首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Cytokine》2015,76(2):249-255
Cytokines play crucial roles in coordinating the activities of innate and adaptive immune systems. In response to pathogen recognition, innate immune cells secrete cytokines that inform the adaptive immune system about the nature of the pathogen and instruct naïve T cells to differentiate into the appropriate T cell subtypes required to clear the infection. These include Interleukins, Interferons and other immune-regulatory cytokines that exhibit remarkable functional redundancy and pleiotropic effects. The focus of this review, however, is on the enigmatic Interleukin 12 (IL-12) family of cytokines. This family of cytokines plays crucial roles in shaping immune responses during antigen presentation and influence cell-fate decisions of differentiating naïve T cells. They also play essential roles in regulating functions of a variety of effector cells, making IL-12 family cytokines important therapeutic targets or agents in a number of inflammatory diseases, such as the CNS autoimmune diseases, uveitis and multiple sclerosis.  相似文献   

2.
The mechanisms of autoimmune disease have remained puzzling for a long time. Here we construct a simple mathematical model for autoimmune disease based on the personal immune response function and the target cell growth function. We show that these two functions are sufficient to capture the essence of autoimmune disease and can explain characteristic symptom phases such as tolerance, repeated flare-ups and dormancy. Our results strongly suggest that a more complete understanding of these two functions will underlie the development of an effective therapy for autoimmune disease.  相似文献   

3.
Immunomodulatory functions of type I interferons   总被引:1,自引:0,他引:1  
Interferon-α (IFNα) and IFNβ, collectively known as type I IFNs, are the major effector cytokines of the host immune response against viral infections. However, the production of type I IFNs is also induced in response to bacterial ligands of innate immune receptors and/or bacterial infections, indicating a broader physiological role for these cytokines in host defence and homeostasis than was originally assumed. The main focus of this Review is the underappreciated immunomodulatory functions of type I IFNs in health and disease. We discuss their function in the regulation of innate and adaptive immune responses, the response to bacterial ligands, inflammasome activation, intestinal homeostasis and inflammatory and autoimmune diseases.  相似文献   

4.
IL-15 is a member of the IL-2 family of cytokines whose signaling pathways are a bridge between innate and adaptive immune response. IL-15 is part of the intestinal mucosal barrier, and functions to modulate gut homeostasis. IL-15 has pivotal roles in the control of development, proliferation and survival of both innate and adaptive immune cells.IL-15 becomes up-regulated in the inflamed tissue of intestinal inflammatory disease, such as IBD, Celiac Disease and related complications. Indeed, several studies have reported that IL-15 may participate to the pathogenesis of these diseases. Furthermore, although IL-15 seems to be responsible for inflammation and autoimmunity, it also may increase the immune response against cancer. For these reasons, we decided to study the intestinal mucosa as an ‘immunological niche’, in which immune response, inflammation and local homeostasis are modulated.Understanding the role of the IL-15/IL-15R system will provide a scientific basis for the development of new approaches that use IL-15 for immunotherapy of autoimmune diseases and malignancies. Indeed, a better understanding of the complexity of the mucosal immune system will contribute to the general understanding of immuno-pathology, which could lead to new therapeutical tools for widespread immuno-mediated diseases.  相似文献   

5.
B lymphocytes play a central role in host immunity. They orchestrate humoral immune responses that modulate activities of other immune cells and produce neutralizing antibodies that confer lasting immunity to infectious diseases including smallpox, measles and poliomyelitis. In addition to these traditional functions is the recent recognition that B cells also play critical role in maintaining peripheral tolerance and suppressing the development or severity of autoimmune diseases. Their immune suppressive function is attributed to relatively rare populations of regulatory B cells (Bregs) that produce anti-inflammatory cytokines including interleukin 10 (IL-10), IL-35 and transforming growth factor-β. The IL-35-producing B cell (i35-Breg) is the newest Breg subset described. i35-Bregs suppress central nervous system autoimmune diseases by inducing infectious tolerance whereby conventional B cells acquire regulatory functions that suppress pathogenic Th17 responses. In this review, we discuss immunobiology of i35-Breg cell, i35-Breg therapies for autoimmune diseases and potential therapeutic strategies for depleting i35-Bregs that suppress immune responses against pathogens and tumor cells.  相似文献   

6.
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS) with unknown etiology and pathogenesis. A local autoimmune process involving activation of autoreactive T cells against CNS protein components is likely crucial in the development of MS lesions. Myelin-reactive T cells are believed to be primed in the periphery during infections by antigens of bacterial or viral origin via molecular mimicry, a postulated mechanism that might account for the trigger of an autoimmune response on the basis of sequence homology between foreign and self determinants. Immune responses to heat shock proteins (hsp) have been implicated in the initiation or progression of a number of autoimmune diseases. Hsp may function as immunodominant targets during the immune response evoked by pathogens, and theoretically a cross-reactive response to sequences shared by these immunogens and autoantigens in the CNS may contribute to the pathogenesis of MS. We examined the immune response of peripheral blood mononuclear cells (PBMNc) from MS patients and healthy subjects elicited by peptides derived from hsp60 containing a common structural motif ("2-6-11" motif) already described, which is also present in CNS putative antigens. This structural pattern consists of an apolar residue or Lys at position 2, Pro always at position 6, and Glu, Asp or Lys at residue 11. Results reported here are indicative of maturation of peripheral blood monocytes towards a differentiated CD14(+)CD16(+)DR(+) cell and release of pro-inflammatory cytokines consistent with a Th1-like pattern. These are typical features exhibited by immune cells implicated in autoimmune responses.  相似文献   

7.
Glucocorticoids, acting through the glucocorticoid receptor, potently modulate immune function and are a mainstay of therapy for treatment of inflammatory conditions, autoimmune diseases, leukemias and lymphomas. Moreover, removal of systemic glucocorticoids, by adrenalectomy in animal models or adrenal insufficiency in humans, has shown that endogenous glucocorticoid production is required for regulation of physiologic immune responses. These effects have been attributed to suppression of cytokines, although the crucial cellular and molecular targets remain unknown. In addition, considerable controversy remains as to whether glucocorticoids are required for thymocyte development. To assess the role of the glucocorticoid receptor in immune system development and function, we generated T-cell-specific glucocorticoid receptor knockout mice. Here we show that the T-cell is a critical cellular target of glucocorticoid receptor signaling, as immune activation in these mice resulted in significant mortality. This lethal activation is rescued by cyclooxygenase-2 (COX-2) inhibition but not steroid administration or cytokine neutralization. These studies indicate that glucocorticoid receptor suppression of COX-2 is crucial for curtailing lethal immune activation, and suggest new therapeutic approaches for regulation of T-cell-mediated inflammatory diseases.  相似文献   

8.
9.
Neuropoietic cytokines are well known for their role in the control of neuronal, glial and immune responses to injury or disease. Since this discovery, it has emerged that several of these proteins are also involved in nervous system development, in particular in the regulation of neurogenesis and stem cell fate. Recent data indicate that these proteins have yet more functions, as key modulators of synaptic plasticity and of various behaviours. In addition, neuropoietic cytokines might be a factor in the aetiology of psychiatric disorders.  相似文献   

10.
Autoimmune thyroid disease (AITD) is one of the most common organ-specific autoimmune disorders. It mainly manifests as Hashimoto's thyroiditis (HT) and Graves’ disease (GD). HT is characteristic of hypothyroidism resulting from the destruction of the thyroid while GD is characteristic of hyperthyroidism due to excessive production of thyroid hormone induced by thyrotropin receptor-specific stimulatory autoantibodies. T lymphocytes and their secretory cytokines play indispensable roles in modulating immune responses, but their roles are often complex and full of interactions among distinct components of the immune system. Dysfunction of these T cells or aberrant expressions of these cytokines can cause the breakdown of immune tolerance and result in aberrant immune responses during the development of AITDs. This review summarizes recently identified T subsets and related cytokines and their roles in the pathogenesis of AITDs with the hope to provide a better understanding of the precise roles of notably identified T subsets in AITDs and facilitate the discovery of functional molecules or novel immune therapeutic targets for AITDs.  相似文献   

11.
12.
13.
Rheumatoid arthritis exhibits diurnal variation in symptoms, with patients suffering with increased painful joint stiffness in the early morning. This correlates with an early morning rise in circulating levels of pro-inflammatory cytokines, such as interleukin-6. This temporal variation in disease pathology is directed by the circadian clock, both at a systemic level, through signalling pathways derived in the central clock, and at a local level by autonomous clocks found within inflammatory organs and cells. Indeed, many cellular components of the immune system, which are involved in the pathogenesis of rheumatoid arthritis, possess independent clocks that facilitate temporal gating of their functions. Furthermore, the circadian clock regulates the expression and activity of several genes and proteins that have demonstrated roles in progression of this autoimmune disease. These include a number of nuclear receptors and also fat-derived adipokines. Employing the knowledge we have about how the inflammatory response is regulated by the clock will facilitate the development of chronotherapy regimens to improve the efficacy of current treatment strategies. Furthermore, a full understanding of the mechanisms by which the clock couples to the immune system may provide novel therapeutic targets for the treatment of this debilitating disease.  相似文献   

14.
The adaptor molecule SAP is expressed in T lymphocytes and natural killer (NK) cells, where it regulates cytokine production and cytotoxicity. Here, we show that SAP, encoded by the SH2D1A gene locus, also has a crucial role during the development of NKT cells, a lymphocyte subset with immunoregulatory functions in response to infection, cancer and autoimmune disease. Following stimulation with the NKT cell-specific agonist alpha-galactosyl ceramide (alphaGC), Sh2d1a-/- splenocytes did not produce cytokines or activate other lymphoid lineages in an NKT cell-dependent manner. While evaluating the abnormalities in alphaGC-induced immune responses, we observed that Sh2d1a-/- animals lacked NKT cells in the thymus and peripheral organs. The defect in NKT cell ontogeny was hematopoietic cell autonomous and could be rescued by reconstitution of SAP expression within Sh2d1a-/- bone marrow cells. Seventeen individuals with X-linked lymphoproliferative disease (XLP), who harbored germline mutations in SH2D1A, also lacked NKT cells. Furthermore, a female XLP carrier showed completely skewed X chromosome inactivation within NKT cells, but not T or B cells. Thus, SAP is a crucial regulator of NKT cell ontogeny in humans and in mice. The absence of NKT cells may contribute to the phenotypes of SAP deficiency, including abnormal antiviral and antitumor immunity and hypogammaglobulinemia.  相似文献   

15.
Fatty acid-binding proteins (FABPs) act as intracellular receptors for a variety of hydrophobic compounds, enabling their diffusion within the cytoplasmic compartment. Recent studies have demonstrated the ability of FABPs to simultaneously regulate metabolic and inflammatory pathways. We investigated the role of adipocyte FABP and epithelial FABP in the development of experimental autoimmune encephalomyelitis to test the hypothesis that these FABPs impact adaptive immune responses and contribute to the pathogenesis of autoimmune disease. FABP-deficient mice exhibited a lower incidence of disease, reduced clinical symptoms of experimental autoimmune encephalomyelitis and dramatically lower levels of proinflammatory cytokine mRNA expression in CNS tissue as compared with wild-type mice. In vitro Ag recall responses of myelin oligodendrocyte glycoprotein 35-55-immunized FABP(-/-) mice showed reduced proliferation and impaired IFN-gamma production. Dendritic cells deficient for FABPs were found to be poor producers of proinflammatory cytokines and Ag presentation by FABP(-/-) dendritic cells did not promote proinflammatory T cell responses. This study reveals that metabolic-inflammatory pathway cross-regulation by FABPs contributes to adaptive immune responses and subsequent autoimmune inflammation.  相似文献   

16.
Dendritic cells and cytokines in immune rejection of cancer   总被引:2,自引:0,他引:2  
Dendritic cells (DCs) play a crucial role in linking innate and adaptive immunity and, thus, in the generation of a protective immune response against both infectious diseases and tumors. The ability of DCs to prime and expand an immune response is regulated by signals acting through soluble mediators, mainly cytokines and chemokines. Understanding how cytokines influence DC functions and orchestrate the interactions of DCs with other immune cells is strictly instrumental to the progress in cancer immunotherapy. Herein, we will illustrate how certain cytokines and immune stimulating molecules can induce and sustain the antitumor immune response by acting on DCs. We will also discuss these cytokine-DC interactions in the light of clinical results in cancer patients.  相似文献   

17.
18.
Ubiquitination has emerged as a crucial mechanism that regulates signal transduction in diverse biological processes, including different aspects of immune functions. Ubiquitination regulates pattern-recognition receptor signaling that mediates both innate immune responses and dendritic cell maturation required for initiation of adaptive immune responses. Ubiquitination also regulates the development, activation, and differentiation of T cells, thereby maintaining efficient adaptive immune responses to pathogens and immunological tolerance to self-tissues. Like phosphorylation, ubiquitination is a reversible reaction tightly controlled by the opposing actions of ubiquitin ligases and deubiquitinases. Deregulated ubiquitination events are associated with immunological disorders, including autoimmune and inflammatory diseases.  相似文献   

19.
Natural killer (NK) cells play an essential role in the immune response to infections, inflammations, and malignancies. Recent studies suggest that NK cell surface receptors and cytokines are the key points of the disease development and protection. We hypothesized that the interactions between NK cell receptors and targeted cells construct an eventual niche, and this niche has an eventual profile in various autoimmune diseases and cancers. The NK cells preactivated with cytokines, such as interleukin-2 (IL-2), IL-12, IL-15, and IL-18 can have higher cytotoxicity; however, the toxic side effect of IL-2 should be considered. The vicissitudes of NK cell profile and its receptors obey the environmental communications and cell interactions. Our vision around the NK cells as an immune axis remained dual, and we still cannot judge the immune responses based on the NK cell flip-flop. A design of eventual niche to monitor the NK cell and targeted cell interaction is needed to strengthen our ability in diagnosis and treatment approaches based on the NK cells. Here, we have reviewed the shifts in the NK cells and their surface receptors in autoimmune diseases, solid tumors, and leukemia, and also discussed the effective chemokines that affect NK cell activation and proliferation. The main aim of this review is to present a broader vision of the NK cell changes in autoimmune disease and cancers.  相似文献   

20.
白介素-33(IL-33)是近年来新发现的IL-1家族的新成员,通过结合其受体ST2诱导Th2型细胞因子的产生。IL-33既可以调节Th2型免疫反应、刺激肥大细胞产生前炎性因子,又可以作为核因子调控基因转录。IL-33在血管性疾病、变态反应性疾病、自身免疫性疾病和炎症性疾病中均发挥重要作用。对IL-33功能及机制的研究将有助于进一步了解这些疾病的致病机制,为疾病治疗提供新的策略。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号