首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular and functional profiling of memory CD8 T cell differentiation   总被引:40,自引:0,他引:40  
Kaech SM  Hemby S  Kersh E  Ahmed R 《Cell》2002,111(6):837-851
How and when memory T cells form during an immune response are long-standing questions. To better understand memory CD8 T cell development, a time course of gene expression and functional changes in antigen-specific T cells during viral infection was evaluated. The expression of many genes continued to change after viral clearance in accordance with changes in CD8 T cell functional properties. Even though memory cell precursors were present at the peak of the immune response, these cells did not display hallmark functional traits of memory T cells. However, these cells gradually acquired the memory cell qualities of self-renewal and rapid recall to antigen suggesting the model that antigen-specific CD8 T cells progressively differentiate into memory cells following viral infection.  相似文献   

2.
Is it possible to localize a memory trace to a subset of cells in the brain? If so, it should be possible to show: first, that neuronal plasticity occurs in these cells. Second, that neuronal plasticity in these cells is sufficient for memory. Third, that neuronal plasticity in these cells is necessary for memory. Fourth, that memory is abolished if these cells cannot provide output during testing. And fifth, that memory is abolished if these cells cannot receive input during training. With regard to olfactory learning in flies, we argue that the notion of the olfactory memory trace being localized to the Kenyon cells of the mushroom bodies is a reasonable working hypothesis.  相似文献   

3.
By employing bovine serum albumin as antigen and the capsular polysaccharide of Klebsiella pneumoniae as adjuvant, maintenance and amplification of immunological memory were analyzed in an in vivo culture system in mice. For this purpose, the double cell transfer technique was employed to minimize the influence of regulatory factors on memory expression. Memory associated with primed cells is maintained at the original level during in vivo culture for at least a month in the absence of antigen. In contrast, memory is amplified more than 30 times during this period by stimulation with antigen. This secondary increase in memory does not require the action of adjuvant. Neither the residual primary antigen nor preformed primary antibody seems to play a significant role in the maintenance and amplification of memory of the primed cells. From these results it is probable that the enduring immunological memory in actively immunized mice is conveyed by long-lived memory cells, and additional antigenic stimulating on once-established memory cells serve to amplify (not simply to maintain) memory in a secondary fashion.  相似文献   

4.
记忆T细胞作为人体免疫系统中的一个组成部分,在免疫应答中发挥着至关重要的作用,因此利用抗独特型抗体制备诱导产生记忆T细胞的疫苗是免疫学领域的一个重要方向。抗独特型抗体Fab段具有与特异性抗原相似的抗原决定簇的结构,其作为抗原替代物制备的疫苗所激发机体产生的记忆T细胞具有特异性强和安全性高的特点,成为一种比较理想的疫苗.就抗独特型抗体与T细胞记忆之间的联系及其应用效果作一简要综述。  相似文献   

5.
Waddell S  Armstrong JD  Kitamoto T  Kaiser K  Quinn WG 《Cell》2000,103(5):805-813
Mutations in the amnesiac gene in Drosophila affect both memory retention and ethanol sensitivity. The predicted amnesiac gene product, AMN, is an apparent preproneuropeptide, and previous studies suggest that it stimulates cAMP synthesis. Here we show that, unlike other learning-related Drosophila proteins, AMN is not preferentially expressed in mushroom bodies. Instead, it is strongly expressed in two large neurons that project over all the lobes of the mushroom bodies, a finding that suggests a modulatory role for AMN in memory formation. Genetically engineered blockade of vesicle recycling in these cells abbreviates memory as in the amnesiac mutant. Moreover, restoration of amn gene expression to these cells reestablishes normal olfactory memory in an amn deletion background. These results indicate that AMN neuropeptide release onto the mushroom bodies is critical for normal olfactory memory.  相似文献   

6.
We have studied the distribution of memory B cell subpopulations by using 1g velocity sedimentation and adoptive transfer. When the non-antigen-draining mesenteric lymph nodes were examined 4 weeks after intraperitoneal immunization with DNPBGG, large memory cells were present in only very low numbers. However, when the draining parathymic nodes were removed, a significant enrichment of large memory cell activity was seen. When these results were corrected for the cell yields in each 1g separated fraction we found that 59% of the total memory cells were small, 36% medium and 5% large in the mesenteric lymph node preparations and 40% were small, 46% medium and 14% large in the parathymic lymph node suspensions. When popliteal lymph nodes were removed after footpad immunization, 32% of the total memory cell activity was in the small cell fraction while 49% was in the medium fraction and 18% in the large cell fraction. Control experiments were also run to show that the shift in the velocity sedimentation profile of the various memory cell populations was not an artifact of the adoptive transfer system nor a result of selective antigen triggering.From these results it would appear that the size distribution of memory cells depends upon the source of cells studied, large memory cells being found predominantly only in lymph nodes draining the site of antigen injection. Since the large memory cells can also be found in the thoracic duct lymph after footpad immunization but not after intraperitoneal immunization, it is suggested that the larger cells can circulate to other lymphoid tissues but cannot recirculate.  相似文献   

7.
Immunological memory, which protects organisms from re-infection, is a hallmark of the mammalian adaptive immune system and the underlying principle of vaccination. In early life, however, mice and other mammals are deficient at generating memory CD8+ T cells, which protect organisms from intracellular pathogens. The molecular basis that differentiates adult and neonatal CD8+ T cells is unknown. MicroRNAs (miRNAs) are both developmentally regulated and required for normal adult CD8+ T cell functions. We used next-generation sequencing to identify mouse miRNAs that are differentially regulated in adult and neonatal CD8+ T cells, which may contribute to the impaired development of neonatal memory cells. The miRNA profiles of adult and neonatal cells were surprisingly similar during infection; however, we observed large differences prior to infection. In particular, miR-29 and miR-130 have significant differential expression between adult and neonatal cells before infection. Importantly, using RNA-Seq, we detected reciprocal changes in expression of messenger RNA targets for both miR-29 and miR-130. Moreover, targets that we validated include Eomes and Tbx21, key genes that regulate the formation of memory CD8+ T cells. Notably, age-dependent changes in miR-29 and miR-130 are conserved in human CD8+ T cells, further suggesting that these developmental differences are biologically relevant. Together, these results demonstrate that miR-29 and miR-130 are likely important regulators of memory CD8+ T cell formation and suggest that neonatal cells are committed to a short-lived effector cell fate prior to infection.  相似文献   

8.
9.
Long-lasting synaptic changes within the neuronal network mediate memory. Neurons bearing such physical traces of memory (memory engram cells) are often equated with neurons expressing immediate early genes (IEGs) during a specific experience. However, past studies observed the expression of different IEGs in non-overlapping neurons or synaptic plasticity in neurons that do not express a particular IEG. Importantly, recent studies revealed that distinct subsets of neurons expressing different IEGs or even IEG negative-(yet active) neurons support different aspects of memory or computation, suggesting a more complex nature of memory engram cells than previously thought. In this short review, we introduce studies revealing such heterogeneous composition of the memory engram and discuss how the memory system benefits from it.  相似文献   

10.
In this paper we analyzed how connectivity (defined as number of connections between network elements) can affect the memory capacity of a network-based model of the Immune System (IS) and of a model of the Nervous System (NS) synaptic plasticity (BCM model). The key point is the concept of competition between the characteristic variables that represent the response of such systems to environmental stimuli: the clonal concentrations for the IS, and the neuron responses for the BCM model. The memory states of both systems are characterized by a high selectivity to specific input patterns, reflecting a similar behaviour of their development rules. This selectivity property of memory states can be controlled by changing the degree of the internal connectivity in each system. We can explain the changes occurring in IS memory states during lifespan as due to a reshaping of its internal connectivity. This assumption is in agreement with experimental observations, reporting an increase of IS memory cells during lifespan. The change of connectivity in the BCM model leads to the introduction of quasilocal variables governing the plasticity of groups of synaptic junctions. This could be interpreted as the result of a refinement of neuron internal mechanisms during development, or it could be seen as a different learning rule deriving from the original BCM theory. We argue that connectivity seems to play an important role in a large class of biological systems controlled by competition mechanisms. Moreover, changes in connectivity may lead to changes in memory properties during development and aging.  相似文献   

11.
12.
Protection against infection hinges on a close interplay between the innate immune system and the adaptive immune system. Depending on the type and context of a pathogen, the innate system instructs the adaptive immune system to induce an appropriate immune response. Here, we hypothesize that the adaptive immune system stores these instructions by changing from a naive to an appropriate memory phenotype. In a secondary immune reaction, memory lymphocytes adhere to their instructed phenotype. Because cross-reactions with unrelated Ags can be detrimental, such a qualitative form of memory requires a sufficient degree of specificity of the adaptive immune system. For example, lymphocytes instructed to clear a particular pathogen may cause autoimmunity when cross-reacting with ignored self molecules. Alternatively, memory cells may induce an immune response of the wrong mode when cross-reacting with subsequent pathogens. To maximize the likelihood of responding to a wide variety of pathogens, it is also required that the immune system be sufficiently cross-reactive. By means of a probabilistic model, we show that these conflicting requirements are met optimally by a highly specific memory lymphocyte repertoire. This explains why the lymphocyte system that was built on a preserved functional innate immune system has such a high degree of specificity. Our analysis suggests that 1) memory lymphocytes should be more specific than naive lymphocytes and 2) species with small lymphocyte repertoires should be more vulnerable to both infection and autoimmune diseases.  相似文献   

13.
14.
Recently much effort has been spent on providing a shared address space abstraction on clusters of small-scale symmetric multiprocessors. However, advances in technology will soon make it possible to construct these clusters with larger-scale cc-NUMA nodes, connected with non-coherent networks that offer latencies and bandwidth comparable to interconnection networks used in hardware cache-coherent systems. The shared memory abstraction can be provided on these systems in software across nodes and hardware within nodes.Recent simulation results have demonstrated that certain features of modern system area networks can be used to greatly reduce shared virtual memory (SVM) overheads [5,19]. In this work we leverage these results and we use detailed system emulation to investigate building future software shared memory clusters. We use an existing, large-scale hardware cache-coherent system with 64 processors to emulate a complete future cluster. We port our existing infrastructure (communication layer and shared memory protocol) on this system and study the behavior of a set of real applications. We present results for both 32- and 64-processor system configurations.We find that: (i) System emulation is invaluable in quantifying potential benefits from changes in the technology of commodity components. More importantly, it reveals potential problems in future systems that are easily overlooked in simulation studies. Thus, system emulation should be used along with other modeling techniques (e.g., simulation, implementation) to investigate future trends. (ii) Our work shows that current SVM protocols can only partially take advantage of faster interconnects and wider nodes due to operating system and architectural implications. We quantify the related issues and identify the areas where more research is required for future SVM clusters.  相似文献   

15.
CTLA-4 is known as a central inhibitor of T cell responses. It terminates T cell activation and proliferation and induces resistance against activation induced cell death. However, its impact on memory formation of adaptive immune responses is still unknown. In this study, we demonstrate that although anti-CTLA-4 mAb treatment during primary immunization of mice initially enhances the number of IFN-γ-producing CD4(+) T cells, it does not affect the size of the memory pool. Interestingly, we find that the CTLA-4 blockade modulates the quality of the memory pool: it decreases the amount of specialized "multifunctional" memory CD4(+) T cells coproducing IFN-γ, TNF-α, and IL-2 in response to Ag. The reduction of these cells causes an immense decrease of IFN-γ-producing T cells after in vivo antigenic rechallenge. Chimeric mice expressing CTLA-4-competent and -deficient cells unmask, which these CTLA-4-driven mechanisms are mediated CD4(+) T cell nonautonomously. In addition, the depletion of CD25(+) T cells prior to the generation of Ag-specific memory cells reveals that the constitutively CTLA-4-expressing natural regulatory T cells determine the quality of memory CD4(+) T cells. Taken together, these results indicate that although the inhibitory molecule CTLA-4 damps the primary immune response, its engagement positively regulates the formation of a high-quality memory pool equipped with multifunctional CD4(+) T cells capable of mounting a robust response to Ag rechallenge.  相似文献   

16.
We have used computer-assisted cytokine ELISA spot analysis to measure the frequencies, the type of cytokine, and the amount of cytokine produced by individual recall Ag-specific CD4 memory cells in freshly isolated blood. We studied the memory cells specific for tetanus toxoid and purified protein derivative in 18 healthy individuals and in 22 HIV-infected patients on highly active antiretroviral therapy (HAART). In healthy individuals, the frequency, cytokine signature, and cytokine production per cell of these memory cells were stable over time. Although it is presently unclear whether the maintenance of the memory T cell pool depends upon Ag persistence, cross-reactive Ag stimulation, or cytokine-driven bystander stimulations and expansions, our data strongly argue for a stable memory cell pool in healthy individuals. In HIV patients, however, the frequency of these memory cells was a function of the viral load. The decreased numbers of functional memory cells in patients with high viral loads might provide one mechanism behind the immunodeficient state. Although the cytokine output per cell was unaffected in most patients (20 of 24), in some patients (4 of 24) it was >100-fold reduced, which might provide an additional mechanism to account for the reduced immunocompetence of these patients. The ability to visualize directly and quantify the cytokine produced by the low frequency memory cells in freshly isolated blood that have been physiologically stimulated by Ag should aid comprehensive studies of the Ag-specific memory cell pool in vivo, in health and disease.  相似文献   

17.
The mucosal immune system, particularly the gastrointestinal tract, is critically involved in the pathogenesis of human immunodeficiency virus (HIV) infection. Since the liver drains most of the substances coming from the intestinal tract, it may also play a role in the pathogenesis of HIV infection. Here we examined the percentages and absolute numbers of T cell subsets in the liver in normal and simian immunodeficiency virus (SIV)-infected macaques. Most of the T cells in the liver were CD8(+) memory cells, and most of these had an effector memory (CD95(+) CD28(-)) phenotype. CD4(+) T cells constituted approximately 20% of the liver T cell population, but the vast majority of these were also memory (CD95(+)) CCR5(+) cells, suggesting they were potential targets for viral infection. After SIV infection, CD4(+) T cells were markedly reduced, and increased proliferation and absolute numbers of CD8(+) T cells were detected in the liver. These data suggest that the liver is a major source of antigenic stimulation for promoting CD8(+) T cells and possibly a source for early CD4(+) T cell infection and destruction.  相似文献   

18.
Rheumatoid arthritis (RA), like many other autoimmune syndromes, is a disease of adults, with the highest incidence rates reported in the elderly. The immune system undergoes profound changes with advancing age that are beginning to be understood and that need to be incorporated into the pathogenetic models of RA. The age-related decline in thymic function causes extensive remodeling of the T-cell system. Age-dependent changes in T-cell homeostasis are accelerated in patients with RA. The repertoire of naive and memory T cells is less diverse, possibly as a result of thymic insufficiency, and it is biased towards autoreactive cells. Presenescent T cells emerge that are resistant to apoptosis and that often expand to large clonal populations. These cells are under the regulatory control of nonconventional costimulatory molecules, display potent effector functions, and appear to be critical in the synovial and extra-articular manifestations of RA.  相似文献   

19.
Rheumatoid arthritis (RA), like many other autoimmune syndromes, is a disease of adults, with the highest incidence rates reported in the elderly. The immune system undergoes profound changes with advancing age that are beginning to be understood and that need to be incorporated into the pathogenetic models of RA. The age-related decline in thymic function causes extensive remodeling of the T-cell system. Age-dependent changes in T-cell homeostasis are accelerated in patients with RA. The repertoire of naive and memory T cells is less diverse, possibly as a result of thymic insufficiency, and it is biased towards autoreactive cells. Presenescent T cells emerge that are resistant to apoptosis and that often expand to large clonal populations. These cells are under the regulatory control of nonconventional costimulatory molecules, display potent effector functions, and appear to be critical in the synovial and extra-articular manifestations of RA.  相似文献   

20.
Through a learning process known as imprinting, the young of some animals, including the domestic chick, come to recognize an object by being exposed to it. Visually naive chicks vigorously approach a wide range of objects. After an adequate period of exposure to one object chicks selectively approach it in a recognition test. The nervous system of dark-reared chicks is not a tabula rasa, as chicks have predispositions to approach some stimuli rather than others. Nevertheless, visual imprinting leads to changes in a nervous system that may not have been 'marked' by previous visual experience, and so encourages the hope of discovering the neural bases of the learning process. The intermediate and medial part of the hyperstriatum ventrale, a sheet of cells within the cerebral hemispheres, plays a crucial role in visual imprinting, particularly in the memory process of recognition. The cellular and sub-cellular changes that take place in this part of the hyperstriatum ventrale after imprinting are described. The right and left hyperstriatum ventrale regions play different roles in the imprinting process, and evidence is given for the existence of multiple memory systems in the chick brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号