首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular assembly of aspartase (L-aspartate ammonia-lyase, EC 4.3.1.1) from Escherichia coli was studied during the reversible denaturation. Although previous studies [Tokushige, M., Eguchi, G., and Hirata, F. (1977) Biochem. Biophys. Acta 480, 479-488] were unable to identify intermediate species during the course of reversible denaturation of aspartase, temperature-controlled HPLC and cross-linking with dimethyl suberimidate of the renaturation products showed that monomeric, dimeric and trimeric species occupied over 80% of the total oligomeric molecules below 13 degrees C; unlike the tetramer, these intermediates were without the activity. The degree of active tetramer formation was a linear function of the restoration of the activity below 18 degrees C, while above 23 degrees C, the activity regain was less than 70% restoration of tetrameric molecules. Upon examination by fluorescence spectroscopy, structural changes during reconstitution exhibited such complex kinetics that the rapid formation of structured oligomers proceeds first with a half-time of less than 10 sec, followed by slow subunit association. These results strongly suggest that the tetramer formation is an essential prerequisite, though not sufficient for the active enzyme.  相似文献   

2.
The apoenzymes of lipoamide dehydrogenase from pig heart and from Pseudomonas fluorescens were prepared at pH 2.7 and pH 4.0, respectively, using a hydrophobic interaction chromatography procedure recently developed for lipoamide dehydrogenase from Azotobacter vinelandii and other flavoproteins [Van Berkel et al. (1988) Eur. J. Biochem. 178, 197-207]. The apoenzyme from pig heart, having 5% of residual activity, shows an equilibrium between the monomeric and dimeric species. Both the yield and the degree of reconstitution of dimeric holoenzyme is 75% of starting material under optimal conditions. The kinetics of reconstitution of pig heart apoenzyme differ slightly from that obtained with the apoenzyme prepared by acid ammonium sulfate precipitation at pH 1.5 [Kalse, J. F. and Veeger, C. (1968) Biochim. Biophys. Acta 159, 244-256]. The apoenzyme from P. fluorescens is in the monomeric state and shows negligible residual activity. The yield and degree of reconstitution of the dimeric holoenzyme is more than 90% of starting material. Reconstitution of the apoenzymes from A. vinelandii and P. fluorescens involves minimally a two-step sequential process. Initial flavin-binding results in regaining of full dichloroindophenol activity, quenching of tryptophan fluorescence and strong increase of FAD fluorescence polarization. In the second step, dimerization occurs as reflected by regain of lipoamide activity, strongly increased FAD fluorescence and increased hyperchroism of the visible absorption spectrum. The kinetics of FAD-induced dimerization are strongly dependent on the apoenzyme used. At 0 degrees C, the monomeric apoenzyme-FAD complex is either stabilized (P. fluorescens) or only transiently detectable (A. vinelandii). Dimerization of P. fluorescens enzyme is strongly stimulated in the presence of NADH.  相似文献   

3.
Pyruvate oxidase, a tetrameric enzyme consisting of 4 identical subunits, dissociates into apoenzyme monomers and free FAD when treated with acid ammonium sulfate in the presence of high concentrations of potassium bromide. Reconstitution of the native enzymatically active protein can be accomplished by incubating equimolar concentrations of apomonomers and FAD at pH 6.5. The kinetics of the reconstitution reaction have been measured by 1) enzyme activity assays, 2) spectrophotometric assays to measure FAD binding, and 3) high performance liquid chromatography analysis measuring the distribution of monomeric, dimeric, and tetrameric species during reconstitution. The kinetic analysis indicates that the second order reaction of apomonomers with FAD to form an initial monomer-FAD complex is fast. The rate-limiting step for enzymatic reactivation appears to be the folding of the polypeptide chain in the monomer-FAD complex to reconstitute the three-dimensional FAD binding site prior to subunit reassociation. The subsequent formation of native tetramers appears to proceed via an essentially irreversible dimer assembly pathway.  相似文献   

4.
L-Malate (MalDH) and L-lactate (LDH) dehydrogenases belong to the same family of NAD-dependent enzymes. LDHs are tetramers, whereas MalDHs can be either dimeric or tetrameric. To gain insight into molecular relationships between LDHs and MalDHs, we studied folding intermediates of a mutant of the LDH-like MalDH (a protein with LDH-like structure and MalDH enzymatic activity) from the halophilic archaeon Haloarcula marismortui (Hm MalDH). Crystallographic analysis of Hm MalDH had shown a tetramer made up of two dimers interacting mainly via complex salt bridge clusters. In the R207S/R292S Hm MalDH mutant, these salt bridges are disrupted. Its structural parameters, determined by neutron scattering and analytical centrifugation under different conditions, showed the protein to be a tetramer in 4 M NaCl. At lower salt concentrations, stable oligomeric intermediates could be trapped at a given pH, temperature, or NaCl solvent concentration. The spectroscopic properties and enzymatic behavior of monomeric, dimeric, and tetrameric species were thus characterized. The properties of the dimeric intermediate were compared to those of dimeric intermediates of LDH and dimeric MalDHs. A detailed analysis of the putative dimer-dimer contact regions in these enzymes provided an explanation of why some can form tetramers and others cannot. The study presented here makes Hm MalDH the best characterized example so far of an LDH-like MalDH.  相似文献   

5.
It was found recently that Hoechst 33258, a dsDNA fluorescent dye used in cytological studies, is an efficient inhibitor of the interaction of TATA-box-binding protein with DNA, DNA topoisomerase I, and DNA helicases. In addition it proved to be a radioprotector. Biological activity of Hoechst 33258 may be associated with dsDNA complexes of not only monomeric, but also dimeric type. In this work, the Hoechst 33258 interaction with poly(dG-dC).poly(dG-dC) was studied using UV-vis and fluorescent spectroscopy, circular and flow-type linear dichroism. It was found that Hoechst 33258 formed with poly(dG-dC).poly(dG-dC) complexes of three types, namely, monomeric, dimeric, and, apparently, tetrameric, and their spectral properties were studied. Complexes of monomeric and dimeric types competed with distamycin A, a minor groove ligand, for binding to poly(dG-dC).poly(dG-dC). We proposed that Hoechst 33258 both monomers and dimers form complexes of the external type with poly(dG-dC).poly(dG-dC) from the side of the minor groove.  相似文献   

6.
1. A cholinesterase activity was shown to be present in the homogenates of the gut mucosal cells from seven mammal species examined. 2. The distribution of the cholinesterase activity in the mucosal cells along the intestine differs from one species to another. This distribution is not correlated with that of the aminopeptidase which is a specific marker of the enterocyte plasma membranes. 3. Except rabbit, all the other species contain a (G4) globular tetrameric form and either a (G1) monomeric form (pig, ox) or a (G2) dimeric form (mouse, rat, sheep). Both (G1) and (G2) forms are found with the (G4) form in the mucosal cells of kitten and cat. The solubility characteristics of these various forms were studied by sucrose gradient centrifugations in the presence and the absence of 1% Triton X-100. 4. The mucosal cells from the studied species essentially possess either acetylcholinesterase (rabbit, kitten, cat) or butyrylcholinesterase (ox, pig, sheep, rat, mouse). These findings indicate that both enzymes probably present identical physiological functions in this cell type.  相似文献   

7.
An acetyl-coenzyme-A hydrolase from the supernatant fraction of rat liver is known to be rapidly inactivated at low temperature. Loss of catalytic activity is accompanied by apparent dissociation of tetrameric and dimeric forms of the enzyme into monomers. It was found that rewarming under appropriate conditions almost completely reversed the cold-induced inactivation and dissociation of the enzyme: At a protein concentration of 14 micrograms/ml, simple rewarming only partially restored the enzyme activity (less than 3% of the original activity), but at a higher concentration of the enzyme or in the presence of 1 mg/ml bovine serum albumin, the reactivation by warming was greater. Warming at 37 degrees C appeared to be optimal for reactivation; warming at 25 degrees C or at 43 degrees C was less effective. Longer exposure to cold did not affect reactivation on rewarming, but on repeated inactivation and reactivation the reactivation decreased to some extent, especially at lower concentrations of enzyme protein. Among various nucleotides tested, ATP greatly enhanced the restoration of the activity, while ITP, UTP and ADP were less effective and AMP, GTP, TTP and CTP had little effect. At an enzyme-protein concentration of 14 micrograms/ml, 2 mM ATP restored the enzyme activity to about 70% of that before cold treatment, while acetyl-CoA (0.5 mM) restored the activity about 50%. High concentrations of phosphate (0.92 M) and pyrophosphate (0.45 M) restored about 80% and 95%, respectively, of the original activity. Sucrose density gradient centrifugation of the active dimer at high enzyme concentration at 4 degrees C for 20 h produced a monomeric form without catalytic activity. Gel filtration showed that simple rewarming mostly converted the monomeric enzyme obtained in this way to the dimeric form, whereas on rewarming with ATP the monomer was mostly converted to a tetrameric form. The dimeric and tetrameric forms both had catalytic activity.  相似文献   

8.
Methionyl-tRNA synthetase (MetRS) has been described as a free monomeric or oligomeric enzyme; or included in a multienzyme complex. Moreover, on limited tryptic digestion, it can generate shorter forms. So, when purified from wheat-germ lysate, the possible presence of proteases able to hydrolyse this enzyme was investigated. When extraction was performed with sulfhydryl-blocking reagents, an active monomeric MetRS of Mr 105,000 was purified. This enzyme form was identical to the structure exhibiting methionyl-tRNA synthetase activity in multienzyme complexes. Without this inhibitor, MetRS was purified as an active dimeric form of Mr 165,000 with identical subunits of Mr 82,000. A protease inhibited by sulfhydryl-blocking reagents and included in a complex of Mr 2.10(6) was isolated from this wheat-germ lysate. This protease was able to hydrolyse different proteins (albumin, casein), but was without activity for a trypsin substrate, such as N-alpha-benzoyl-DL-arginine p-nitroanilide. When added to a solution of Mr-105,000 MetRS, it yielded an inactive peptide of Mr 20,000, containing numerous charged amino acids and a protein of Mr 82,000, able to give an active dimeric enzyme of Mr 165,000. Amino acid analysis of this last form, indicated an identical structure with the active dimeric MetRS of Mr 165,000, purified in the absence of protease inhibitors. Moreover, the affinity for methionine was the same for the monomeric enzyme of Mr 105,000 and the dimeric form of Mr 165,000, probably because proteolysis did not affect the catalytic domain. When enzymic activity of the proteolyzed form (Mr 2 x 82,000) was studied versus enzyme concentration, a decrease in specific activity, at low concentrations, was seen. This phenomenon was analysed on the basis of the existence of an equilibrium between an active dimer and two inactive monomers. With the active monomeric form of Mr 105,000, no change in specific activity with decreasing enzyme concentration occurred.  相似文献   

9.
The folding pathway for a 150-amino acid recombinant form of the dimeric cytokine human macrophage colony-stimulating factor (M-CSF) has been studied. All 14 cysteine residues in the biologically active homodimer are involved in disulfide linkages. The structural characteristics of folding intermediates blocked with iodoacetamide reveal a rapid formation of a small amount of a non-native dimeric intermediate species followed by a slow progression via both monomeric and dimeric intermediates to the native dimer. The transition from monomer to fully folded dimer is complete within 25 h at room temperature at pH 9.0. The blocked intermediates are stable under conditions of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and thus represent various dimeric and folded monomeric species of the protein with different numbers of disulfide bridges. Peptide mapping and electrospray ionization mass spectrometry revealed that a folded monomeric species of M-CSF contained three of the four native disulfide bridges, and this folded monomer also showed some biological activity in a cell-based assay. The results presented here strongly suggest that M-CSF can fold via two different pathways, one involving monomeric intermediates and another involving only dimeric intermediates.  相似文献   

10.
The Mr 46,000 mannose 6-phosphate specific receptor exists in solution as a mixture of noncovalently associated dimeric and tetrameric forms. The two quaternary forms were separated by sucrose density centrifugation, and their composition was assessed by cross-linking with bifunctional reagents followed by SDS-polyacrylamide gel electrophoresis. The dependence of equilibrium between the dimeric and tetrameric forms on pH, receptor concentration, and presence of mannose 6-phosphate was studied. The formation of tetrameric forms is favored by pH values around 7, high receptor concentration, and presence of mannose 6-phosphate ligand. Tetrameric forms bind stronger at pH 7 to phosphomannan-Sepharose 4B than dimeric forms. Both quaternary forms dissociate at the same pH from a mannose 6-phosphate affinity matrix. When starting with dimeric or tetrameric forms, the equilibrium between dimeric and tetrameric forms is reached at pH 7.5 and 4 degrees C after 6-8 days. The presence of 5 mM mannose 6-phosphate shifts the equilibrium toward tetrameric forms. At pH 4.5 and 4 degrees C, the association of dimeric to tetrameric forms is negligible, while tetrameric forms dissociate to dimeric forms within 12 h. The results demonstrate that oligomerization is an intrinsic property of MPR-46 that is affected by ligand binding, pH, and receptor concentration.  相似文献   

11.
The substrate specificity and some kinetic properties of the monomeric (Mr = 26 000--35 000) and dimeric (Mr = 55 000--70 000) forms of phenol oxidase from vine leaves were studied. These forms possess different hydroxylating and o-diphenol oxidase activities. A kinetic analysis demonstrated that the monomeric form of the enzyme possesses a higher affinity for monophenols and can more effectively accomplish the hydroxylation reaction as compared to the dimeric one. During vine vegetation the ratio of molecular forms of phenol oxidase is altered manifesting itself in quantitative and qualitative changes of enzymatic activity. During plant maturation the dimeric fraction is predominant. The maturation process is associated with a sharp rise of the o-phenol oxidase activity, a disappearance of the hydroxylating activity and a substantial deceleration of phenol compounds production.  相似文献   

12.
Enzymic imbalance in serine metabolism in rat hepatomas.   总被引:3,自引:1,他引:2       下载免费PDF全文
The renaturation of the tetrameric enzyme phosphoglycerate mutase from baker's yeast after denaturation in guanidinium chloride was studied. Three proteinases (trypsin, chymotrypsin and thermolysin) cause extensive loss of activity of samples taken during the early stages of refolding. As judged by SDS/polyacrylamide-gel electrophoresis, the proteinases cause substantial degradation of the polypeptide chain with no evidence for large quantities of fragments of Mr greater than 6500. These data suggest that the early intermediates in the refolding, especially the folded monomer, possess a number of sites that are susceptible to proteolysis.  相似文献   

13.
Spontaneous refolding and reconstitution processes of dimeric ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) from Rhodospirillum rubrum have been investigated using size-exclusion high performance liquid chromatography (HPLC), spectroscopic, and activity measurements. When the unfolded Rubisco in guanidine hydrochloride is diluted at 4 degrees C, a folding intermediate (Rubisco-I) is rapidly formed, which remains in an unstable monomeric state and gradually develops into folded monomer (Rubisco-M) at 4 degrees C but undergoes irreversible aggregation at 25 degrees C. Refolding of Rubisco-I to Rubisco-M is a very slow process, taking about 20 h for 70% conversion at 4 degrees C. Rubisco-M is stable at 4 degrees C and is capable of forming an active dimer spontaneously when incubated at a temperature higher than 10 degrees C. The dynamic dimerization process has been measured in a temperature range of 4-35 degrees C by HPLC, and the results demonstrate that the dimerization is strongly facilitated by the temperature. It is found that dithiothreitol is essential for the spontaneous reconstitution of Rubisco.  相似文献   

14.
Tetrameric D-glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12) isolated from rabbit skeletal muscle was covalently bound to CNBr-activated Sepharose 4B via a single subunit. Catalytically active immobilized dimer and monomeric forms of the enzyme were prepared after urea-induced dissociation of the tetramer. A study of the coenzyme-binding properties of matrix-bound tetrameric, dimeric and monomeric species has shown that: (1) an immobilized tetramer binds NAD+ with negative cooperativity, the dissociation constants being 0.085 microM for the first two coenzyme molecules and 1.3 microM for the third and the fourth one; (2) coenzyme binding to the dimeric enzyme form also displays negative cooperativity with Kd values of 0.032 microM and 1.1 microM for the first and second sites, respectively; (3) the binding of NAD+ to a monomer can occur with a dissociation constant of 1.6 microM which is close to the Kd value for low-affinity coenzyme binding sites of the tetrameric or dimeric enzyme forms. In the presence of NAD+ an immobilized monomer acquires a stability which is not inferior to that of a holotetramer. The catalytic properties of monomeric and tetrameric enzyme forms were compared and found to be different under certain conditions. Thus, the monomers of rabbit muscle D-glyceraldehyde-3-phosphate dehydrogenase displayed a hyperbolic kinetic saturation curve for NAD+, whereas the tetramers exhibited an intermediary plateau region corresponding to half-saturating concentrations of NAD+. At coenzyme concentrations below half-saturating a monomer is more active than a tetramer. This difference disappears at saturating concentrations of NAD+. Immobilized monomeric and tetrameric forms of D-glyceraldehyde-3-phosphate dehydrogenase from baker's yeast were also used to investigate subunit interactions in catalysis. The rate constant of inactivation due to modification of essential arginine residues in the holoenzyme decreased in the presence of glyceraldehyde 3-phosphate, probably as a result of conformational changes accompanying catalysis. This effect was similar for monomeric and tetrameric enzyme forms at saturating substrate concentrations, but different for the two enzyme species under conditions in which about one-half of the active centers remained unsaturated. Taken together, the results indicate that association of D-glyceraldehyde-3-phosphate dehydrogenase monomers into a tetramer imposes some constraints on the functioning of the active centers.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Myeloperoxidase is a major protein component of the azurophilic granules (specialized lysosomes) of normal human neutrophils and serves as part of a potent bactericidal system in the host defense function of these cells. In normal, mature cells, myeloperoxidase occurs exclusively as a dimer of Mr 150,000 while in immature leukemia cells, there are both monomeric (Mr 80,000) as well as dimeric species. Like other lysosomal enzymes, myeloperoxidase is synthesized as a larger glycosylated precursor (Mr 91,000) that undergoes processing through single-chain intermediates (Mr 81,000 and 74,000) to yield mature heavy (Mr 60,000) and light (Mr 15,000) subunits. To study the assembly of dimeric myeloperoxidase, azurophilic granules were isolated from either unlabeled or pulse-labeled ([35S]methionine/cysteine) HL-60 cells, and myeloperoxidase was extracted and separated into monomeric and dimeric forms by FPLC gel filtration chromatography. Steady-state levels of dimeric and monomeric myeloperoxidase were found to account for 67% and 33%, respectively, of the total peroxidase activity and were correlated with the levels of associated heme as measured by absorption at 430 nm. Labeled myeloperoxidase polypeptides were immunoprecipitated using a monospecific rabbit antibody and were identified and quantitated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis/fluorography and liquid scintillation counting. After a 2-h pulse, labeled myeloperoxidase species of Mr 74,000 and 60,000 were found in fractions coeluting with the monomeric form of myeloperoxidase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Major pathways of carbon metabolism were studied in strains D-402 and D-405 of freshwater colorless sulfur bacteria of the genus Beggiatoa grown organotrophically and mixotrophically. The bacteria were found to possess all the enzymes of the tricarboxylic acid (TCA) and glyoxylate cycles. When organotrophic growth changed to mixotrophic one, the activity of the TCA cycle enzymes decreased 2- to 3-fold, but the activity of enzymes of the glyoxylate cycle increased threefold. It follows that, in the oxidation of thiosulfate, organic compounds no longer play the leading part in the energy metabolism, and most of electrons that enter the electron transport chain (ETC) derive from inorganic sulfur compounds. A connection was established between the structure and kinetic characteristics of malate dehydrogenase--an enzyme of the TCA and glyoxylate cycles--and the type of carbon metabolism in the strains studied. Malate dehydrogenase in organotrophically grown cells of strains D-402 and D-405 is dimeric, whereas in strain D-402 grown mixotrophically it is tetrameric.  相似文献   

17.
A new method is described for the large-scale reversible dissociation of flavoproteins into apoprotein and prosthetic group using hydrophobic-interaction chromatography. Lipoamide dehydrogenase from Azotobacter vinelandii and butyryl-CoA dehydrogenase from Megasphaera elsdenii are selected to demonstrate the usefulness of the method. In contrast to conventional methods, homogeneous preparations of apoproteins in high yields are obtained. The apoproteins show high reconstitutability. The holoenzymes are bound to phenyl-Sepharose CL-4B at neutral pH in the presence of ammonium sulfate. FAD is subsequently removed at pH 3.5-4.0 by addition of high concentrations of KBr. Large amounts of apoenzymes (200-500 mg), showing negligible residual activity, are eluted at neutral pH in the presence of 50% ethylene glycol. The holoenzyme of lipoamide dehydrogenase can be reconstituted while the apoprotein is still bound to the column or the apoenzyme can be isolated in the free state. In both cases the yield and degree of reconstitution of holoenzyme is more than 90% of starting material. Apo-lipoamide-dehydrogenase exists mainly as a monomer in solution and reassociates to the native dimeric structure in the presence of FAD. The apoenzyme is stable for a long period of time when kept in 50% ethylene glycol at -18 degrees C. Steady-state fluorescence-polarization measurements of protein-bound FAD indicate that reconstituted lipoamide dehydrogenase possesses a high stability which is governed by the low dissociation rate constant of the apoenzyme-FAD complex. The holoenzyme of butyryl-CoA dehydrogenase cannot be reconstituted when the apoenzyme is bound to the column. However, stable apoprotein can be isolated in the free state yielding 50-80% of starting material, depending on the immobilization conditions. The coenzyme A ligand present in native holoenzyme is removed during apoprotein preparation. The apoenzyme is relatively stable when kept in 50% ethylene glycol at -18 degrees C. From kinetic and gel filtration experiments it is concluded that the reconstitution reaction of butyryl-CoA dehydrogenase is governed by both the pH-dependent hydrodynamic properties of apoenzyme and the pH-dependent stability of reconstituted enzyme. At pH 7, the apoenzyme is in equilibrium between dimeric and tetrameric forms and reassociates to a native-like tetrameric structure in the presence of FAD. The stability of reconstituted enzyme is strongly influenced by the presence of CoA ligands as shown by fluorescence-polarization measurements. The degree of reconstitution of butyryl-CoA dehydrogenase is more than 80% of the original specific activity under certain conditions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The concentration-dependent association-dissociation equilibrium of the bifunctional enzyme aspartokinase I-homoserine dehydrogenase I of Escherichia coli K12 has been investigated at pH 7.6 in the presence of 10 mM L-threonine and 0.1 M KCl by equilibrium gel permeation monitored by a single-photon counting spectrophotometer. The results obtained are consistent with the existence of a dimer-tetramer equilibrium with the association constant of 2.6 X 10(7) M-1 (deltaG0 = -9.9 kcal/mol of dimer). The limiting partition cross-sections estimated by a three-parameter least squares minimization procedure indicate that the molecular radii of the dimer and tetramer are 53.8 A and 70 A, respectively. Both the dimeric and tetrameric forms of the enzyme possess dehydrogenase activity. Treatment of the enzyme with the chaotropic salts, potassium thiocyanate or potassium trichloroacetate, generates a monomeric form that is devoid of dehydrogenase activity. The catalytically inactive monomeric form of the enzyme has a molecular radius between 43 and 45.5 A and a molecular weight of approximately 80,000 as determined by small zone gel chromatography and sedimentation equilibrium studies.  相似文献   

19.
Ramjeesingh M  Li C  Huan LJ  Garami E  Wang Y  Bear CE 《Biochemistry》2000,39(45):13838-13847
The chloride channel ClC-2 is thought to be essential for chloride homeostasis in neurons and critical for chloride secretion by the developing respiratory tract. In the present work, we investigated the quaternary structure of ClC-2 required to mediate chloride conduction. We found using chemical cross-linking and a novel PAGE system that tagged ClC-2 expressed in Sf9 cells exists as oligomers. Fusion of membranes from Sf9 cells expressing this protein confers double-barreled channel activity, with each pore exhibiting a unitary conductance of 32 pS. Polyhistidine-tagged ClC-2 from Sf9 cells can be purified as monomers, dimers, and tetramers. Purified, reconstituted ClC-2 monomers do not possess channel function whereas both purified ClC-2 dimers and tetramers do mediate chloride flux. In planar bilayers, reconstitution of dimeric ClC-2 leads to the appearance of a single, anion selective 32 pS pore, and tetrameric ClC-2 confers double-barreled channel activity similar to that observed in Sf9 membranes. These reconstitution studies suggest that a ClC-2 dimer is the minimum functional structure and that ClC-2 tetramers likely mediate double-barreled channel function.  相似文献   

20.
Major pathways of carbon metabolism were studied in strains D-402 and D-405 of freshwater colorless sulfur bacteria of the genus Beggiatoa grown organotrophically and mixotrophically. The bacteria were found to possess all the enzymes of the tricarboxylic acid (TCA) and glyoxylate cycles. When organotrophic growth changed to mixotrophic growth, the activity of the TCA cycle enzymes decreased 2- to 3-fold, but the activity of enzymes of the glyoxylate cycle increased threefold. It follows that, in the oxidation of thiosulfate, organic compounds no longer play the leading part in the energy metabolism, and most of electrons that enter the electron transport chain (ETC) derive from inorganic sulfur compounds. A connection was established between the structure and kinetic characteristics of malate dehydrogenase—an enzyme of the TCA and glyoxylate cycles—and the type of carbon metabolism in the strains studied. Malate dehydrogenase in organotrophically grown cells of strains D-402 and D-405 is dimeric, whereas in strain D-402 grown mixotrophically it is tetrameric.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号