共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Cell and developmental biology are distinct disciplines with clear differences in emphasis and domains of interest, yet they also share a common historic origin and benefit from an increasingly productive exchange of insights and influences. Our goal in this commentary is to examine the common origin of cell and developmental biology, to explore ways in which they currently interact, and to consider the connections and differences that exist between these two fields. 相似文献
3.
《Matrix biology》2015
This issue of Matrix Biology is devoted to exploring how metalloproteinases – here inclusive of related families of extracellular proteinases – act on extracellular matrix (ECM) proteins to influence an astonishing diversity of biological systems and diseases. Since their discovery in the 1960's, matrix metalloproteinases (MMPs) have oft and widely been considered as the principal mediators of ECM destruction. However, as becomes clear from several articles in this issue, MMPs affect processes that both promote and limit ECM assembly, structure, and quantity. Furthermore, it has become increasingly apparent that ECM proteolysis is neither the exclusive function of MMPs nor their only sphere of influence. Thus, other enzymes may be important participants in ECM proteolysis, and indeed they are. The ADAMTS (a disintegrin-like and metalloproteinase domain with thrombospondin type 1 repeat) proteinases, BMP/tolloid proteases, and meprins have all emerged as major mechanisms of ECM proteolysis. An aggregate view of proteolysis as an exquisitely specific and crucial post-translational modification of secreted proteins emerges from these reviews. The cumulative evidence strongly suggests that although some MMPs can and do cleave ECM components, notably fibrillar collagens, the majority of these proteinases are not key physiological participants in morphogenesis nor in control of matrix metabolism in homeostasis or disease. In contrast, deficiency of ADAMTS proteases leads to a remarkable array of morphogenetic defects and connective tissue disorders consistent with a specialized role in turnover of the embryonic provisional ECM and in ECM assembly. Astacin-related proteases emerge into crucial positions in ECM assembly and turnover, although they also have numerous roles related to morphogen and growth factor regulation. To further turn the traditional view on its head, it is clear that many MMPs are key participants in many, diverse immune and inflammation processes rather than ECM proteolysis. The overlap in the activities within and between these families leads to the view that ECM proteolysis, which is indispensable for life, was over-engineered to an extraordinary extent during vertebrate evolution. That these proteinases, which likely evolved within networks regulating morphogenesis, immunity and regeneration, also participate in diseases is a side effect of human longevity. Attempts to inhibit metalloproteinases in human diseases thus require continuing appraisal of their biological roles and cautious evaluation of potential new therapeutic opportunities. 相似文献
4.
5.
Meta-analysis: the past, present and future 总被引:1,自引:0,他引:1
6.
Darold A. Treffert 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2009,364(1522):1351-1357
Savant syndrome is a rare, but extraordinary, condition in which persons with serious mental disabilities, including autistic disorder, have some ‘island of genius’ which stands in marked, incongruous contrast to overall handicap. As many as one in 10 persons with autistic disorder have such remarkable abilities in varying degrees, although savant syndrome occurs in other developmental disabilities or in other types of central nervous system injury or disease as well. Whatever the particular savant skill, it is always linked to massive memory. This paper presents a brief review of the phenomenology of savant skills, the history of the concept and implications for education and future research. 相似文献
7.
Plague: past, present, and future 总被引:2,自引:0,他引:2
Stenseth NC Atshabar BB Begon M Belmain SR Bertherat E Carniel E Gage KL Leirs H Rahalison L 《PLoS medicine》2008,5(1):e3
8.
Biodiversity: past, present, and future 总被引:2,自引:0,他引:2
Sepkoski JJ 《Journal of paleontology》1997,71(4):533-539
Data from the fossil record are used to illustrate biodiversity in the past and estimate modern biodiversity and loss. This data is used to compare current rates of extinction with past extinction events. Paleontologists are encouraged to use this data to understand the course and consequences of current losses and to share this knowledge with researchers interested in conservation and ecology. 相似文献
9.
During the past 20 years there has been a resurgence of interest in the history of the eugenics movements, particularly those of the United States and Germany. Unfortunately, most of these accounts have been published in nonmedical and nongenetic journals, so they are not readily available to geneticists or physicians. The authors of this article are concerned about the lack of information that geneticists, physicians, and students have concerning the origin and progress of these movements. This article provides a short history of the American and German eugenics programs and concludes with a review of their possible relations to our current practices. It is hoped that this will encourage institutions to include, in master's Ph.D., and M.D. programs in human genetics, lectures, seminars, and journal clubs on the topic of eugenics. 相似文献
10.
12.
On 12-15 May 2011, a diverse group of students, researchers and practitioners from across Canada and around the world met in Banff, Alberta, to discuss the many facets of biodiversity science at the 6th Annual Meeting of the Canadian Society for Ecology and Evolution. 相似文献
13.
Chitosomes: past, present and future 总被引:4,自引:0,他引:4
Bartnicki-Garcia S 《FEMS yeast research》2006,6(7):957-965
José Ruiz-Herrera's discovery that chitin microfibrils could be made by a fungal extract paved the way for elucidating the intracellular location of chitin synthetase. In collaboration with Charles Bracker, chitosomes were identified as the major reservoir of chitin synthetase in fungi. Unique in size, buoyant density, and membrane thickness, chitosomes were found in a wide range of fungi. Their reversible dissociation into 16S subunits is another unique property of chitosomes. These 16S subunits are the smallest molecular entities known to retain chitin synthetase activity. Further dissociation leads to complete loss of activity. From studies with secretory mutants, yeast researchers concluded that chitosomes were components of the endocytosis pathway. However, key structural and enzymatic characteristics argue in favor of the chitosome being poised for exocytotic delivery rather than endocytotic recycling. The chitosome represents the main vehicle for delivering chitin synthetase to the cell surface. An immediate challenge is to elucidate chitosome ontogeny and the role of proteins encoded by the reported chitin synthetase genes in the structure or function of chitosomes. The ultimate challenge would be to understand how the chitosome integrates with the cell surface to construct the organized microfibrillar skeleton of the fungal cell wall. 相似文献
14.
Immunotherapy: past,present and future 总被引:15,自引:0,他引:15
Waldmann TA 《Nature medicine》2003,9(3):269-277
15.
World Journal of Microbiology and Biotechnology - 相似文献
16.
Nealson KH Conrad PG 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》1999,354(1392):1923-1939
Molecular methods of taxonomy and phylogeny have changed the way in which life on earth is viewed; they have allowed us to transition from a eukaryote-centric (five-kingdoms) view of the planet to one that is peculiarly prokarote-centric, containing three kingdoms, two of which are prokaryotic unicells. These prokaryotes are distinguished from their eukaryotic counterparts by their toughness, tenacity and metabolic diversity. Realization of these features has, in many ways, changed the way we feel about life on earth, about the nature of life past and about the possibility of finding life elsewhere. In essence, the limits of life on this planet have expanded to such a degree that our thoughts of both past and future life have been altered. The abilities of prokaryotes to withstand many extreme conditions has led to the term extremophiles, used to describe the organisms that thrive under conditions thought just a few years ago, to be inconsistent with life. Perhaps the most extensive adaptation to extreme conditions, however, is represented by the ability of many bacteria to survive nutrient conditions not compatible with eukaryotic life. Prokaryotes have evolved to use nearly every redox couple that is in abundance on earth, filling the metabolic niches left behind by the oxygen-using, carbon-eating eukaryotes. This metabolic plasticity leads to a common feature in physically stratified environments of layered microbial communities, chemical indicators of the metabolic diversity of the prokaryotes. Such 'metabolic extremophily' forms a backdrop by which we can view the energy flow of life on this planet, think about what the evolutionary past of the planet might have been, and plan ways to look for life elsewhere, using the knowledge of energy flow on earth. 相似文献
17.
18.
19.
20.
Ranavirus: past, present and future 总被引:1,自引:0,他引:1
Lesbarrères D Balseiro A Brunner J Chinchar VG Duffus A Kerby J Miller DL Robert J Schock DM Waltzek T Gray MJ 《Biology letters》2012,8(4):481-483
Emerging infectious diseases are a significant threat to global biodiversity. While historically overlooked, a group of iridoviruses in the genus Ranavirus has been responsible for die-offs in captive and wild amphibian, reptile and fish populations around the globe over the past two decades. In order to share contemporary information on ranaviruses and identify critical research directions, the First International Symposium on Ranaviruses was held in July 2011 in Minneapolis, MN, USA. Twenty-three scientists and veterinarians from nine countries examined the ecology and evolution of ranavirus-host interactions, potential reservoirs, transmission dynamics, as well as immunological and histopathological responses to infection. In addition, speakers discussed possible mechanisms for die-offs, and conservation strategies to control outbreaks. 相似文献