首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
To study the fate of external membrane proteins during phagocytosis, rabbit peritoneal neutrophils were labeled by enzymatic iodination. Iodine was incorporated into at least 13 proteins ranging in size from approximately 250,000 to 18,000 daltons as judged from autoradiography of gels after SDS-polyacrylamide gel electrophoresis of labeled cells. The major contractile proteins of neutrophils, actin and myosin, were not labeled when intact cells were iodinated but were labeled when homogenates of these cells were iodinated. Nine of the iodinated proteins were released by mild protease treatment of intact cells. A plasma membrane-rich fraction was isolated by density centrifugation. This fraction was enriched at least 10-fold for lactoperoxidase-labeled acid-insoluble proteins. It was enriched to the same extent for the presence of iodinated wheat germ agglutinin that had been bound to intact cells at 4 degrees C before homogenization. Analysis of SDS-polyacrylamide gel electrophoresis revealed that the proteins of this fraction were predominantly of high molecular weight. However, only 8 of the 13 proteins iodinated on intact cells were found in this fraction. The remaining five were enriched in a dense fraction containing nuclei, intact cells, and membranous vesicles, and may represent a specialized segment of the neutrophil cell surface.  相似文献   

2.
We have analyzed the surface proteins of cultured normal rat kidney (NRK) cells and virus-transfromed NRK cells subjected to iron deprivation. Such a treatment specifically induces two transformation-sensitive plasma membrane-associated glycoproteins with a subunit molecular wegiht of 160,000 (160 K) and 130,000 (130 K) daltons in NRK cells. In these cells the 160 K glycoprotein is readily available to lactoperoxidase-mediated iodination, and the 130 K is apparently inaccessible to iodination. Major differences were revealed when iodinated membrane proteins of normal and virus-transformed cells subjected to iron deprivation were compared. In Kirsten sarcoma virus-transformed NRK cells the 160 K glycoprotein was weakly labeled. In two clones of simian virus 40-transformed NRK cells the 160 K glycoprotein was weakly labeled or not at all. The 130 K glycoprotein was inaccessible to iodination in all the virus-transformed cell lines. The 160 K and 130 K glycoproteins were isolated form plasma membranes of NRK cells using preparative SDS gel electrophoresis. Antibodies generated against these glycoproteins stained the external surfaces of NRK cells and induced antigen redistribution. Evidence presented suggests that 160 K and 130 K are plasma membrane-associated procollagen molecules. A possible interaction of these proteins with transferrin is also described. The data suggest that these proteins may have an important role in the sequence of events leading to transformation.  相似文献   

3.
Rat liver rough microsomes were labeled enzymatically with 125I using lactoperoxidase and glucose oxidase. In intact microsomes only proteins exposed on the outside face of the microsomal membrane were iodinated. Low concentrations of detergent (0.049% deoxycholate) were used to allow entrance of the iodination system into the vesicles without disassembling the membranes. This led to iodination of the soluble content proteins and to an increased labeling of the membrane proteins. The distribution of radioactivity in microsomal proteins was analyzed after separation by sodium dodecyl sulfate acrylamide gel electrophoresis. Most membrane proteins were labeled when intact microsomes were iodinated. No major membrane proteins were exclusively labeled in the presence of low detergent concentrations or after complete membrane disassembly. Therefore it is unlikely that there are major membrane proteins, other than glycoproteins, present only on the inner membrane face or completely embedded within the microsomal membrane. Microsomal proteins were also labeled by incubating rough microsomes with [3H]-NaBH4 after reaction with pyridoxal phosphate. Microsomal membranes were permeable to these small molecular weight reagents as shown by the fact that proteins in the vesicular cavity as well as membrane proteins were labeled with this system.  相似文献   

4.
Cell surface polypeptides of mouse pachytene spermatocytes and round spermatids (steps 1–8) have been iodinated using 1,2,3,6,tetracholoro-3α, 6α-diphenylglycouril (IODOGEN). Labeled proteins have been assayed using two-dimensional polyacrylamide electrophoresis and radioautography. Purified plasma membranes, prepared from both spermatocytes and spermatids after the iodination of intact cells, exhibit 25–30 polypeptides which label reproducibly. No significant qualitative differences are noted in the labeled polypeptide map obtained from each of the purified cell types. Iodinated proteins range in molecular weight from greater than 100k daltons to approximately 40k daltons. The isoelectric points of labeled constituents range from pI 5.7 to 7.2. Three polypeptides represent the major iodinated species: p 94/5.8, p 75/5.9, and p 53/7.1. Comparison with total plasma membrane constituents assayed using Coomassie brilliant blue indicates that many of the radioactively labeled proteins are not present in quantities sufficient to allow ready detection without isotopic techniques. As a result, many of the proteins identified autoradiographically represent newly described surface components of mouse pachytene spermatocytes and round spermatids. The preparation of purified plasma membrane fractions prior to electrophoresis ensures that all iodinated species are in fact cell surface components. Furthermore, experiments designed to assess the vectorial nature of the IODOGEN-catalyzed labeling procedure suggest that most, if not all, of the iodinated species are exposed on the external side of the cell plasma membrane. Therefore, these studies have (1) identified hitherto unrecognized plasma membrane components of mouse pachytene spermatocytes and round spermatids and (2) provided the first available biochemical data concerning the molecular orientation of particular proteins in the surface membranes of developing mouse spermatogenic cells.  相似文献   

5.
Detection of glycoproteins in the Acanthamoeba plasma membrane   总被引:1,自引:0,他引:1  
In the present study we have shown that glycoproteins are present in the plasma membrane of Acanthamoeba castellanii by utilizing different radioactive labeling techniques. Plasma membrane proteins in the amoeba were iodinated by 125I-lactoperoxidase labeling and the solubilized radiolabeled glycoproteins were separated by lectin-Sepharose affinity chromatography followed by polyacrylamide gel electrophoresis. The periodate/NaB3H4 and galactose oxidase/NaB3H4 labeling techniques were used for labeling of surface carbohydrates in the amoeba. Several surface-labeled glycoproteins were observed in addition to a diffusely labeled region with Mr of 55,000-75,000 seen on electrophoresis, which could represent glycolipids. The presence of glycoproteins in the plasma membrane of Acanthamoeba castellanii was confirmed by metabolic labeling with [35S]methionine followed by lectin-Sepharose affinity chromatography and polyacrylamide gel electrophoresis.  相似文献   

6.
Lactoperoxidase catalysed iodination of tyrosyl residues was used to label the exposed plasma membrane proteins in intact Ehrlich ascites tumor cells. Autoradiography of 125I-labeled intact cells revealed that the label was predominantly associated with the plasma membrane. When whole cells were solubilized and subjected to gel electrophoresis, two major labeled peptide classes of 100 000 and 80 000 D along with 4 minor labeled classes were found. An identical labeling pattern was obtained when plasma membranes isolated from labeled cells were solubilized and subjected to gel electrophoresis. These results demonstrate that the number of exposed plasma membrane peptides and their molecular weights can be determined without first isolating the membrane by subcellular fractionation procedures, a standard approach in most studies.  相似文献   

7.
The half-lives of turnover of plasma membrane proteins in rat hepatoma tissue, culture cells, and in primary cultures of rat hepatocytes have been analyzed after resolution by two-dimensional gel electrophoresis. Cell membranes were externally labeled via iodination catalyzed by lactoperoxidase and glucose oxidase. A bimodal pattern of turnover was found for the externally oriented plasma membrane proteins of rat hepatoma cells. Three glycoproteins analyzed in these cells had an average t 1/2 of 22 h while eight proteins which did not bind to concanavalin A had an average t 1/2 of 80 h. In contrast, more heterogeneous rates of turnover were found for the externally oriented plasma membrane proteins of primary cultures of hepatocytes. Most, if not all, of the membrane proteins accessible to iodination in these cells were glycoproteins. Among the glycoproteins resolved by two-dimensional polyacrylamide electrophoresis, the receptors for asialoglycoproteins had the shortest half-lives (18 h). Other glycoproteins, mostly with higher molecular weights and different isoelectric points, showed a spectrum of half-lives ranging from 16 to 99 h. The turnover rates of membrane proteins of primary cultures of rat hepatocytes were also determined with [3H]- and [35S]methionine labeling of cells. Heterogeneous rates of turnover again were found among the labeled glycoproteins and nonglycoproteins. Among the 10 glycoproteins individually analyzed, the half-lives range from 17 to 67 h. Among the 21 proteins which do not bind to concanavalin A, the half-lives range from 18 h to more than 100 h. Three proteins analyzed showed an apparent biphasic pattern of turnover, having a fast phase with a half-life of 4-6 h and a slow phase with a half-life of 15-29 h. Several nonglycoproteins, including clathrin and actin associated with membrane vesicles had extremely long half-lives. The more than 5-fold difference in the half-life between clathrin and the receptors for asialoglycoproteins, which coexist in coated pits indicates that intrinsic proteins of the coated pits turn over at a different rate than peripheral components.  相似文献   

8.
A light vesicle fraction, apparently derived from the plasma membrane, was obtained following breakage of Chinese hamster ovary (CHO) cells by means of a fluid pump disrupting device. The final preparation was enriched approx. 40-fold over the homogenate in K+,Na+-stimulated ATPase and phosphodiesterase I, but only approx. 10-fold in 125I specific radioactivity after lactoperoxidase-catalyzed iodination. This preparation was compared with another plasma membrane fraction purified as large sheets via a two-phase centrifugation procedure. Two-dimensional polyacrylamide gel electrophoresis followed by Coomassie blue staining indicated that both fractions were fairly similar in polypeptide composition, although a few consistent differences were evident. However, staining of glycoproteins by the periodic acid-Schiff technique or by overlaying with 125I-labeled concanavalin A showed that the vesicle fraction was highly enriched in groups of high molecular weight, acidic glycoproteins which stain only weakly with Coomassie blue. These glycoproteins also bound 125I-labeled ricin I agglutinin and wheat germ agglutinin. They appear to be the major receptors for wheat germ agglutinin on the CHO cell surface. After surface labeling of cells by the 125I-lactoperoxidase technique, the membrane sheet fraction contained a large number of iodinated polypeptides, whereas labeling in the vesicle fraction was restricted almost entirely to the high molecular weight, acidic glycoproteins. It is proposed that the vesicle fraction constitutes a specific domain of the cell surface which is coated on its exterior by this group of glycoproteins. These components probably mask underlying proteins of the plasma membrane from external labeling.  相似文献   

9.
Rat spleen lymphocytes were iodinated (125 I) with lactoperoxidase. Quantitative autoradiographic studies on cells fixed immediately after iodination showed 19-24% of intracytoplasmic grains at 3HD and over from the plasma membrane. Normalization of grain density distribution and comparison of resulting curves with the universal curve of grain scatter of 125 I showed that a significant percentage of intracytoplasmic grains (36%) originates from intracytoplasmic labeled sources rather than from scattering from the heavily labeled plasma membrane. Damaged cells had a threefold grain density than intact cells. Radioactivity counts in sliced polyacrylamide gels of iodinated cells revealed 65-72% of total radioactivity in five peaks of apparent mol wt of 44, 50, 57, 90 and 195 thousand daltons. Segregation and internalization of anti-immunoglobulin-Ig-horseradish peroxidase (HRP) complexes from the iodinated plasma membrane proteins of lymphocytes was studied with quantitative autoradiography (125 I) and peroxidase cytochemistry; 64% of grains at 1.5HD (1,500 A) from the plasma membrane were within the cap zone, and 36% of grains remained outside the capped immunoglobulins; 45-57% of grains internalized together with Fab-anti-Ig-Ig-HRP, and 68% of grains internalized together with anti- Ig-Ig-HRP. These studies indicate that (a) iodination of rat spleen lymphocytes results in a significant internal labeling and that (b) immunoglobulins segregate into caps and internalize together with other iodinated plasma membrane proteins while a significant percentage of iodinated proteins (36%) are excluded from the immunoglobulin caps or internalization sites (32-55%).  相似文献   

10.
Intact HeLa cells and isolated HeLa cell plasma membranes were subjected to lactoperoxidase-catalysed iodination. The 125I-labelled proteins were separated by SDS-polyacrylamide gel electrophoresis. Six protein species with apparent molecular weights from 32 000 to 200 000 were accessible to labelling from the outer cell surface, while most of the proteins present in the plasma membrane were labelled when isolated plasma membranes were iodinated. Iodination of synchronized intact cells revealed that the labelling obtained was cell cycle dependent with maximal labelling at mitosis. No changes in the distribution of radioactivity among the labelled proteins were observed when cells from different phases were iodinated.  相似文献   

11.
Selective iodination and polypeptide composition of pinocytic vesicles   总被引:30,自引:15,他引:15       下载免费PDF全文
We describe a method for the specific radioiodination of pinocytic vesicles (PVs) based upon the simultaneous endocytosis of lactoperoxidase (LPO) and glucose oxidase (GO). Initial experiments indicated that LPO was interiorized by the macrophage cell line J774 by fluid phase pinocytosis and without detectable binding to the plasma membrane (PM). Interiorization varied linearly with enzyme concentration and exposure time, was temperature dependent, and was undetectable at 4 degrees C. Employing EM cytochemistry, LPO activity was restricted to PVs after a 3- to 5-min pulse at 37 degrees C. These results formed the basis of the method for iodinating the luminal surface of PVs: 5-min exposure to both LPO and GO at 37 degrees C followed by washes and iodination (addition of 125I and glucose) at 4 degrees C. Enzyme-dependent incorporation of iodide into the polypeptides of both PV membrane and contents occurred. Several lines of evidence indicated that there was selective labeling of PV as opposed to PM. Iodination did not occur if the pinocytic uptake of LPO ad GO was inhibited by low temperature. EM autoradiography showed a cytoplasmic localization of grains, whereas a clear PM association was evident with surface labeling. LPO was iodinated only after PV labeling and was present within organelles demonstrating latency. After PV iodination, > 75% of several labeled membrane antigens could be immunoprecipitated by monoclonal antibodies only after cell lysis. In contrast, all labeled antigens were accessible to antibody on intact cells after surface labeling. The polypeptide compositions of PM and PV membrane were compared by SDS polyacrylamide gel electrophoresis and by quantitative immune precipitation using a panel of anti-J774 monoclonal antibodies. The electrophoretic profiles of iodinated proteins (15-20 bands) were strikingly similar in NP-40 lysates of both PV and PM iodinated cells. In addition, eight membrane antigens examined by immune precipitation, including the trypsin-resistant immunoglobulin (Fc) receptor and the H-2Dd histocompatibility antigen, were found to be iodinated to the same relative extents by both labeling procedures. We conclude that PV membrane is formed from a representative sample of PM polypeptide components.  相似文献   

12.
Iodination of red blood cells under optimal conditions by the Phillips-Morrison method leads to the iodination of two surface proteins. Modification of these conditions leads to the labeling of additional membrane proteins; labeling of hemoglobin can also occur. These results lead to the conclusion that, depending on the conditions of iodination, proteins located at various depths of the membrane can be labeled. This information was used in establishing an assay for the optimal iodination conditions of HeLa cells. Such iodinated HeLa cells grow at the same rate as control HeLa cells; most of these iodinated surface proteins can be removed by subsequent treatment with pronase.  相似文献   

13.
Enzymatic Iodination of Sindbis Virus Proteins   总被引:37,自引:27,他引:10       下载免费PDF全文
Sindbis virus was iodinated by using the enzyme lactoperoxidase, an iodination technique which labels only surface proteins. By this technique, the two viral glycoproteins are labeled, and the internal viral protein is not. The two glycoproteins are iodinated to strikingly different extents. This difference in susceptibility to iodination apparently is due to the position or conformation of the glycoproteins in the envelope spikes of the virion and not to differing contents of tyrosine, the amino acid substrate of lactoperoxidase. Both viral glycoproteins are iodinated by lactoperoxidase on the surface of Sindbis-infected chicken cells. Here, as in the virion, the glycoproteins are iodinated unequally, with the smaller glycoprotein again being preferentially iodinated. Another virus-specific protein found in large amounts in infected cells, and from which the preferentially iodinated virion glycoprotein is produced by a proteolytic cleavage, is not iodinated by lactoperoxidase. Thus it appears that the viral glycoproteins are present on the cell surface and that the precursor protein is not.  相似文献   

14.
The fate of the L-cell plasma membrane proteins labeled by enzymatic iodination was studied. The disappearance of label from growing cells exhibits a biphasic behavior, with 5-20% lost rapidly (t1/2 similar to 2 h) and 80-90% lost relatively slowly (t1/2 similar to 25-33 h). The loss is temperature dependent and serum independent, and is accompanied by the appearance of 51% (125-I)monoiodotyrosine (MIT) in the medium by 47 h. A variable amount (1-14%) of acid-insoluble label can be recovered in the medium over 47 h. Sodium dodecyl sulfate (SDS)-polyacrylamide gel labeling patterns from cells cultured up to 48 h after iodination reveal no change in the relative distribution of radioactivity, indicating similar rates of degradation for most of the labeled membrane proteins. The fate of the labeled membrane proteins was studied at various times after phagocytosis of nondigestible polystyrene particles. Iodinated L cells phagocytose sufficient 1.1 mum latex beads in 60 min to interiorize 15-30% of the total cell surface area. Electron microscope autoradiography confirmed that labeled membrane is internalized during phagocytosis. The latex-containing phagocytic vacuoles are isolated by flotation in a discontinuous sucrose gradient. 15-30% of the total incorporated label and a comparable percentage of alkaline phosphodiesterase I activity (PDase, a plasma membrane enzyme marker) are recovered in the phagocytic vacuole fraction. Lysosomal enzyme activities are found in the latex vacuole fraction, indicating formation of phagolysosomes. SDS gel analyses reveal that all of the radioactive proteins initially present on the intact cell's surface are interiorized to the same relative extent. Incorporated label and PDase activity disappear much more rapidly from the phagolysosomes than from the whole cell. In the phagolysosomal compartment, greater than 70% of the TCA-precipitable labeled proteins and all of the PDase activity are lost rapidly (t1/2 equals 1-2 h) but similar 30% of the labeled proteins in this compartment are degraded with a 17-20 h half-life. The slowly degraded label is due to specific long-lived polypeptides, of 85,000 and 8,000-15,000 daltons, which remain in the phagolysosomal membrane up to 40 h after phagocytosis.  相似文献   

15.
The enzymatic iodination technique has been utilized in a study of the externally disposed membrane proteins of the mouse L cell. Iodination of cells in suspension results in lactoperoxidase-specific iodide incorporation with no loss of cell viability under the conditions employed, less than 3% lipid labeling, and more than 90% of the labeled species identifiable as monoiodotyrosine. 90% of the incorporated label is localized to the cell surface by electron microscope autoradiography, with 5-10% in the centrosphere region and postulated to represent pinocytic vesicles. Sodium dodecylsulfate-polyacrylamide gels of solubilized L-cell proteins reveals five to six labeled peaks ranging from 50,000 to 200,000 daltons. Increased resolution by use of gradient slab gels reveals 15-20 radioactive bands. Over 60% of the label resides in approximately nine polypeptides of 80,000 to 150,000 daltons. Various controls indicate that the labeling pattern reflects endogenous membrane proteins, not serum components. The incorporated 125-I, cholesterol, and one plasma membrane enzyme marker, alkaline phosphodiesterase I, are purified in parallel when plasma membranes are isolated from intact, iodinated L cells. The labeled components present in a plasma membrane-rich fraction from iodinated cells are identical to those of the total cell, with a 10- to 20-fold enrichment in specific activity of each radioactive peak in the membrane.  相似文献   

16.
In previous publications (Muller, W.A., R.M. Steinman, Z.A. Cohn. 1980, J.Cell Biol. 86:292-314), we found that the membrane of macrophage phagolysosomes could be selectively radioiodinated in living cells, The technique required phagocytosis of lactoperoxidase covalently coupled to latex spheres (LPO-latex), followed by iodination on ice with Na(125)I and hydrogen peroxide. In this paper, we use the LPO-latex system to further analyze the composition and recycling of phagocytic vacuole membrane. Three approaches were employed to examine the polypeptide composition of the phagolysosome (PL) and plasma membranes (PM). (a) The efficiency of intracellular iodination was increased by increasing lysosomal pH with chloroquine. By one-dimensional SDS PAGE, the heavily labeled chloroquine-treated PL exhibited the same labeled polypeptides as PM iodinated extracellularly with LPO-latex. (b) Iodinated PL and PM were compared by two-dimensional gel electrophoresis. No differences in the isoelectric point and molecular weight of the major iodinated species were detected. (c) Quantitative immune precipitation was performed with five specific antibodies directed against cell surface antigens. Four antibodies precipitated similar relative amounts of labeled antigen on the cell surface and endocytic vacuole. One antibody, secreted by hybridoma 2.6, detected a 21-kdalton polypeptide that was enriched sevenfold in PL membrane. This enrichment was cell surface-derived, since the amount of labeled 2.6 was increased sevenfold when iodinated PM was driven into the cell during latex uptake. Therefore, intracellular iodination primarily detects PL proteins that are identical to their PM counterparts. Additional studies employed electron microscope autoradiography to monitor the centrifugal flow of radiolabeled polypeptides from PL to PM. Cells were iodinated intralysosomally and returned to culture for only 5-10 min at 37 degrees C. Most of the cell-associated label then redistributed to the cell surface or its adjacent area. Significant movement out of the lysosome compartment occurred even at 2 degrees C and 22 degrees C. Extensive and rapid membrane flow through the secondary lysosome presumably contributes to the great similarity between PM and PL membrane polypeptides.  相似文献   

17.
P L Witt  M D Bownds 《Biochemistry》1987,26(6):1769-1776
Several functions have been identified for the plasma membrane of the rod outer segment, including control of light-dependent changes in sodium conductance and a sodium-calcium exchange mechanism. However, little is known about its constituent proteins. Intact rod outer segments substantially free of contaminants were prepared in the dark and purified on a density gradient of Percoll. Surface proteins were then labeled by lactoperoxidase-catalyzed radioiodination, and intact rod outer segments were reisolated. Membrane proteins were identified by polyacrylamide gel electrophoresis and autoradiography. The surface proteins labeled included rhodopsin, the major membrane protein, and 12 other proteins. Several control experiments indicated that the labeled proteins are integral membrane proteins and that label is limited to the plasma membrane. To compare the protein composition of plasma membrane with that of the internal disk membrane, purified rod outer segments were lysed by hypotonic disruption or freeze-thawing, and plasma plus disk membranes were radioiodinated. In these membrane preparations, rhodopsin was the major iodinated constituent, with 12 other proteins also labeled. Autoradiographic evidence indicated some differences in protein composition between disk and plasma membranes. A quantitative comparison of the two samples showed that labeling of two proteins, 24 kilodaltons (kDa) and 13 kDa, was enriched in the plasma membrane, while labeling of a 220-kDa protein was enriched in the disk membrane. These plasma membrane proteins may be associated with important functions such as the light-sensitive conductance and the sodium-calcium exchanger.  相似文献   

18.
Both internal and external proteins in vesicular stomatitis virus were labeled when intact virions were iodinated with 50 μm iodide; however, only the surface proteins were labeled when the same procedure was carried out at low iodide concentrations (below 0.5 μm). This result together with similar observations reported earlier with another enveloped virus, Rous-associated virus-61 (RAV-61), suggest that viral envelopes provide a barrier to iodination by chloramine-T at low, but not at high, iodide concentrations. By monitoring the permeability of the RAV-61 envelope to successive iodinations and to iodination in the presence of chaotropic thiocyanate ions, it was shown that the permeability of the viral envelope was not altered at the higher concentrations of iodide. Further results support the hypothesis that iodination mediated by chloramine-T inolves two different iodinating species: (a) a membrane impermeable one, possibly “iodamine-T,” which predominates at low iodide concentrations, and (b) a membrane permeable species, possibly molecular iodine, which predominates at high concentrations of iodide. These results reinforce the proposal that the chloramine-T procedure is a useful method for specifically labeling surface proteins of lipid-enveloped structures.  相似文献   

19.
1. Human tumour KB cells growing in suspension culture were labelled by lactoperoxidase-catalysed iodination. Several major radioactively labelled proteins were detected by poly-acrylamide-gel electrophoresis in sodium dodecyl sulphate. 2. After reduction with 2-mercaptoethanol the major radioactive electrophoretic bands migrated as substances with apparent molecular weights of about 90,000, 70,000, 60,000, 50,000 and 34,000 and corresponded closely to the positions at which the major glycosylated polypeptide subunits of KB-cell homogenates migrated during electrophoresis under the same conditions. 3. All the iodinated protein bands except one were present in purified preparations of KB plasma membranes. 4. Most of the 50,000-molecular-weight species, supposedly a surface protein component labelled during iodination of intact and viable KB cells by a non-penetrating enzyme reagent, appeared in a crude nuclear pellet during fractionation. 5. The glyco-protein nature of the major external iodinated species of KB cells was confirmed by adsorption chromatography of these substances, dissolved in low concentrations of Triton X-100, on a lectin-Sepharose column. Two major enzyme markers of the KB plasma membrane, 5'-nucleotidase and alkaline phosphatase were also found to be glycoproteins. 6. Enzyme-catalysed incorporation of radioactive iodine into a fraction of low molecular weight and soluble in chloroform-methanol mixtures also occurred during lactoperoxidase treatment of intact KB cells. The partial characterization of this fraction is briefly described.  相似文献   

20.
A method has been developed to deliver an idoinating system into the confines of the phagolysosome, allowing us to study the nature of the phagolysosomal membrane. Lactoperoxidase (LPO) is covalently coupled to carboxylated latex spheres (LPO-latex) in a stable, enzymatically active form. The addition of LPO-latex to cultured macrophages leads to their rapid attachment, ingestion, and enclosure in a plasma membrane- derived phagocytic vacuole. These organelles rapidly fuse with preexisting lysosomes and are converted to phagolysosomes (PL) that demonstrates both acid phosphatase and lactoperoxidase activities. The exposure of LPO-latex containing cells to 125I- and an extracellular peroxide-generating system, glucose oxidase-glucose, at 4 degrees C leads to incorporation of label into TCA-precipitable material. The incorporated cel-associated label was present as monoiodotyrosine, and negligible amounts were found in lipids. Cell viability remained > 99%. Autoradiography at both the light and EM level revealed that > 97% of the cells were labeled, and quantitative analysis demonstrated the localization of grains to LPO-latex containing PL. PL were separated on sucrose gradients, and their radiolabel was confined almost exclusively to the membrane rather than soluble contents. SDS-polyacrylamide gel electrophoretic analysis of the peptides iodinated from within PL demonstrated at least 24 species with molecular weights ranging from 12,000 to 250,000. A very similar group of proteins was identified on the plasma membrane (PM) after surface iodination, and on latex phagosomes derived from iodinated PM. No novel proteins were detected in PL, either immediately after phagosome-lysosome fusion or after 1 h of intracytoplasmic residence. We conclude that the membrane proteins accessible to LPO-catalyzed iodination on the luminal surface of the PL and on the external face of the PM are similar, if not identical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号