首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
N-glycans of human neutrophil azurocidin, enzymatic inactive homolog of serine proteinase playing important and multifunctional roles in antimicrobial defense, endotoxin binding, monocyte, and T-cell activation, were isolated by hydrazinolysis and fluorescence labeled. An ion-exchange chromatography on GlycoSep C column separated neutral, mono-, and disialylated glycans. The glycans from each group were separated subsequently on GlycoSep N and GlycoSep H columns. Sequential exoglycosidase treatment and HPLC mapping allowed determining 21 different glycan structures, majority of them being neutral (79.8%), the rest-mono- (13.1%) and disialylated (1.2%).  相似文献   

2.
To investigate the relationship between phylogeny and glycan structures, we analyzed the structure of planarian N-glycans. The planarian Dugesia japonica, a member of the flatworm family, is a lower metazoan. N-glycans were prepared from whole worms by hydrazinolysis, followed by tagging with the fluorophore 2-aminopyridine at their reducing end. The labeled N-glycans were purified, and separated by three HPLC steps. By comparison with standard pyridylaminated N-glycans, it was shown that the N-glycans of planarian include high mannose-type and pauci-mannose-type glycans. However, many of the major N-glycans from planarians have novel structures, as their elution positions did not match those of the standard glycans. The results of mass spectrometry and sugar component analyses indicated that these glycans include methyl mannoses, and that the most probable linkage was 3-O-methylation. Furthermore, the methyl residues on the most abundant glycan may be attached to the non-reducing-end mannose, as the glycans were resistant to α-mannosidase digestion. These results indicate that methylated high-mannose-type glycans are the most abundant structure in planarians.  相似文献   

3.
N-glycan structures of recombinant human serum transferrin (hTf) expressed by Lymantria dispar (gypsy moth) 652Y cells were determined. The gene encoding hTf was incorporated into a Lymantria dispar nucleopolyhedrovirus (LdMNPV) under the control of the polyhedrin promoter. This virus was then used to infect Ld652Y cells, and the recombinant protein was harvested at 120 h postinfection. N-glycans were released from the purified recombinant human serum transferrin and derivatized with 2-aminopyridine; the glycan structures were analyzed by a two-dimensional HPLC and MALDI-TOF MS. Structures of 11 glycans (88.8% of total N-glycans) were elucidated. The glycan analysis revealed that the most abundant glycans were Man1-3(+/-Fucalpha6)GlcNAc2 (75.5%) and GlcNAcMan3(+/-Fucalpha6)GlcNAc2 (7.4%). There was only approximately 6% of high-mannose type glycans identified. Nearly half (49.8%) of the total N-glycans contained alpha(1,6)-fucosylation on the Asn-linked GlcNAc residue. However alpha(1,3)-fucosylation on the same GlcNAc, often found in N-glycans produced by other insects and insect cells, was not detected. Inclusion of fetal bovine serum in culture media had little effect on the N-glycan structures of the recombinant human serum transferrin obtained.  相似文献   

4.
N-cadherin is calcium-dependent cell adhesion molecule that mediates cell-cell adhesion and also modulates cell migration and tumor invasion. N-cadherin is a heavily glycosylated protein. Many studies have demonstrated that malignant transformation of a number of cell types correlates with changes of cell surface N-linked oligosacharides. We have studied the carbohydrate profile of N-cadherin synthesized in human melanoma cell lines and the effect of this protein and complex N-glycans on in vitro migration of melanoma cells from the primary tumor site--WM35 and from different metastatic sites WM239 (skin), WM9 (lymph node), and A375 (solid tumor). N-cadherin was immunoprecipitated with anti-human N-cadherin polyclonal antibodies. Characterization of its carbohydrate moieties was carried out by SDS-PAGE electrophoresis and blotting, followed by immunochemical identification of the N-cadherin polypeptides and on-blot deglycosylation using PNGase F for glycan release. N-glycans were separated by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) and their structures identified by the computer matching of the resulting masses with those derived from a sequence database. The assay of in vitro chemotaxic cell migration was performed using QCM Cell Invasion Assay (Chemicon). N-cadherin from WM35 (primary tumor site) possessed high-mannose and biantennary complex type glycans with alpha2-6 linked sialic acid. N-cadherin from WM239, WM9, and A375 cell lines possessed mostly tri- or tetra-antennary complex type glycans. In addition, N-cadherin from WM9 (lymph node metastatic site) and A375 (solid tumor metastatic site) contained heavily alpha-fucosylated complex type chains with alpha2,3 linked sialic acid. Blocking of N-cadherin-mediated intercellular interaction by N-cadherin-specific antibodies significantly (of about 40%) inhibited migration of melanoma cells. Inhibition of synthesis of complex type N-glycans by swainsonine (mannosidase II inhibitor) led to 50% decrease of cell migration. The results indicated differences between N-cadherin glycans from primary and metastatic sites and confirmed influence of N-cadherin and complex -type N-glycans on in vitro migration of melanoma cells.  相似文献   

5.
N-Glycans from major glycoproteins of pigeon egg white (ovotransferrin, ovomucoid, and ovalbumins) were enzymatically released and were reductively aminated with 2-aminopyridine, separated, and structurally characterized by mass spectrometry and a three-dimensional mapping technique using three different columns of high performance liquid chromatography (HPLC) (Takahashi, N., Nakagawa, H., Fujikawa, K., Kawamura, Y., and Tomiya, N. (1995) Anal. Biochem. 226, 139-146). Twenty-five major N-glycan structures, all of them hitherto unknown, were identified as pyridylamino derivatives. Of these, 13 were neutral, 10 were monosialyl, and 2 were disialyl oligosaccharides. All N-glycans contain from one to four Galalpha(1,4)Galbeta(1,4) sequences at the nonreducing terminal positions and are devoid of fucose residues. N-Acetylneuraminic acids were alpha(2,6)-linked only to beta-galactose. The HPLC profiles of the N-glycans from four different glycoproteins were qualitatively very similar to each other, but not identical in the peak distributions. Monosialyl glycans were most abundant in all four glycoproteins, followed by neutral glycans. Disialyl glycans were lowest in ovotransferrin, and highest in ovomucoid. Triantennary structures with bisecting GlcNAc were predominant in ovotransferrin, and tetra-antennary (with and without bisecting GlcNAc-containing) structures were predominant in other glycoproteins. Penta-antennary structures (with a sialic acid and without bisecting GlcNAc residue) were also found in small quantities in all four glycoproteins. In contrast to the chicken egg white counterparts, which contain mostly high mannose and hybrid types, all N-glycan structures in the major pigeon egg white glycoproteins are complex type.  相似文献   

6.
N-cadherin is calcium-dependent cell adhesion molecule that mediates cell-cell adhesion and also modulates cell migration and tumor invasion. N-cadherin is a heavily glycosylated protein. Many studies have demonstrated that malignant transformation of a number of cell types correlates with changes of cell surface N-linked oligosacharides. We have studied the carbohydrate profile of N-cadherin synthesized in human melanoma cell lines and the effect of this protein and complex N-glycans on in vitro migration of melanoma cells from the primary tumor site—WM35 and from different metastatic sites WM239 (skin), WM9 (lymph node), and A375 (solid tumor). N-cadherin was immunoprecipitated with anti-human N-cadherin polyclonal antibodies. Characterization of its carbohydrate moieties was carried out by SDS-PAGE electrophoresis and blotting, followed by immunochemical identification of the N-cadherin polypeptides and on-blot deglycosylation using PNGase F for glycan release. N-glycans were separated by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) and their structures identified by the computer matching of the resulting masses with those derived from a sequence database. The assay of in vitro chemotaxic cell migration was performed using QCM? Cell Invasion Assay (Chemicon). N-cadherin from WM35 (primary tumor site) possessed high-mannose and biantennary complex type glycans with α2–6 linked sialic acid. N-cadherin from WM239, WM9, and A375 cell lines possessed mostly tri- or tetra-antennary complex type glycans. In addition, N-cadherin from WM9 (lymph node metastatic site) and A375 (solid tumor metastatic site) contained heavily α-fucosylated complex type chains with α2,3 linked sialic acid. Blocking of N-cadherin-mediated intercellular interaction by N-cadherin-specific antibodies significantly (of about 40%) inhibited migration of melanoma cells. Inhibition of synthesis of complex type N-glycans by swainsonine (mannosidase II inhibitor) led to 50% decrease of cell migration. The results indicated differences between N-cadherin glycans from primary and metastatic sites and confirmed influence of N-cadherin and complex -type N-glycans on in vitro migration of melanoma cells. Published in 2004.  相似文献   

7.
Rat C-CAM is a ubiquitous, transmembrane and carcinoembryonic antigen related cell adhesion molecule. The human counterpart is known as biliary glycoprotein (BGP) or CD66a. It is involved in different cellular functions ranging from intercellular adhesion, microbial receptor activity, signaling and tumor suppression. In the present study N-glycosylation of C-CAM immunopurified from rat liver was analyzed in detail. The primary sequence of rat C-CAM contains 15 potential N-glycosylation sites. The N-glycans were enzymatically released from glycopeptides, fluorescently labeled with 2-aminobenzamide, and separated by two-dimensional HPLC. Oligosaccharide structures were characterized by enzymatic sequencing and MALDI-TOF-MS. Mainly bi- and triantennary complex structures were identified. The presence of type I and type II chains in the antennae of these glycans results in heterogeneous glycosylation of C-CAM. Sialylation of the sugars was found to be unusual; bi- and triantennary glycans contained three and four sialic acid residues, respectively, and this linkage seemed to be restricted to the type I chain in the antennae. Approximately 20% of the detected sugars contain these unusual numbers of sialic acids. C-CAM is the first transmembrane protein found to be oversialylated.  相似文献   

8.
The N-glycans from 27 "plant" foodstuffs, including one from a gymnospermic plant and one from a fungus, were prepared by a new procedure and examined by means of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). For several samples, glycan structures were additionally investigated by size-fractionation and reverse-phase high-performance liquid chromatography in conjunction with exoglycosidase digests and finally also (1)H-nuclear magnetic resonance spectroscopy. The glycans found ranged from the typical vacuolar "horseradish peroxidase" type and oligomannose to complex Le(a)-carrying structures. Though the common mushroom exclusively contained N-glycans of the oligomannosidic type, all plant foods contained mixtures of the above-mentioned types. Apple, asparagus, avocado, banana, carrot, celery, hazelnut, kiwi, onion, orange, pear, pignoli, strawberry, and walnut were particularly rich in Le(a)-carrying N-glycans. Although traces of Le(a)-containing structures were also present in almond, pistachio, potato, and tomato, no such glycans could be found in cauliflower. Coconut exhibited almost exclusively N-glycans containing only xylose but no fucose. Oligomannosidic N-glycans dominated in buckwheat and especially in the legume seeds mung bean, pea, peanut, and soybean. Papaya presented a unique set of hybrid type structures partially containing the Le(a) determinant. These results are not only compatible with the hypothesis that the carbohydrate structures are another potential source of immunological cross-reaction between different plant allergens, but they also demonstrate that the Le(a)-type structure is very widespread among plants.  相似文献   

9.
Intercellular adhesion molecule-5 (ICAM-5, telencephalin) is a dendritically polarized membrane glycoprotein expressed in tissues distinct from those expressing other ICAMs. Here, we determined the N-glycan structure of ICAM-5 purified from adult rat brain and compared it with that of other ICAMs. N-glycans were released by N-glycosidase F digestion and labeled with p-amino benzoic octylester (ABOE). ABOE-labeled glycans were analyzed by high performance liquid chromatography (HPLC) and mass spectrometry. The N-glycans obtained from rat brain ICAM-5 consisted of approximately 85% neutral, 10.2% sialylated-only, 2.8% sulfated-only, and 1.2% sialylated and sulfated glycans. Compared with the N-glycan structures of human ICAM-1 expressed in CHO cells, HEK cells, or mouse myeloma cells and ICAM-3 isolated from human T-cells, rat brain ICAM-5 had less highly branched glycans, sialylated glycans, and N-acetyllactosamine structures. In contrast, high-mannose-type N-glycans and Lewis X were more commonly found in rat brain ICAM-5 than in human ICAM-1 expressed in CHO cells, HEK cells, or mouse myeloma cells and ICAM-3 isolated from human T-cells. In addition, sulfated glycans contained GlcNAc 6-O-sulfate on the non-reducing terminal side. Our data will be important for the elucidation of the roles of the N-glycans expressed in neural cells, including those present on ICAM-5.  相似文献   

10.
For comparative biochemical interest, we analyzed the structures of N-glycans in a squid belonging to the Lophotrochozoa, one of the protostome clades. N-Glycans were prepared from squid skin by hydrazinolysis and re-N-acetylation followed by fluorescent tagging with 2-aminopyridine. The labeled N-glycans were purified, and their structures were determined by the two-dimensional HPLC mapping method combined with glycosidase digestions and mass spectrometry. We found that high mannose-type glycans, paucimannose-type glycans and complex-type glycans with a type-1 structure (Galbeta1-3GlcNAc) were dominant in squid skin. The complex-type glycans detected in the squid were similar to those in vertebrates, but have not yet been found in the Ecdysozoa, which is another protostome clade. However, paucimannose-type glycans are commonly found in the Ecdysozoa. Thus, the N-glycan structures of the squid belonging to the Lophotrochozoa have features common to those in vertebrates and the Ecdysozoa including insects and nematodes.  相似文献   

11.
Artificial environmental conditions in tissue culture, such as elevated relative humidity and rich nutrient medium, can influence and modify tissue growth and induce spontaneous changes from characteristic organization pattern to unorganized callus. As succulent plants with crassulacean acid metabolism, cacti are particularly susceptible to this altered growth environment. Glycosylated proteins of Mammillaria gracillis tissues cultivated in vitro, separated by SDS-PAGE, were detected with Con A after the transfer of proteins onto the nitrocellulose membrane. The glycan components were further characterized by affinity blotting with different lectins (GNA, DSA, PNA, and RCA(120)). The results revealed significant differences in glycoprotein pattern among the investigated cactus tissues (shoot, callus, hyperhydric regenerant, and tumor). To test whether the N-glycosylation of the same protein can vary in different developmental stages of cactus tissue, the N-glycans were analyzed by MALDI-TOF MS after in-gel deglycosylation of the excised 38-kDa protein band. Paucimannosidic-type N-glycans were detected in oligosaccharide mixtures from shoot and callus, while the hyperhydric regenerant and tumor shared glycans of complex type. The hybrid oligosaccharide structures were found only in tumor tissue. These results indicate that the adaptation of plant cells to artificial environment in tissue culture is reflected in N-glycosylation, and structures of N-linked glycans vary with different developmental stages of Mammillaria gracillis tissues.  相似文献   

12.
N-linked glycans of wall-bound exo- β -glucanases from mung bean and barley seedlings, namely Mung-ExoI and Barley-ExoII, were characterized. The N-linked glycans of Mung-ExoI and Barley-ExoII were liberated by gas-phase hydrazinolysis followed by re-N-acetylation. Their structures were determined by two-dimensional sugar-mapping analysis and MALDI-TOF mass spectrometry. N-glycans from both glucanases were of paucimannosidic-type (small complex-type) structures, Man α 1-6(±Man α 1-3)(Xyl β 1-2)Man β 1-4GlcNAc β 1-4(±Fuc α 1-3) GlcNAc, which are known as typical vacuole-type N-glycans. The results suggest that N-glycans of cell-wall glucanase were produced by partial trimming of complex-type N-glycans by exoglycosidases during its transport from Golgi apparatus to cell walls or in the cell walls.  相似文献   

13.

Background

Complex carbohydrate structures, glycans, are essential components of glycoproteins, glycolipids, and proteoglycans. While individual glycan structures including the SSEA and Tra antigens are already used to define undifferentiated human embryonic stem cells (hESC), the whole spectrum of stem cell glycans has remained unknown. We undertook a global study of the asparagine-linked glycoprotein glycans (N-glycans) of hESC and their differentiated progeny using MALDI-TOF mass spectrometric and NMR spectroscopic profiling. Structural analyses were performed by specific glycosidase enzymes and mass spectrometric fragmentation analyses.

Results

The data demonstrated that hESC have a characteristic N-glycome which consists of both a constant part and a variable part that changes during hESC differentiation. hESC-associated N-glycans were downregulated and new structures emerged in the differentiated cells. Previously mouse embryonic stem cells have been associated with complex fucosylation by use of SSEA-1 antibody. In the present study we found that complex fucosylation was the most characteristic glycosylation feature also in undifferentiated hESC. The most abundant complex fucosylated structures were Lex and H type 2 antennae in sialylated complex-type N-glycans.

Conclusion

The N-glycan phenotype of hESC was shown to reflect their differentiation stage. During differentiation, hESC-associated N-glycan features were replaced by differentiated cell-associated structures. The results indicated that hESC differentiation stage can be determined by direct analysis of the N-glycan profile. These results provide the first overview of the N-glycan profile of hESC and form the basis for future strategies to target stem cell glycans.  相似文献   

14.
Kim YG  Gil GC  Harvey DJ  Kim BG 《Proteomics》2008,8(13):2596-2610
The major barrier in transplantation of pig organs into humans is the presence of surface carbohydrate antigens (e.g., the Gal alpha 1-3 Gal beta 1-4GlcNAc-R (alpha-Gal) epitope) expressed on pig endothelial cells. In this study, total N-glycans from membrane glycoproteins derived from specific pathogen-free miniature pig kidney are identified by MALDI-TOF, negative ion ESI MS/MS and normal-phase HPLC (NP-HPLC) combined with exoglycosidase digestion. Over 100 N-glycans, including sialylated and neutral types, were identified. As well as the known alpha-Gal antigens, some of these glycans contained novel non-Gal carbohydrate antigens such as (Neu5Gc-Gal-GlcNAc) and Gal alpha 1-3 Lewis(x) (Gal-Gal-(Fuc)GlcNAc) which have not been reported before in N-glycans from pig organs. The ability of MALDI, ESI, and HPLC to measure the relative proportions of the glycans was evaluated. The HPLC resolution was insufficient for accurate work and some minor differences were noted in the ionization efficiencies of different glycan groups when measured by the two mass spectrometric techniques. However, the results indicated that the relative quantity of alpha-Gal epitope was in the region of 50% of the complex glycans. High-mannose type glycans were also abundant (35-43%) but appeared to be ionized more efficiently than the complex glycans by ESI than by MALDI.  相似文献   

15.
Ohl C  Albach C  Altevogt P  Schmitz B 《Biochimie》2003,85(6):565-573
N-glycans of the mouse glycoprotein HSA and its human analogue CD24 from lymphoblastoma, neuroblastoma and astrocytoma cell lines as well as from mouse brain homogenate were analysed and compared to each other and to the N-glycosylation pattern of total glycoproteins from mouse and human brain. The N-glycans were released from PVDF-blotted HSA or CD24 and separated on Carbograph SPE into neutral and acid glycans. The naturally neutral glycan fraction and the fraction of glycans rendered neutral after neuraminidase treatment were analysed without further purification by MALDI-MS. In each fraction, about 25 molecular ions with an intensity >10% of the base peak were identified which corresponded to glycans with distinct isobaric monosaccharide compositions. Comparison of the neutral and desialylated glycans revealed some similarities between the samples analysed, but also clear differences. HSA and CD24 from all cell lines express almost no neutral N-glycans with two or more fucose in contrast to brain HSA and glycoproteins from mouse and human brain. The lack of extensive fucosylation was also observed for desialylated glycans of HSA and CD24 from all cell lines analysed except for CD24 from a human neuroblastoma cell line which exhibits like total human and mouse brain glycoproteins a large variety of highly fucosylated, higher branched N-glycans. HSA from mouse brain carries in addition desialylated non-fucosylated glycans of high abundance which were detected, if at all, only at low intensity in all other samples analysed suggesting that they may be implicated in specific functions of mouse brain HSA. Therefore, a rapid assessment of similarities or differences between glycosylation patterns of a glycoprotein isolated from different sources is possible using methods as described here.  相似文献   

16.
Many reports show that N-glycans of glycoproteins play important roles in vectorial transport in MDCK cells. To assess whether structural differences in N-glycans exist between secretory glycoproteins and membrane glycoproteins, we studied the N-glycan structures of the glycoproteins isolated from MDCK cells. Polarized MDCK cells were metabolically labeled with [3H]glucosamine, and (3)H-labeled N-glycans of four glycoprotein fractions, secretory glycoproteins in apical and basolateral media, and apical and basolateral membrane glycoproteins, were released by glycopeptidase F. The structures of the free N-glycans were comparatively analyzed using various lectin column chromatographies and sequential glycosidase digestion. The four samples commonly contained high-mannose-type glycans and bi- and tri-antennary glycans with a bisected or non-bisected trimannosyl core. However, secretory glycoproteins in both media predominantly contained (sialyl)LacdiNAc sequences, +/-Sia alpha 2-->6GalNAc beta 1-->4GlcNAc beta 1-->R, which linked only to a non-bisected trimannosyl core. beta1-->4N-acetylgalactosaminyltransferase (beta 4GalNAc-T) activity in MDCK cells preferred non-bisected glycans to bisected ones in accordance with the proposed N-glycan structures. This secretory glycoprotein-predominant LacdiNAc sequence was also found in the case of human embryonic kidney 293 cells. These results suggest that the secretory glycoprotein-specific (sialyl)LacdiNAc sequence and the corresponding beta 4GalNAc-T are involved in transport of secretory glycoproteins.  相似文献   

17.
Rabies glycoprotein (RGP(WT)) contains N-glycosylation sequons at Asn(37), Asn(247), and Asn(319), although Asn(37) is not efficiently glycosylated. To examine N-glycan processing at Asn(247) and Asn(319), full-length glycosylation mutants, RGP(-2-) and RGP(--3), were expressed, and Endo H sensitivity was compared. When the Asn(247) sequon is present alone in RGP(-2-), 90% of its N-glycans are high-mannose type, whereas only 35% of the N-glycans at Asn(319) in RGP(--3) are high-mannose. When both sequons are present in RGP(-23), 87% of the N-glycans are of complex type. The differing patterns of Endo H sensitivity at sequons present individually or together suggests that glycosylation of one sequon affects glycosylation at another, distant sequon. To explore this further, we constructed soluble forms of RGP: RGP(WT)T441His and RGP(--3)T441His. Tryptic glycopeptides from these purified secreted proteins were isolated by HPLC and characterized by a 3D oligosaccharide mapping technique. RGP(WT)T441His had fucosylated, bi- and triantennary complex type glycans at Asn(247) and Asn(319). However, Asn(247) had half as many neutral glycans, more monosialylated glycans, and fewer disialylated glycans when compared with Asn(319). Moreover, when comparing the N-glycans at Asn(319) on RGP(--3)T441His and RGP(WT)T441His, the former had 30% more neutral, 28% more monosialylated, and 33% fewer disialylated glycans. This suggests that the N-glycan at Asn(247) allows additional N-glycan processing to occur at Asn(319), yielding more heavily sialylated bi- and triantennary forms. The mechanism(s) by which glycosylation at one sequon influences N-glycan processing at a distant sequon on the same glycoprotein remains to be determined.  相似文献   

18.
Human alpha one proteinase inhibitor (alpha1-PI) was cloned and expressed in Aspergillus niger, filamentious fungus that can grow in defined media and can perform glycosylation. Submerged culture conditions were established using starch as carbon source, 30% dissolved oxygen concentration, pH 7.0 and 28 degrees C. Eight milligrams per liter of active alpha1-PI were secreted to the growth media in about 40 h. Controlling the protein proteolysis was found to be an important factor in the production. The effects of various carbon sources, pH and temperature on the production and stability of the protein were tested and the product was purified and characterized. Two molecular weights variants of the recombinant alpha1-PI were produced by the fungus; the difference is attributed to the glycosylated part of the molecule. The two glycoproteins were treated with PNGAse F and the released glycans were analyzed by HPAEC, MALDI/TOF-MS, NSI-MS(n), and GC-MS. The MALDI and NSI- full MS spectra of permethylated N-glycans revealed that the N-glycans of both variants contain a series of high-mannose type glycans with 5-20 hexose units. Monosaccharide analysis showed that these were composed of N-acetylglucos-amine, mannose, and galactose. Linkage analysis revealed that the galactosyl component was in the furanoic conformation, which was attaching in a terminal non-reducing position. The Galactofuranose-containing high-mannnose type N-glycans are typical structures, which recently have been found as part of several glycoproteins produced by Aspergillus niger.  相似文献   

19.
The structures of unconjugated or free N-glycans in stems of soybean seedlings and dry seeds have been identified. The free N-glycans were extracted from the stems of seedlings or defatted dry seeds. After desalting by two kinds of ion-exchange chromatography and a gel filtration, the free N-glycans were coupled with 2-aminopyridine. The resulting fluorescence-labeled (PA-) N-glycans were purified by gel filtration, Con A affinity chromatography, reverse-phase HPLC, and size-fractionation HPLC. The structures of the PA-sugar chains purified were analyzed by the combination of two-dimensional sugar chain mapping, jack bean alpha-mannosidase digestion, alpha-1,2-mannosidase digestions, partial acetolysis, and ESI-MS/MS. The free N-glycan structures found showed that two categories of free N-glycans occur in the stems of soybean seedlings. One is a high-mannose type structure having one GlcNAc residue at the reducing end (Man 9 approximately 5 GlcNAc1, 93%), that would be derived by endo-GM (Kimura, Y. et al., Biochim. Biophys. Acta, 1381, 27-36 (1998)). The other small component is a xylose-containing type one having two GlcNAc residues at the reducing end (Man3Xyl1GlcNAc2, 7%), which would be derived by PNGase-GM (Kimura, Y. and Ohno, A., Biosci. Biotechnol. Biochem., 62, 412-418 (1998)). The detailed structural analysis of free glycans showed that high-mannose type free N-glycans (Man 9 approximately 5 GlcNAc1) in the soybean seedlings have a common core structural unit; Manalpha1-6(Man1-3)Manalpha1-6(Manalpha1-3)Ma nbeta1-4GlcNAc. Comparing the amount of free N-glycans in the seedling stems and dry seeds, the amount in the stems of seedlings was much higher than that in the dry seeds; approximately 700 pmol per one stem, 8 pmol in one dry seed. This fact suggested that free N-glycans in soybean seedlings could be produced by two kinds of N-glycan releasing enzymes during germination or seedling-development.  相似文献   

20.
Tobacco-based transient expression was employed to elucidate the impact of differential targeting to subcellular compartments on activity and quality of gastric lipase as a model for the production of recombinant glycoproteins in plants. Overall N-linked glycan structures of recombinant lipase were analyzed and for the first time sugar structures of its four individual N-glycosylation sites were determined in situ by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) on a trypsin digest without isolation or deglycosylation of the peptides. Three glycosylation sites contain both complex-type N-glycans and high-mannose-type structures, the fourth is exclusively linked to high-mannose glycans. Although the overall pattern of glycan structures is influenced by the targeting, our results show that the type of glycans found linked to a given Asn residue is largely influenced by the physico-chemical environment of the site. The transient tobacco system combined with MALDI-TOF-MS appears to be a useful tool for the evaluation of glycoprotein production in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号