首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Severe combined immunodeficiency (SCID) was originally thought to be one disease. Accumulating evidence indicates that SCID is a heterogeneous group of diseases that are clinically similar but are caused by quite different biochemical abnormalities. The best-studied form of SCID is that associated with an autosomal recessive inheritance pattern of adenosine deaminase (ADA) deficiency. Several biochemical mechanisms have been postulated to explain how a deficiency of ADA causes immune dysfunction. In forms of SCID not associated with ADA deficiency, other biochemical abnormalities have been detected. These abnormalities include deficiency in biotin-dependent carboxylases, alteration in lymphocyte surface membranes and irregularities in cytokine production. Two animal models for SCID now exist. Neither of these models is associated with ADA deficiency. Evidence for a possible defect in purine metabolism in one model has been demonstrated.  相似文献   

2.
Severe Combined Immunodeficiency (SCID) is a rare primary immunodeficiency disease often characterized by a block in T cell development, which may also affect the normal development of B cells and NK cells. Several different mutations are known to give rise to SCID, and multiple genes are involved. Consequently, there are several different forms of SCID, which can be classified according to the metabolic and cellular defects that impede normal lymphocyte function. The two most prevalent forms of SCID are X-linked SCID and adenosine deaminase (ADA) deficiency SCID, together accounting for approximately 70-80% of disease cases. Other genetic abnormalities associated with this syndrome range from defective T cell receptor rearrangement to non-functional signaling molecules. Recently, a new genetic defect has been described in which mutations in a key component of Ca(2+) release activated-channels (CRAC) result in T lymphocyte malfunction.  相似文献   

3.
There is a need for neonatal screening tools to improve the long-term clinical outcome of patients with primary immunodeficiency diseases (PID). Recently, a PCR-based screening method for both TRECs and KRECs using Guthrie card samples has been developed. However, the applicability of these excision circle assays is limited to patients with severe T or B cell lymphopenia (SCID, XLA and A-T), whereas the most common forms of PID are not detected. Absence of serum IgA is seen in a major fraction of patients with immunological defects. As serum IgA in newborns is considered to be of fetal origin, eluates from routinely collected dried blood spot samples might thus be suitable for identification of children with PID. To assess the applicability of such screening assays, stored Guthrie card samples were obtained from 47 patients with various forms of primary immunodeficiency diseases (SCID, XLA, A-T, HIGM and IgAD), 20 individuals with normal serum IgA levels born to IgA-deficient mothers and 51 matched healthy newborns. Surprisingly, normal serum IgA levels were found in all SCID, XLA, A-T and HIGM patients and, additionally, in all those IgAD patients born to IgA-sufficient mothers. Conversely, no serum IgA was found in any of the 16 IgAD patients born by IgA-deficient mothers. Moreover, half of the IgA-sufficient individuals born by IgA-deficient mothers also lacked IgA at birth whereas no IgA-deficient individuals were found among the controls. IgA in neonatal dried blood samples thus appears to be of both maternal and fetal origin and precludes its use as a reliable marker for neonatal screening of primary immunodeficiency diseases.  相似文献   

4.
Severe combined immunodeficiency (SCID) is caused by a variety of underlying defects. Approximately 40% of cases are thought to be of the X-linked type (SCIDX1), which is phenotypically characterised by the absence, or very low numbers, of T cells, but normal or even high B cell numbers. The gene responsible for SCIDX1 is that coding for the common γ chain (γc), a component of multiple cytokine receptors. Mutations in this gene have been demonstrated in a large number of boys affected by typical SCIDX1. We describe a sporadic case of a boy who had SCID with absent B cells and absent T cells, but in whom a mutation in the γc gene has been demonstrated. In the absence of a typical X-linked pedigree, the phenotype in this boy suggested an autosomal recessive form of SCID and the family would usually have been counselled accordingly. This family raises the question of the true frequency of SCIDX1 amongst sporadic male cases of SCID and highlights the need to screen these boys for γ chain mutations. Received: 4 December 1996  相似文献   

5.
Interleukin-7 (IL-7) is a stromal factor that is crucial for the development of T lymphocytes in humans and mice, and also B lymphocytes in mice. IL-7 can act as a T cell growth factor as well as a critical anti-apoptotic survival factor. The essential non-redundant role of this cytokine for T cell development in vivo is indicated by the phenotype of murine knockout models as well as by humans with a T-B+NK+ form of severe combined immunodeficiency (SCID) resulting from mutations in IL-7 receptor alpha chain. IL-7 deficiency has now been found in patients with rheumatoid arthritis, a finding that relates not only to the T-lymphocyte status in this disease but also to the ability of patients with rheumatoid arthritis to recover from therapy-induced lymphopenia.  相似文献   

6.
JAK3 is a non-receptor tyrosine kinase, predominantly expressed in hematopoietic cells and that has been implicated in the signal transduction of the common gamma chain subfamily of cytokine receptors. As a result, JAK3 plays an essential role in hematopoieisis during T cell development. JAK3 inactivating mutations result in immunodeficiency syndromes (SCID) in both humans and mice. Recent data indicate that abnormal activation of JAK3 due to activating mutations is also found in human hematological malignancies, including acute megakaryoblastic leukemia (AMKL) and cutaneous T cell lymphoma (CTCL). After a brief summary of the JAK3 structure and function, we will review the evidence on the emerging role of JAK3 activation in hematological malignancies that warrant further studies to test the relevance of specific inhibition of JAK3 as a therapeutic approach to these challenging clinical entities.  相似文献   

7.
The Janus kinases (Jaks)   总被引:3,自引:0,他引:3  
  相似文献   

8.
Interleukin-7 (IL-7) is a stromal factor that is crucial for the development of T lymphocytes in humans and mice, and also B lymphocytes in mice. IL-7 can act as a T cell growth factor as well as a critical anti-apoptotic survival factor. The essential non-redundant role of this cytokine for T cell development in vivo is indicated by the phenotype of murine knockout models as well as by humans with a T-B+NK+ form of severe combined immunodeficiency (SCID) resulting from mutations in IL-7 receptor α chain. IL-7 deficiency has now been found in patients with rheumatoid arthritis, a finding that relates not only to the T-lymphocyte status in this disease but also to the ability of patients with rheumatoid arthritis to recover from therapy-induced lymphopenia.  相似文献   

9.
By interfering with the type I interferon (IFN1) response, human immunodeficiency virus 1 (HIV-1) can circumvent host antiviral signalling and establish persistent viral reservoirs. HIV-1-mediated defects in the IFN pathway are numerous, and include the impairment of protein receptors involved in pathogen detection, downstream signalling cascades required for IFN1 upregulation, and expression or function of key IFN1-inducible, antiviral proteins. Despite this, the activation of IFN1-inducible, antiviral proteins has been shown to facilitate the killing of latently HIV-infected cells in vitro. Understanding how IFN1 signalling is blocked in physiologically-relevant models of HIV-1 infection, and whether these defects can be reversed, is therefore of great importance for the development of novel therapeutic strategies aimed at eradicating the HIV-1 reservoir.  相似文献   

10.
Retrovirally induced acquired immunodeficiency in humans and mice induces immune dysregulation as well as increased oxidative stress as the disease progresses. Both immunodeficiency and oxidative stress make the host susceptible to the development of heat disease either by physiological changes or by the direct influence of cardiovirulance. Antioxidant supplementation has been shown to influence the onset as well as the degree of cardiopathology due to primary infections or co-infections. An alternative treatment is the use of peptide immunomodulatory therapy to enhance cytokine production, immune cell function and resistance to opportunistic infections. This review compiles our in vivo and in vitro studies on the effects of antioxidant supplementation and peptide therapy on the immune control of coxsackievirus induced cardiopathology in AIDS.  相似文献   

11.
Human severe combined immunodeficiency disease (SCID) includes an X-chromosome-linked type characterized by a complete absence of mature T cells, hypogammaglobulinemia but normal or elevated number of B cells, suggesting that the disease results from a block in early T cell differentiation. It has been shown that B cells from obligate carrier women of this disorder exhibit the preferential use of the nonmutant X chromosome as the active X (as shown for T cells), suggesting that the SCID gene product has a direct effect on B cells as well as on T cells. To examine this question, we analyzed the phenotypic and functional characteristics of peripheral B cells from nine infants with SCID. We found a constant absence of spontaneously expressed activation Ag on B cell membrane from all SCID patients tested which contrasts with the phenotypic pattern exhibited by age-matched infants whom all cells bearing surface Ig express the 4F2 Ag and to a lesser extent the transferrin receptor. Concurrently, B cells from SCID patients have a profound impairment in their responses to stimuli that induce in vitro B cell proliferation and differentiation. Although rIL-2 and low-Mr B cell growth factor are potent inducers of proliferation on age-matched infants' B cells, they are poorly efficient in inducing proliferation of anti-mu-activated SCID B cells. This impairment is not related to the resting B cell phenotype of SCID B cells as shown by comparison with normal resting B cells. Furthermore, we observed an apparent block in B cell differentiation inasmuch as neither rIL-2 nor rIL-6 could support SAC-activated SCID B cell differentiation, both lymphokines being very efficient in inducing SAC-activated age-matched infants' B cell or purified resting B cell differentiation. These results suggest that the SCID gene defect has a direct effect on B cells and is required during B cell maturation.  相似文献   

12.

Background  

Unrepaired DNA double-stranded breaks (DSBs) cause chromosomal rearrangements, loss of genetic information, neoplastic transformation or cell death. The nonhomologous end joining (NHEJ) pathway, catalyzing sequence-independent direct rejoining of DSBs, is a crucial mechanism for repairing both stochastically occurring and developmentally programmed DSBs. In lymphocytes, NHEJ is critical for both development and genome stability. NHEJ defects lead to severe combined immunodeficiency (SCID) and lymphoid cancer predisposition in both mice and humans. While NHEJ has been thoroughly investigated in lymphocytes, the importance of NHEJ in other cell types, especially with regard to tumor suppression, is less well documented. We previously reported evidence that the NHEJ pathway functions to suppress a range of nonlymphoid tumor types, including various classes of sarcomas, by unknown mechanisms.  相似文献   

13.
14.
Artemis is a mammalian protein, the absence of which results in SCID in Athabascan-speaking Native Americans (SCIDA). This novel protein has been implicated in DNA double-strand break repair and V(D)J recombination. We have cloned the Artemis murine counterpart, mArt, and generated a mouse with a targeted disruption of mArt. Artemis-deficient mice show a similar T-B- NK+ immunodeficiency phenotype, and carry a profound impairment in coding joint rearrangement, while retaining intact signal ends and close to normal signal joint formation. mArt-/- embryonic fibroblasts show increased sensitivity to ionizing radiation. Hemopoietic stem cell (HSC) transplantation using 500-5000 enriched congenic, but not allogeneic mismatched HSC corrected the T cell and partially corrected the B cell defect. Large numbers (40,000) of allogeneic mismatched HSC or pretreatment with 300 cGy of radiation overcame graft resistance, resulting in limited B cell engraftment. Our results suggest that the V(D)J and DNA repair defects seen in this mArt-/- mouse model are comparable to those in humans with Artemis deficiency, and that the recovery of immunity following HSC transplantation favors T rather than B cell reconstitution, consistent with what is seen in children with this form of SCID.  相似文献   

15.
16.
Cytokines are important regulators of hemopoiesis which exert their actions by binding to specific, high affinity, cell surface receptors. In the past several years, molecular cloning of these receptors has revealed a new superfamily referred to as the hemopoietic growth factor receptors. Members of this family are defined by a 200 amino acid conserved domain; however, it has become increasingly apparent that another characteristic of these receptors is the shared usage of a common signalling subunit among subgroups in this family. The shared signalling component explains the functional redundancy of many cytokines; however, the mechanism by which these receptors transduce a signal across the membrane is not yet clear. Studies into cytokine action have shown that many of the events that occur in response to ligand stimulation are similar to those observed for the better characterized intrinsic tyrosine kinase receptors. Thus, although the cytokine receptors do not possess intrinsic tyrosine kinase activity, these observations have led to a model of cytokine signal transduction adapted from the signalling mechanisms described for the tyrosine kinase receptors.  相似文献   

17.
T-cell receptor (TCR) engagement initiates intracellular signalling cascades that lead to T-cell proliferation, cytokine production and differentiation into effector cells. These cascades comprise an array of protein-tyrosine kinases, phosphatases, GTP-binding proteins and adaptor proteins that regulate generic and specialised functions. The integration of these signals is essential for the normal development, homeostasis and function of T cells. Defects in a single mediator can produce T cells that are unable to participate fully in an immune response and/or that mount an inappropriate response, which leads to immunodeficiency, autoimmunity or leukaemia/lymphomas. This review highlights some of the key players in T-cell signalling and their involvement in the development of various clinical disease states. Some of these immune-specific signalling proteins are attractive potential targets in the development of therapies to augment T-cell responses to antigen or tumours, and to treat immune cell disorders.  相似文献   

18.
The complexity of mammalian cardiogenesis is compounded, as the heart must function in the embryo whilst it is still being formed. Great advances have been made recently as additional cardiac progenitor cell populations have been identified. The induction and maintenance of these progenitors, and their deployment to the developing heart relies on combinatorial molecular signalling, a feature also of cardiac chamber formation. Many forms of congenital heart disease in humans are likely to arise from defects in the early stages of heart development; therefore it is important to understand the molecular pathways that underlie some of the key events that shape the heart during the early stages of it development.  相似文献   

19.
The ADAMs are transmembrane proteins implicated in proteolysis and cell adhesion. Forty gene members of the family have been identified, of which 21 are believed to be functional in humans. As proteases, their main substrates are the ectodomains of other transmembrane proteins. These substrates include precursor forms of growth factors, cytokines, growth factor receptors, cytokine receptors and several different types of adhesion molecules. Although altered expression of specific ADAMs has been implicated in different diseases, their best-documented role is in cancer formation and progression. ADAMs shown to play a role in cancer include ADAM9, ADAM10, ADAM12, ADAM15 and ADAM17. Two of the ADAMs, i.e., ADAM10 and 17 appear to promote cancer progression by releasing HER/EGFR ligands. The released ligands activate HER/EGFR signalling that culminates in increased cell proliferation, migration and survival. Consistent with a causative role in cancer, several ADAMs are emerging as potential cancer biomarkers for aiding cancer diagnosis and predicting patient outcome. Furthermore, a number of selective ADAM inhibitors, especially against ADAM10 and ADAM17, have been shown to have anti-cancer effects. At least one of these inhibitors is now undergoing clinical trials in patients with breast cancer.  相似文献   

20.
Proteins of the metallo-beta-lactamase family with either demonstrated or predicted nuclease activity have been identified in a number of organisms ranging from bacteria to humans and has been shown to be important constituents of cellular metabolism. Nucleases of this family are believed to utilize a zinc-dependent mechanism in catalysis and function as 5' to 3' exonucleases and or endonucleases in such processes as 3' end processing of RNA precursors, DNA repair, V(D)J recombination, and telomere maintenance. Examples of metallo-beta-lactamase nucleases include CPSF-73, a known component of the cleavage/polyadenylation machinery, which functions as the endonuclease in 3' end formation of both polyadenylated and histone mRNAs, and Artemis that opens DNA hairpins during V(D)J recombination. Mutations in two metallo-beta-lactamase nucleases have been implicated in human diseases: tRNase Z required for 3' processing of tRNA precursors has been linked to the familial form of prostate cancer, whereas inactivation of Artemis causes severe combined immunodeficiency (SCID). There is also a group of as yet uncharacterized proteins of this family in bacteria and archaea that based on sequence similarity to CPSF-73 are predicted to function as nucleases in RNA metabolism. This article reviews the cellular roles of nucleases of the metallo-beta-lactamase family and the recent advances in studying these proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号