cdk1 was found to specifically phosphorylate p53 at Ser-315 residue, leading to enhanced mitochondrial ATP production and reduced mitochondrial apoptosis. The improved mitochondrial function can be blocked by transfection of mutant p53 Ser-315-Ala, or by siRNA knockdown of cyclin B1 and Cdk1 genes. Enforced translocation of cyclin B1 and Cdk1 into mitochondria with a mitochondrial-targeting-peptide increased levels of Ser-315 phosphorylation on mitochondrial p53, improved ATP production and decreased apoptosis by sequestering p53 from binding to Bcl-2 and Bcl-xL. Furthermore, reconstitution of wild-type p53 in p53-deficient HCT116 p53−/− cells resulted in an increased mitochondrial ATP production and suppression of apoptosis. Such phenomena were absent in the p53-deficient HCT116 p53−/− cells reconstituted with the mutant p53. These results demonstrate a unique anti-apoptotic function of mitochondrial p53 regulated by cyclin B1/Cdk1-mediated Ser-315 phosphorylation in p53-wild-type tumor cells, which may provide insights for improving the efficacy of anti-cancer therapy, especially for tumors that retain p53.  相似文献   

13.
14.
索珊珊  张伟  汪洌 《生命科学》2012,(4):340-345
ThPOK(T-helper-inducing POZ/Krueppel-like factor)又被称为Zbtb7b、Zfp67、cKrox,隶属于一个很大的转录因子家族——POK家族。ThPOK最初是被认为与Ⅰ型胶原蛋白基因的转录抑制有关,但近年来的研究发现,ThPOK在T细胞分化过程中至关重要,特别是对CD4^+T细胞的分化发育起着命运决定的核心作用。该文综述了ThPOK在CD4^+T细胞分化过程中的作用特点及其与另外两种重要转录因子GATA3和Runx3的相互作用关系,并在此基础上阐述了ThPOK在其他T细胞,如iNKT细胞、γδT细胞及效应CD8^+T细胞中的作用功能。  相似文献   

15.
Comment on: Blazek D, et al. Genes Dev 2011; 25:2158–72  相似文献   

16.
Eukaryotic cell cycle progression is controlled by the ordered action of cyclin-dependent kinases, activation of which occurs through the binding of the cyclin to the Cdk followed by phosphorylation of a conserved threonine in the T-loop of the Cdk by Cdk-activating kinase (CAK). Despite our understanding of the structural changes, which occur upon Cdk/cyclin formation and activation, little is known about the dynamics of the molecular events involved. We have characterized the mechanism of Cdk2/cyclin A complex formation and activation at the molecular and dynamic level by rapid kinetics and demonstrate here that it is a two-step process. The first step involves the rapid association between the PSTAIRE helix of Cdk2 and helices 3 and 5 of the cyclin to yield an intermediate complex in which the threonine in the T-loop is not accessible for phosphorylation. Additional contacts between the C-lobe of the Cdk and the N-terminal helix of the cyclin then induce the isomerization of the Cdk into a fully mature form by promoting the exposure of the T-loop for phosphorylation by CAK and the formation of the substrate binding site. This conformational change is selective for the cyclin partner.  相似文献   

17.
18.
19.
We have evaluated the ability of a peptide-specific, I-Ak-restricted murine T hybridoma to bind its Ag in the presence and absence of class II MHC molecules. The restricting Ia molecule, when supplied as a plasma membrane preparation of I-Ak-expressing APC, specifically increases the avidity of the Ag-binding complex by lengthening its t1/2, without affecting the rate at which the complex is formed. Experiments using mutated I-Ak molecules indicate that the ability of a mutant Ia species to present Ag is distinct from its ability to stabilize the Ag-recognition complex, suggesting that T cell stimulation depends not only upon stabilization of Ag-TCR-Ia complexes, but also upon distinct Ia-influenced conformational signals.  相似文献   

20.
The proper timing and fidelity of cell cycle transitions is critical for the survival of organisms. Cyclin-dependent kinases orchestrate many cell cycle transitions in eukaryotes including S phase entry and mitosis. Accurate chromosome segregation during mitosis is one of the key events regulated by the cell cycle and many proteins function together to ensure the fidelity of this process. In S. cerevisiae, the DASH complex is essential for chromosome segregation. The DASH complex binds to microtubules and kinetochores and regulates their association. Here we report that Askl, one component of DASH, is phosphorylated during the cell cycle. This phosphorylation is dependent on Cdks in vivo, and in vitro Cdc28 can phosphorylate Askl. We identify two Cdk phosphorylation sites in Askl and find that the phosphorylation of Askl is important for its full activity in vivo. Thus, the DASH complex is directly regulated by cyclin-dependent kinases to facilitate chromosome segregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号