首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interferon (IFN) signaling is crucial for antiviral immunity. While type I IFN signaling is mediated by STAT1, STAT2, and IRF9, type II IFN signaling requires only STAT1. Here, we studied the roles of these signaling factors in the host response to systemic infection with lymphocytic choriomeningitis virus (LCMV). In wild-type (WT) mice and mice lacking either STAT2 or IRF9, LCMV infection was nonlethal, and the virus either was cleared (WT) or established persistence (STAT2 knockout [KO] and IRF9 KO). However, in the case of STAT1 KO mice, LCMV infection was lethal and accompanied by severe multiorgan immune pathology, elevated expression of various cytokine genes in tissues, and cytokines in the serum. This lethal phenotype was unaltered by the coabsence of the gamma interferon (IFN-γ) receptor and hence was not dependent on IFN-γ. Equally, the disease was not due to a combined defect in type I and type II IFN signaling, as IRF9 KO mice lacking the IFN-γ receptor survived infection with LCMV. Clearance of LCMV is mediated normally by CD8(+) T cells. However, the depletion of these cells in LCMV-infected STAT1 KO mice was delayed, but did not prevent, lethality. In contrast, depletion of CD4(+) T cells prevented lethality in LCMV-infected STAT1 KO mice and was associated with a reduction in tissue immune pathology. These studies highlight a fundamental difference in the role of STAT1 versus STAT2 and IRF9. While all three factors are required to limit viral replication and spread, only STAT1 has the unique function of preventing the emergence of a lethal antiviral CD4(+) T-cell response.  相似文献   

2.
3.
4.
5.
Nishio M  Tsurudome M  Ito M  Ito Y 《Journal of virology》2005,79(23):14756-14768
The V proteins of some paramyxoviruses have developed the ability to efficiently inactivate STAT protein function as a countermeasure for evading interferon (IFN) responses. Human parainfluenza virus type 4 (hPIV4) is one of the rubulaviruses, which are members of the family Paramyxoviridae, and has a V protein with a highly conserved cysteine-rich domain that is the hallmark of paramyxovirus V proteins. In order to study the function of the hPIV4 V protein, we established HeLa cells expressing the hPIV4A V protein (HeLa/FlagPIV4V). The hPIV4 V protein had no ability to reduce the level of STAT1 or STAT2, although it associated with STAT1, STAT2, DDB1, and Cul4A. It interfered with neither STAT1 and STAT2 tyrosine phosphorylation nor IFN-induced STAT nuclear accumulation. In addition, HeLa/FlagPIV4V cells are fully sensitive to both beta interferon (IFN-beta) and IFN-gamma, indicating that the hPIV4 V protein has no ability to block IFN-induced signaling. We further established HeLa cells expressing various chimeric proteins between the hPIV2 and hPIV4A V proteins. The lack of IFN-antagonistic activity of the hPIV4 V protein is caused by both the P/V common and V-specific domains. At least two regions (amino acids [aa] 32 to 45 and aa 143 to 164) of hPIV4 V in the P/V common domain and one region (aa 200 to 212) of the C terminus are involved in the inability to evade the IFN-induced signaling. Moreover, we established HeLa cells persistently infected with hPIV4 to make sure of the inability to escape IFN and confirmed that hPIV4 is the only paramyxovirus analyzed to date that can't evade the IFN-induced antiviral responses.  相似文献   

6.
7.
8.
Type I IFNs are critical players in host innate and adaptive immunity. IFN signaling is tightly controlled to ensure appropriate immune responses as imbalance could result in uncontrolled inflammation or inadequate responses to infection. It is therefore important to understand how type I IFN signaling is regulated. Here we have investigated the mechanism by which suppressor of cytokine signaling 1 (SOCS1) inhibits type I IFN signaling. We have found that SOCS1 inhibits type I IFN signaling not via a direct interaction with the IFN α receptor 1 (IFNAR1) receptor component but through an interaction with the IFNAR1-associated kinase Tyk2. We have characterized the residues/regions involved in the interaction between SOCS1 and Tyk2 and found that SOCS1 associates via its SH2 domain with conserved phosphotyrosines 1054 and 1055 of Tyk2. The kinase inhibitory region of SOCS1 is also essential for its interaction with Tyk2 and inhibition of IFN signaling. We also found that Tyk2 is preferentially Lys-63 polyubiquitinated and that this activation reaction is inhibited by SOCS1. The consequent effect of SOCS1 inhibition of Tyk2 not only results in a reduced IFN response because of inhibition of Tyk2 kinase-mediated STAT signaling but also negatively impacts IFNAR1 surface expression, which is stabilized by Tyk2.  相似文献   

9.
10.
11.
12.
13.
Zurney J  Howard KE  Sherry B 《Journal of virology》2007,81(24):13668-13680
Viral myocarditis is an important human disease, and reovirus-induced murine myocarditis provides an excellent model system for study. Cardiac myocytes, like neurons in the central nervous system, are not replenished, yet there is no cardiac protective equivalent to the blood-brain barrier. Thus, cardiac myocytes may have evolved a unique antiviral response relative to readily replenished cell types, such as cardiac fibroblasts. Our previous comparisons of these two cell types revealed a conundrum: reovirus T3D induces more beta-interferon (IFN-β) mRNA in cardiac myocytes, yet there is a greater induction of IFN-stimulated genes (ISGs) in cardiac fibroblasts. Here, we investigated possible underlying molecular determinants. We found that greater basal expression of IFN-β in cardiac myocytes results in greater basal activated nuclear STAT1 and STAT2 and greater basal ISG mRNA expression and provides greater basal antiviral protection relative to cardiac fibroblasts. Conversely, cardiac fibroblasts express greater basal IFN-α/β receptor 1 (IFNAR1) and greater basal cytoplasmic Jak1, Tyk2, STAT2, and IRF9, leading to a greater increase in reovirus T3D- or IFN-induced nuclear activated STAT1 and STAT2 and greater induction of ISGs for a greater IFN-induced antiviral protection relative to cardiac myocytes. Our results suggest that high basal IFN-β expression in cardiac myocytes prearms this vulnerable, nonreplenishable cell type, while high basal expression of IFNAR1 and latent Jak-STAT components in adjacent cardiac fibroblasts renders these cells more responsive to IFN and prevents them from inadvertently serving as a reservoir for viral replication and spread to cardiac myocytes. These studies provide the first indication of an integrated network of cell-type-specific innate immune components for organ protection.  相似文献   

14.
15.
16.
Interferons (IFNs) are antiviral cytokines that selectively regulate gene expression through several signaling pathways including nuclear factor kappaB(NFkappaB). To investigate the specific role of NFkappaB in IFN signaling, we performed gene expression profiling after IFN treatment of embryonic fibroblasts derived from normal mice or mice with targeted deletion of NFkappaB p50 and p65 genes. Interestingly, several antiviral and immunomodulatory genes were induced higher by IFN in NFkappaB knock-out cells. Chromatin immunoprecipitation experiments demonstrated that NFkappaB was basally bound to the promoters of these genes, while IFN treatment resulted in the recruitment of STAT1 and STAT2 to these promoters. However, in NFkappaB knock-out cells IFN induced STAT binding as well as the binding of the IFN regulatory factor-1 (IRF1) to the IFN-stimulated gene (ISG) promoters. IRF1 binding closely correlated with enhanced gene induction. Moreover, NFkappaB suppressed both antiviral and immunomodulatory actions of IFN against influenza virus. Our results identify a novel negative regulatory role of NFkappaB in IFN-induced gene expression and biological activities and suggest that modulating NFkappaB activity may provide a new avenue for enhancing the therapeutic effectiveness of IFN.  相似文献   

17.
The Fanconi anemia (FA) group C protein, FANCC, interacts with STAT1 following stimulation with IFN-gamma and is required for proper docking of STAT1 at the IFN-gamma receptor alpha-chain (IFN-gammaRalpha, IFN-gammaR1). Consequently, loss of a functional FANCC results in decreased activation of STAT1 following IFN-gamma stimulation. Because type I IFN receptors influence the function of type II receptors, and vice versa, we conducted experiments designed to determine whether type I IFN-induced activation of other STAT proteins is compromised in FA-C cells and found that activation of STAT 1, 3, and 5 is diminished in type I IFN-stimulated cells bearing Fancc-inactivating mutations. We also determined that the reduced activation of STATs was accompanied by significant reduction of type I IFN-induced tyrosine kinase 2 and Jak1 phosphorylation. Because tyrosine kinase 2 plays a role in differentiation of Th cells, we quantified cytokine secretion from CD4+ cells and in vitro generated CD4+ Th cell subsets from splenocytes of Fancc null mice to that of heterozygous mice and discovered reduced CD4+ IFN-gamma secretion in the Fancc-/- mouse, indicating impaired Th1 differentiation. We suggest that Fancc mutations result in a subtle immunological defect owing to the failure of FANCC to normally support Jak/STAT signaling.  相似文献   

18.

Background

Gut microbial communities of mammals are thought to show stable differences between individuals. This means that the properties imparted by the gut microbiota become a unique and constant characteristic of the host. Manipulation of the microbiota has been proposed as a useful tool in health care, but a greater understanding of mechanisms which lead to community stability is required. Here we have examined the impact of host immunoregulatory phenotype on community dynamics.

Methods and Findings

Denaturing gradient gel electrophoresis was used to analyse the faecal bacterial community of BALB/c and C57BL/6 mice and C57BL/6 mice deficient for either type I interferon (IFN) signalling (IRF9 KO mice) or type I and type II IFN signalling (STAT1 KO mice). Temporal variation was found in all mouse strains. A measure of the ability for a community structure characteristic of the host to be maintained over time, the individuality index, varied between mouse strains and available data from pigs and human models. IRF9 KO mice had significantly higher temporal variation, and lower individuality, than other mouse strains. Examination of the intestinal mucosa of the IRF9 KO mice revealed an increased presence of T-cells and neutrophils in the absence of inflammation.

Significance

The high temporal variation observed in the gut microbiota of inbred laboratory mice has implications for their use as experimental models for the human gut microbiota. The distinct IRF9 and STAT1 phenotypes suggest a role for IRF9 in immune regulation within the gut mucosa and that further study of interferon responsive genes is necessary to understand host-gut microbe relationships.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号