首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cortical evoked responses to median nerve stimulation were recorded from 21 subjects during sevoflurane anaesthesia at the level of burst suppression in EEG. The N20/P22 wave had the typical form of a negative wave postcentrally, and positive precentrally. The amplitude exceeded 4 μV in all patients, making it easily visible without averaging on the low-amplitude suppression. These results show that two kinds of somatosensory evoked potential can be studied without averaging during EEG suppression in deep anaesthesia. One is the localised N20/P22 wave, which is seen regularly during suppression after stimuli with intervals exceeding 1 s. The other is the burst, involving the whole cortex, which is not evoked by every stimulus. We suggest that somatosensory evoked potentials can be monitored during sevoflurane-induced EEG suppression, and often can be evaluated reliably from a couple of single sweeps with stimulation interval exceeding 1 s. The enhancement of early cortical components of SEP, their adaptation to repeated stimuli, and the disappearance of later polysynaptic components during EEG suppression, give new possibilities to study the generators of SEP and the different effects of anaesthetics.  相似文献   

2.
Frequency-power spectra of the EEG evoked by repeptitive photic stimulation and of the background EEG were studied during childhood in 43 awake subjects aged between 2 months and 14 years. EEG activity was recorded from the middle parieto-occipital region with the aid of a 1-channel analyzer Lysograf-Alvar, analysing 16 frequencies in the range from 2 to 28 c/sec. The responsiveness of the central nervous system to flickering light improved in the course of childhood in parallel with the significant decline of delta activity and with the prominent increase of alpha intensity in the resting EEG. The 4th month of life appeared to be a marked turning point in the development of evoked and background EEGs. From that age, the bioelectric power at the flash rate corresponding to photic "driving" began to increase together with the highest and optimal driving frequencies. The flash rate, at which evoked potentials changed into the "driven" rhythm, also shifted towards higher frequencies. Subsequently, the amount of energy in the resting EEG increased significantly within the theta, alpha and beta bands and, on the contrary, a prominent decline was observed in the delta range. Marked ontogenetic changes at this age closely coincided with the rapid development of exogenous fibres in the occipital cortex, including the thalamo-cortical conncetions, and fibres of the neuropil in cortical layer I, which might play an important role in the genesis of background and "driven" in the occipital region.  相似文献   

3.

Background

The Contact Heat Evoked Potential Stimulator (CHEPS) utilises rapidly delivered heat pulses with adjustable peak temperatures to stimulate the differential warm/heat thresholds of receptors expressed by Aδ and C fibres. The resulting evoked potentials can be recorded and measured, providing a useful clinical tool for the study of thermal and nociceptive pathways. Concurrent recording of contact heat evoked potentials using electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) has not previously been reported with CHEPS. Developing simultaneous EEG and fMRI with CHEPS is highly desirable, as it provides an opportunity to exploit the high temporal resolution of EEG and the high spatial resolution of fMRI to study the reaction of the human brain to thermal and nociceptive stimuli.

Methods

In this study we have recorded evoked potentials stimulated by 51°C contact heat pulses from CHEPS using EEG, under normal conditions (baseline), and during continuous and simultaneous acquisition of fMRI images in ten healthy volunteers, during two sessions. The pain evoked by CHEPS was recorded on a Visual Analogue Scale (VAS).

Results

Analysis of EEG data revealed that the latencies and amplitudes of evoked potentials recorded during continuous fMRI did not differ significantly from baseline recordings. fMRI results were consistent with previous thermal pain studies, and showed Blood Oxygen Level Dependent (BOLD) changes in the insula, post-central gyrus, supplementary motor area (SMA), middle cingulate cortex and pre-central gyrus. There was a significant positive correlation between the evoked potential amplitude (EEG) and the psychophysical perception of pain on the VAS.

Conclusion

The results of this study demonstrate the feasibility of recording contact heat evoked potentials with EEG during continuous and simultaneous fMRI. The combined use of the two methods can lead to identification of distinct patterns of brain activity indicative of pain and pro-nociceptive sensitisation in healthy subjects and chronic pain patients. Further studies are required for the technique to progress as a useful tool in clinical trials of novel analgesics.  相似文献   

4.
Although event-related potentials (ERPs) are widely used to study sensory, perceptual and cognitive processes, it remains unknown whether they are phase-locked signals superimposed upon the ongoing electroencephalogram (EEG) or result from phase-alignment of the EEG. Previous attempts to discriminate between these hypotheses have been unsuccessful but here a new test is presented based on the prediction that ERPs generated by phase-alignment will be associated with event-related changes in frequency whereas evoked-ERPs will not. Using empirical mode decomposition (EMD), which allows measurement of narrow-band changes in the EEG without predefining frequency bands, evidence was found for transient frequency slowing in recognition memory ERPs but not in simulated data derived from the evoked model. Furthermore, the timing of phase-alignment was frequency dependent with the earliest alignment occurring at high frequencies. Based on these findings, the Firefly model was developed, which proposes that both evoked and induced power changes derive from frequency-dependent phase-alignment of the ongoing EEG. Simulated data derived from the Firefly model provided a close match with empirical data and the model was able to account for i) the shape and timing of ERPs at different scalp sites, ii) the event-related desynchronization in alpha and synchronization in theta, and iii) changes in the power density spectrum from the pre-stimulus baseline to the post-stimulus period. The Firefly Model, therefore, provides not only a unifying account of event-related changes in the EEG but also a possible mechanism for cross-frequency information processing.  相似文献   

5.
The first attempts to introduce computerized power spectrum analysis of the electroencephalogram (EEG) as an intraoperative anaesthesia monitoring device started approximately 30 years ago. Since that time, the effects of various anaesthetic agents, sedative and analgesic drugs on the EEG pattern have been addressed in numerous studies in human patients and different animal species. These studies revealed dose-dependent changes in the EEG power spectrum for many intravenous and volatile anaesthetics. Moreover, EEG responses evoked by surgical stimuli during relative light levels of surgical anaesthesia have been classified as 'arousal' and 'paradoxical arousal' reaction, previously referred to as 'desynchronization' and 'synchronization', respectively. Contrasting reports on the correlation between quantitative EEG (QEEG) variables derived from power spectrum analysis (i.e. spectral edge frequency, median frequency) and simultaneously recorded clinical signs such as movement and haemodynamic responses, however, limited the routine use of intraoperative EEG monitoring. In addition, the appearance of EEG burst suppression pattern and isoelectricity at clinically relevant concentrations/doses of newer general anaesthetics (i.e. isoflurane, sevoflurane, propofol) may have weakened the dose-related EEG changes previously reported. Despite these findings, the EEG power spectrum analysis may still provide valuable information during intraoperative monitoring in the individual subject. The information obtained from EEG power spectrum analysis may be further supplemented by newer EEG indices such as bispectral index and approximate entropy or other neurophysiological monitors including auditory evoked potentials or somatosensory evoked potentials.  相似文献   

6.
We recorded visual evoked potentials (VEPs) to flash stimuli in moderately deep anaesthesia when EEG showed burst suppression pattern. Flash VEPs could consistently be recorded in all 8 test subjects during bursts but not during suppressions. We conclude that during isoflurane-induced EEG suppression VEPs to flash stimuli are also suppressed. This effect should be taken into account in evoked potential testing during anaesthesia.  相似文献   

7.
Evoked potentials are the brain's responses to incoming stimuli and are usually recorded under noisy circumstances. To improve the signal-to-noise ratio, signal averaging has been widely applied to the recorded data, but an improved method is required. A method of EEG waveform prediction for the accurate recording of evoked potentials is proposed, and an electroencephalographic waveform predicted by using an EEG model and a nonlinear exponentially weighted least squares method, subtracting the predicted EEG waveform from the raw data and extracting the evoked waveform. By the use of this method, we have successfully predicted the EEG waveform and detected the evoked potential with only a small number of averages.  相似文献   

8.
Brain’s alpha activity and alpha responses belong to major electrical signals that are related to sensory/cognitive signal processing. The present study aims to analyze the spontaneous alpha activity and visual evoked alpha response in drug free euthymic bipolar patients. Eighteen DSM-IV euthymic bipolar patients (bipolar I n = 15, bipolar II n = 3) and 18 healthy controls were enrolled in the study. Patients needed to be euthymic at least for 4 weeks and psychotrop free for at least 2 weeks. Spontaneous EEG (4 min eyes closed, 4 min eyes open) and evoked alpha response upon application of simple visual stimuli were analyzed. EEG was recorded at 30 positions. The digital FFT-based power spectrum analysis was performed for spontaneous eyes closed and eyes open conditions and the response power spectrum was also analyzed for simple visual stimuli. In the analysis of spontaneous EEG, the ANOVA on alpha responses revealed significant results for groups (F(1,34) = 8.703; P < 0.007). Post-hoc comparisons showed that spontaneous EEG alpha power of healthy subjects was significantly higher than the spontaneous EEG alpha power of euthymic patients. Furthermore, visual evoked alpha power of healthy subjects was significantly higher than visual evoked alpha power of euthymic patients (F(1,34) = 4.981; P < 0.04). Decreased alpha activity in spontaneous EEG is an important pathological EEG finding in euthymic bipolar patients. Together with an evident decrease in evoked alpha responses, the findings may lead to a new pathway in search of biological correlates of cognitive impairment in bipolar disorder.  相似文献   

9.
Electrically evoked twitch properties of the human plantarflexor muscles were measured with the muscles at a constant length (static) and during passive shortening and lengthening. A Kin-Com dynamometer system was used to passively move the ankle joint at 0.52 rad s-1 (30 degrees s-1), as well as to record the twitch responses which were elicited by supramaximal electric shocks applied over the tibial nerve in the popliteal fossa. In the lengthening and shortening conditions, twitches were evoked by triggering the shocks so that the twitch response occurred at a similar angular position for all three conditions. The lengthening twitch peak torque was about twice as large as that recorded for the shortening condition. There was, however, no statistical difference in the twitch time course in these three testing conditions. This twofold increase in the peak twitch torque during lengthening, compared to shortening, is much greater than the torque increase reported during eccentric, as compared to concentric maximal voluntary contractions. These findings suggest that a deactivation process of the contractile system occurs during muscle shortening, while in contrast, during passive lengthening a potentiation mechanism is acting, and that both these mechanisms are independent of volitional muscle activation. The present study is the first to demonstrate the possibility of electrically evoked contractions of human muscles during passive lengthening and shortening. We believe that the use of such evoked contractions may be promising for the study of contractile behaviour of human skeletal muscles during eccentric and concentric conditions.  相似文献   

10.
正弦调制光诱发脑电响应特性的研究   总被引:1,自引:0,他引:1  
本文介绍了我们研制的正弦调制光诱发脑电系统,该系统由多功能刺激控制器、换能器、脑电信号的采集放大、系统控制部份组成,具有智能化、微机化的特点.我们应用该系统进行了人脑在正弦调制光刺激下诱发电位响应特性的研究,实验结果进行了处理和分析.  相似文献   

11.
We introduce a method for processing visual evoked potentials, on the basis of a Wiener filter algorithm applied to a small number of consecutive responses. The transfer function of the filter is obtained by taking into account both the average of 99 sweeps (as an estimate of the true signal) and the EEG signal just before the stimulus onset (as an estimate of the noise superimposed on each individual response). The process acts as a sweep-by-sweep filter (in the sense of the mean square error) which considers the possible non-stationarities of the EEG signal during a complete clinical procedure. The average of a small number of consecutive filtered sweeps reveals variations in the morphology of the evoked responses which produce a change in the principal latencies. Applications are foreseen in neurophysiological studies of visual evoked potential responses, and in the clinic, where it is important to evaluate adaptive mechanisms, dynamic changes in single groups of visual evoked potentials and cognitive responses.  相似文献   

12.
Spline generated surface Laplacian temporal wave forms are presented as a method to improve both spatial and temporal resolution of evoked EEG responses. Middle latency and the N1 components of the auditory evoked response were used to compare potential-based methods with surface Laplacian methods in the time domain. Results indicate that surface Laplacians provide better estimates of underlying cortical activity than do potential wave forms. Spatial discrimination among electrode sites was markedly better with surface Laplacian than with potential wave forms. Differences in the number and latencies of peaks, and their topographic distributions, were observed for surface Laplacian, particularly during the time period encompassing the middle latency responses. Focal activities were observed in surface Laplacian wave forms and topographic maps which were in agreement with previous findings from auditory evoked response studies. Methodological issues surrounding the application of spline methods to the time domain are also discussed. Surface Laplacian methods in the time domain appear to provide an improved way for studying evoked EEG responses by increasing temporal and spatial resolution of component characteristics.  相似文献   

13.
The investigation of evoked potentials requires suitable consideration of physiological and pathophysiological characteristics of spontaneous and evoked electrical activity of the brain. For this purpose a preprocessing strategy based on adaptive recursive estimation of statistical parameters was developed. In this way, artifact handling, classification, filtering and further preprocessing of spontaneous EEG and evoked potentials can be improved.  相似文献   

14.
Changes in frequency and space parameters of the EEG coherence evoked by cognitive performance were analyzed in 13 healthy subjects and participants of the Chemobyl clean-up. In healthy subjects, the EEG coherences in the alpha and beta frequency bands were significantly increased during arithmetic count and during visuospatial performance. Each test was characterized by regionally-specific features. Chemobyl patients demonstrated a global decrease in the EEG coherence predominantly in the alpha and beta frequency bands, especially in the frontal cortical areas. Patients with various pathological EEG patterns demonstrated specific impairment of EEG parameters. In patients with a "flat" EEG pattern, the EEG coherence predominantly decreased in the frontal associative areas, especially during arithmetic calculation. In patients with a "hypersynchronous" EEG pattern, the decrease in the EEG coherence was most pronounced in the parietal associative areas, especially during the visuospatial performance. The revealed impairments of the EEG coherence reactivity may be a reflection of disorders of the intracortical and corticosubcortical interaction and can result from the remote postradiation brain atrophy, especially, of cortical structures.  相似文献   

15.
Regulation of wrist stiffness by the stretch reflex   总被引:1,自引:0,他引:1  
In restoring the angular position after a displacement, the role of the muscle stretch reflex was investigated by comparing the restored angular torques and angular positions in the wrist under ischaemic and non-ischaemic conditions in normal human subjects. The wrist compliance (COM), defined as the dynamic relation between the angular position and the angular torque of the joint, was calculated to quantify the changes in the restoration of a displacement after abolishing the stretch reflex by ischaemia. The elasticity from the COM-function was found to be single most important factor controlled by the stretch reflex. The elasticity that equals the static stiffness of the system increased by more than 100%, from 0.21 Nm degree-1 with abolished reflex to 0.45 Nm degree-1 with intact reflex. Our results have shown that the stretch reflex assists in the rapid return of the limb to its original position after a mechanical displacement. When the reflex was blocked by ischaemia, the perturbation displaced the limb further away from the initial position.  相似文献   

16.
The integrative activity of K+ ions in the CNS was studied in urethane-anaesthetized rats. Changes in the potassium ion concentration in the extracellular space ([K+]e) of the cerebral cortex were studied by means of ion-selective K+ microelectrodes introduced into the brain with an implanted micro-drive allowing measurement in the immobilized animal. EEG desynchronizations evoked by various arousal stimuli or of spontaneous origin were accompanied by a small, but definitely measurable and reliably reproducible [K+]e increment. In arousal reactions evoked by nociceptive stimuli and ammonia fumes, [K+]e rose from a resting value of 3 mM by a mean 0.31 +/- 0.04 mM and 0.61 +/- 0.15 mM respectively. The mean duration of the increase was 37 and 305 sec and the mean duration of corresponding EEG desynchronization 47 and 48 sec; the amplitude of the [K+]e change lagged 15 and 39 sec behind maximum EEG desynchronization. Periodic spontaneous desynchronizations lasting 123 sec, which were evidently associated with the sleep cycle and were accompanied by a [K+]e increment of 0.4 +/- 0.04 mM, occurred in two rats. Repeated nociceptive stimuli led to the elaboration of a conditioned arousal reaction manifested in a [K+]e increment prior to their application. [K+]e changes in arousal reactions were found to be a more sensitive index of the general activity of the neuronal population than DC potential changes.  相似文献   

17.
Han  Li  Liang  Zhang  Jiacai  Zhang  Changming  Wang  Li  Yao  Xia  Wu  Xiaojuan  Guo 《Cognitive neurodynamics》2015,9(2):103-112
A reactive brain-computer interface using electroencephalography (EEG) relies on the classification of evoked ERP responses. As the trial-to-trial variation is evitable in EEG signals, it is a challenge to capture the consistent classification features distribution. Clustering EEG trials with similar features and utilizing a specific classifier adjusted to each cluster can improve EEG classification. In this paper, instead of measuring the similarity of ERP features, the brain states during image stimuli presentation that evoked N1 responses were used to group EEG trials. The correlation between momentary phases of pre-stimulus EEG oscillations and N1 amplitudes was analyzed. The results demonstrated that the phases of time–frequency points about 5.3 Hz and 0.3 s before the stimulus onset have significant effect on the ERP classification accuracy. Our findings revealed that N1 components in ERP fluctuated with momentary phases of EEG. We also further studied the influence of pre-stimulus momentary phases on classification of N1 features. Results showed that linear classifiers demonstrated outstanding classification performance when training and testing trials have close momentary phases. Therefore, this gave us a new direction to improve EEG classification by grouping EEG trials with similar pre-stimulus phases and using each to train unit classifiers respectively.  相似文献   

18.
Two coordinate systems for specifying the position of a point on the scalp are described. The coordinates resemble those of conventional cartography, but are related to irregular solids by using proportional curvilinear surface units instead of solid angular geometry. Cylindrical projections convert the coordinate lines into rectangular graticules for isopotential maps of sensory evoked responses. Visual and somatosensory data are presented to illustrate the techniques. The practical advantages of these principles applied to contemporary developments in colour contour displays are discussed.  相似文献   

19.
This paper describes the application of an EKG elimination procedure1, previously reported by the authors, to evoked potentials (EPs) recording using a non-cephalic reference. The method consists of three separate steps: data acquisition, EKG artifact elimination, and EP averaging. EKG artifacts are eliminated from the raw EEG by applying a four step procedure to the simultaneously recorded EEG, EKG and stimulus pulse. The steps are: synchronized partition of the raw EEG, EKG averaging, synchronized repetition, and synchronized subtraction of the EKG estimate from the raw EEG. Average EP values are then obtained by averaging the processed EEG using the stimulus pulse as a trigger. Somatosensory evoked potentials to a hand reference, averaged using the proposed method, were compared with those obtained by two conventional averaging methods, and were shown to be more clearly defined. The advantage of the proposed method for recording short latency EP values with a non-cephalic reference is that it requires fewer sweeps and thus takes less time than other methods. The proposed method may also be applicable to the recording of other EP values.  相似文献   

20.
In 12 tested subjects, we studied changes in the frequency-amplitude EEG characteristics evoked by thermostimulation of the left palm (its immersion in a pool of water with a changing temperature); temperatures of 24 and 42°C provided cooling and heating stimulations. Cooling of the palm resulted in an increase of the power of fast EEG oscillations, especially in the parietal and occipital regions and in the right temporal zone. Heating of the palm skin evoked an increase in the power of α- and θ-waves, and the latter component was most noticeably intensified in the frontal and right temporal regions. Possible mechanisms responsible for EEG modifications under conditions of thermostimulation of the skin are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号